
Evolution of a Path Generator for a Round-Trip

Symmetric Traveling Salesperson Problem Using Genetic

Programming

Bretton Swope

Stanford Mechanical Engineering Department

Stanford University

Stanford, California 94305
bswope@stanford.edu

ABSTRACT

This paper describes the application of genetic programming to solve a 10 city

example of the Round-Trip Symmetric Traveling Salesperson Problem (TSP). The

genetic programming technique employed proves to be an excellent means of

obtaining the solution for the specified problem. Furthermore, the results indicate

that the solution obtained is case independent.

1. Introduction

The Round-Trip Traveling Salesman Problem (TSP) has been studied for decades in the computer science,
mathematics, and artificial intelligence fields. The problem description is simple enough – you are a traveling
salesperson who must visit a certain number of cities (assumedly by car) while traveling the least amount of distance.
One stipulation about the journey is that you must finish in the city where you started, hence making it a round trip.
While this may seem easy at first, most solutions obtained by just looking on a map are sub-optimal. In order to
obtain the best travel path, one must employ an algorithm that determines the order of cities to visit that results in the
lowest path distance.

The solution to TSP problems continues to appeal to scientists and engineers due to the myriad applications to
discrete optimization problems. For example, Tsai et al. have used a TSP approach to solve the optimal gene order
in a DNA-microarray (Tsai 2002). Also, the optimization of the order of holes drilled in printed circuit boards
discussed by Applegate can result in reduced manufacturing time of products (Applegate 1998).

Many types of algorithms or heuristics have been used to obtain optimal solutions to problems involving up to
15,112 cities. It is the goal of this work to evolve a genetic program that can optimize a path for the simple case of
up to 10 cities from a map of the United States. The cities listed along with their distance matrix are shown in Table
1. A map of the cities to be visited is shown in Figure 1.

Table 1 City Distance Matrix

 1 2 3 4 5 6 7 8 9 10

A
tl

B
o
s

B
ir

B
u
f

C
h
i

C
le

D
e
t

In
d

J
a
c

M
e
m

1 Atlanta 0 921 153 690 579 536 575 415 308 327

2 Boston 921 0 1048 396 848 554 628 805 1029 1128

3 Birmingham 153 1048 0 782 579 611 629 431 387 202

4 Buffalo 690 396 782 0 455 185 237 440 904 806

5 Chicago 579 848 579 455 0 303 220 167 881 489

6 Cleveland 536 554 611 185 303 0 98 257 784 622

7 Detroit 575 628 629 237 220 98 0 225 844 608

8 Indiana 415 805 431 440 167 257 225 0 715 384

9 Jacksonville 308 1029 387 904 881 784 844 715 0 588

10 Memphis 327 1128 202 806 489 622 608 384 588 0

Figure 1: Map of American Cities Used in Traveling Salesperson Problem.

As you can see above, the optimal city path seems relatively simple to figure out for a path of 10 cities.

However, one should note that with 10 cities there are 10! or 3.62 million possible paths to take given an initial
location.

2. TSP Heuristics

The widespread study of the TSP has created far too many heuristics to allow to an exhaustive list to be displayed in
this paper, however there are a few simple techniques that are easy to understand and are worthy to note here.

Nearest Neighbor Heuristic - The nearest neighbor is an easily found greedy algorithm that simply evaluates the
distances from the current city to all cities that have not been visited and chooses to visit the one which is closest to
the current city. For example, if one were to start at city 1 from the map above, it is easy to read from the table
above that the next city would be city 3. In fact, the specific city list used in the city matrix is solvable using the
nearest neighbor heuristic, regardless of starting point. However, it is also easy to understand that the algorithm
would be rendered sub-optimal for most trials if a city such as Stanford, CA were added to the list. The TSP would
visit each closest city relative to their current city, ignoring Stanford because it is far outside of the simple city loop
presented. Then, at the end of the trip the salesman would only be left with Stanford to visit before returning to the
starting city. If the home city were city 2, then the salesman would be traveling far out of his way to return home.

Two-Optimum Exchanger - A 2-optimum exchanger simply takes a path that is already established and looks to see
if switching two nodes will shorten the overall distance of the path. Once there are no remaining switches to be
made, the optimal solution has been found.

Insertion Heuristic - Another intuitive technique known as the insertion heuristic begins with a three city tour that
has the greatest path distance. Then, cities are added to the path based on the amount of distance they add to the
total path. There are two basic types of path extending rationales:

• Minimum increase in distance – fueled by pure greed, this method adds the city which increases the total
path distance the least.

• Maximum increase in distance – implemented to obtain the overall layout of the path early on in the search
process, this rationale adds the city which increases the total path distance the most.

3

2

1

4
5 6

7

8

9

10

1. Atlanta

2. Boston

3. Birmingham

4. Buffalo

5. Chicago

6. Cleveland

7. Detroit

8. Indianapolis

9. Jacksonville

10. Memphis

3. Genetic Programming

Genetic programming as described by Koza (1992), is a method of evolving a fit computer program using the
Darwinian principle of natural selection and genetic operations. During a genetic programming run, hundreds of
thousands of programs are created and run in order to evaluate each program’s performance. Those with a higher
value of fitness are selected to reproduce and are ‘bred’ using different means of crossover and mutation. The type
of crossover may vary, but the result must consistently produce individuals that are functioning programs.
 The programming language that genetic programming either employs directly or emulates is the simple LISP
programming language. LISP expressions can be viewed as easily executable tree structures. These trees are
constructed from nodes that are either defined as function nodes or terminal nodes. Function nodes perform a
desired function on their children and return the result to their parent. Terminal nodes may only be children and thus
are at the ends of the tree structure. A sample program tree and LISP expression are shown in Figure 2 below. In
the expression and tree, the function node F1 receives two inputs (one from each child) and returns some function of

those inputs to its parent. The function node F2 receives three inputs from and returns one input to its parent. The

terminals X and Y have no children and simply provide their value to their parent.

LISP Expression:

(F1 (F2 (F1 X Y) X Y) Z)

F1

F2 Z

F1

X Y

X Y

Figure 2: Example LISP Expression and Program Tree

 It is typical in genetic programming to minimize the amount of human knowledge or into the genetic program’s
function set. One seeks to increase the amount of automated operation in relation to the amount of presupplied
information by the human user. This ratio is known as the AI ratio.

4. Programming Setup

In order to solve the Traveling Salesperson Problem presented in this paper, a software package entitled ECJ was
chosen to provide the genetic programming framework. This software, written in the Java programming language by
Sean Luke, provides an easily scalable and robust package for quickly solving many GP and GA problems.
 The primary operations used to modify the program trees were crossover, reproduction and mutation. All
primary operations used tournament selection with a tournament size of 7. The percentages of crossover and
reproduction for the runs were .9 and .1 respectively. The number of trees allowed in the evolved program was set to
one.
 The runs were performed on an Intel Pentium IV processor running at 2,000 Mhz. Version 1.4.2_02 of the Java
virtual machine was used to run the compiled GP code. Further details about the various genetic programming
parameters are given in the results and discussion section of the document as appropriate.

5. Results and Discussion

5.1. Initial Approach - Genetically Programmed Traveling Salesperson

For the first attempt at solving the traveling salesperson problem, a simple case of 5 cities was examined and the
function set was chosen so that a solution could easily be realized. In order to provide closure to the function set an
approach to the problem was found that allows the program to return a path at the end of its evaluation. This path is

then tested against the optimum distance path for the cities found in the return path and a penalty is given based on
the distance traveled relative to the optimum distance traveled. Table 2 shows the genetic programming tableau for
this initial approach.

Table 2 Genetic Programming Tableau for Initial GPTSP
Objective: To find a program that returns the optimum

path for a 5 city TSP.

Terminal set: City 1, City 2, City 3, City 4,

City 5.

Function set: CombinePaths, OptimizePath

Fitness cases: The optimal path containing cities 1 through 5.

Raw fitness: The diference between the distance of the
returned path and the distance of the optimal
path plus a penalty if a path does not contain
all the cities.

Standardized
fitness:

Same as Raw fitness.

Hits: The number of cities contained in the path
generated by the program.

Parameters: Population sizes M = 5,10,20,25,30,50

Wrapper: none

Success
predicate:

An S-expression representing a program that
generates a path containing all the required
cities and whose length is equal to the optimal
path.

As Table 2 indicates, the function set only consisted of two functions that allowed for combining paths and
optimizing paths. The terminal set consisted of only five of the ten total cities available. A fitness function was
defined as the following:

Fitness = (5-NC) + (OPD – IPD) F(1)

 Where NC is the number of cities visited, OPD is the optimal path distance, and IPD is the Individual’s path
distance.
 Using these parameters, solutions quickly emerged during generation zero. This is an expected result because the
search space of possible combinations of five cities is not very large and a simple random combining of the five
paths will result in an ideal individual rather quickly. In fact, the problem is almost analogus to a pre-GP genetic
algorithm in which the chromosome simply indicates how to use the function set. One interesting but unsurprising
bit of knowledge that was gleaned from the initial run was that if the population size was reduced to 5, the solution
would not converge after 51 generations. While this is only 255 individuals, the program never had more than four
out of five hits. In fact, the program never evolved to use city number 2. This is because the first generation did not
randomly create any individuals with a city 2 terminal in the initial population of five and hence there was no city 2
to reproduce or crossover into future generations.

5.2. Second Approach - Genetically Programmed Traveling Salesperson

In order to create a more advanced program and increase the AI ratio of the approach, a few modifications were
made to the initial approach. First, the rest of the cities were added to the matrix so that the number of possible
combinations prevented random luck from generating an optimal individual in the beginning of the run. Secondly, a
new function was added to replace the OptimizePath function that would force the evolution of more

sophisticated programs that were not simply assembling all of the cities and then calling on the OptimizePath

function at the top of the tree. The tableau for this approach is shown in Table 3 below.

The Terminals and Functions found in the Table
2 are defined as follows:

City 1 through City 5 – These terminal

nodes are simply paths containing one city
corresponding to their name.

CombinePaths – Combines the paths of its

two children and returns the combined path to
the parent

OptimizePath – evaluates its only child’s

path, optimizes the path, and returns the
optimized path to the parent.

Shorter path selector

2-3 swap

1 2 3 4 5

1 3 2 4 5

Dist = 100

1 2 3 4 5

Dist = 500

Shift and return

3 2 4 5 1

Table 3 Genetic Programming Tableau for Second Approach
Objective: To find a program that returns the optimum path for a 10

city TSP.

Terminal set: City 1, City 2, City 3, City 4, City 5,

City 6, City 7, City 8, City 9, City 10

Function set: CombinePaths, OptimizePath, 23SwapAndShift

Fitness cases: The optimal path containing cities 1 through 10.

Raw fitness: The diference between the distance of the returned path
and the distance of the optimal path plus a weighted
penalty if a path does not contain all the cities plus a
weighted penalty based on the number of nodes in the
individual’s tree.

Standardized
fitness:

Same as Raw fitness.

Hits: The number of cities contained in the path generated by
the program.

Parameters: Population sizes:
M = 100,200,300,500,1000
Generations:
G = 51, 100, 200, 500

Wrapper: none

Success predicate: An S-expression representing a program that generates a
path containing all the required cities and whose length is
equal to the optimal path.

 The new function added was the TwoThreeSwapAndShift function. This function is meant to behave

similarly to the 2-optimum improvement heuristic. This function evaluates its only child and if its path contains
more than 3 cities it swaps the 2

nd
 and 3

rd
 cities. If this new path is better than the old one, it shifts the order of the

path one city to the left and returns the path to its parent. If the swapped path is not shorter than the original path, it
simply shifts the path one city to the left and returns the individual to its parent. A diagram of the
TwoThreeSwapAndShift function is shown in Figure 3. Note there is no direct optimization present in the

function, just a simple lookup command that determines which path is shorter.
 By adding all ten cities to the terminal set, adding the TwoThreeSwapAndShift function, and eliminating the

OptimizePath function from the function set, much more interesting individuals start to evolve. At first,

however, convergence was not possible even with large populations and hundreds of generations. It was discovered
that the fitness function was driving the solution away from paths that contained 10 cities. This is easy to understand
based on the fitness function F(1) given in the previous section. One should note that the penalty for having 1-9
cities is only a value between 1 and 9 respectively, while the penalty for having a poor path distance is the distance
of the path minus the optimal distance for the path. For poorly constructed 10 city paths, the distance penalty would
far outweigh the penalty for having a 5 city path. The GP was evolving individuals that had a perfect path but only 8
cities. This problem was solved by using a factor, M, to magnify the penalty for having a path with less than 10
cities. A new fitness function, shown below, was implemented and solutions began to converge once again.

Fitness = M(10-NC) + (OPD – IPD) + N(CN) F(2)

The initial value of N was set to zero for reasons explained below. By setting the value of M to 1,000 it was found
that the GP quickly adapted and chose to use all 10 cities. This is because even the worst 10 city path only has a
distance penalty of a few thousand miles. Individuals with poor path distances and less than ten cities were
eliminated very early in the run using this new fitness measure.
 The new function set caused the evolved program trees to be considerably more complex than those of the initial
problem approach. These new trees would converge rather quickly but contained around one hundred nodes. For
example, during one run of 200 individuals, the following correct solution individual emerged during the fourth
generation:

Final Statistics

Total Individuals Evaluated: 1000

Best Individual of Run:

 Fitness: Raw=0.0 Adjusted=1.0 Hits=10

 (CombinePaths (CombinePaths (CombinePaths (TwoThreeSwapAndShift (TwoThreeSwapAndShift City10)) (TwoThreeSwapAndShift

(CombinePaths City6 City6))) (CombinePaths (CombinePaths (TwoThreeSwapAndShift (CombinePaths (CombinePaths (CombinePaths

(TwoThreeSwapAndShift (TwoThreeSwapAndShift City1)) (CombinePaths (CombinePaths City4 City7) (TwoThreeSwapAndShift City6)))

(TwoThreeSwapAndShift (TwoThreeSwapAndShift (CombinePaths (TwoThreeSwapAndShift City9) (CombinePaths City5 City1)))))

(CombinePaths (CombinePaths (CombinePaths (CombinePaths City10 City6) (CombinePaths) (TwoThreeSwapAndShift (CombinePaths City6

City4)) (CombinePaths (CombinePaths City7 City3) (CombinePaths City10 City4)))) (CombinePaths (TwoThreeSwapAndShift City3)

(TwoThreeSwapAndShift City6))) (TwoThreeSwapAndShift (CombinePaths City10 City5))))) (CombinePaths (CombinePaths (CombinePaths

Figure 3: TwoThreeSwapAndShift

(CombinePaths City9 City8) (CombinePaths City6 City6)) (CombinePaths (CombinePaths City8 City7) (CombinePaths City6 City10)))

(CombinePaths (TwoThreeSwapAndShift (TwoThreeSwapAndShift City6)) (CombinePaths (TwoThreeSwapAndShift City4) (TwoThreeSwapAndShift

City7))))) (TwoThreeSwapAndShift (CombinePaths (CombinePaths City3 City9) (CombinePaths City5 City6))))) (CombinePaths

(TwoThreeSwapAndShift (TwoThreeSwapAndShift (CombinePaths City1 City2))) (CombinePaths (CombinePaths City2 City7)

(TwoThreeSwapAndShift (TwoThreeSwapAndShift City2)))))

 While this program may lead to the correct solution, it was wondered whether there may be more parsimonious
solutions. In order to determine this, the node counter coefficient in the fitness function , N, was given a value of
one. This caused the program to try and minimize the size of the lisp expressions. Using the new fitness function, it
was found that much smaller trees could generate an optimal path. Using the new fitness measure, the following 27
node individual was obtained in run V7.9. Its population and generation count were both 500:

Final Statistics

Total Individuals Evaluated: 250000

Best Individual of Run:

Fitness: Raw=27.0 Adjusted=0.035714287 Hits=10

 (CombinePaths (CombinePaths (CombinePaths (TwoThreeSwapAndShift (TwoThreeSwapAndShift City9)) (CombinePaths (TwoThreeSwapAndShift

(TwoThreeSwapAndShift (CombinePaths City6 City7))) (CombinePaths (TwoThreeSwapAndShift City10) (TwoThreeSwapAndShift

(TwoThreeSwapAndShift City1))))) (CombinePaths (TwoThreeSwapAndShift City4) City5)) (CombinePaths City3 (CombinePaths City8

City2)))

 It is readily apparent that the second individual has considerably fewer nodes that its predecessor and it still uses
all the functions available. One problem with using this method to hone in on a parsimonious solution is that the raw
fitness will never obtain a value of zero. The population quickly converges to smaller trees as can be shown by the
plot of the best of generation fitness for run V7.9 shown in Figure 4 (Note: The first 3 generations were not included
due to their large fitness values).

Figure 4: Best of Generation vs. Generation Number for run V7.9

 As the figure above indicates, a solution emerged in the 72

nd
 generation which contained only 29 nodes. Also,

the first individual with 27 nodes appeared in generation 185. The node count continues to oscillate around 30 for
the remainder of the 500 generations of this run.

5.3. Third Approach - Genetically Programmed Traveling Salesperson

Having found a relatively parsimonious solution to the 10 city problem using the TwoThreeSwapAndShift

function, the function was broken down into two separate functions, one to perform the swapping, known as
TwoThreeSwap and a separate function known as ShiftOne to perform the shifting. A multitude of runs were

performed using the same tableau shown in Table 3 with the addition of these two new functions in place of their
predecessor the TwoThreeSwapAndShift function. This function worked surprisingly well and converged after

only 7 generations with a population size of 750 and 8 generations with a population of 200. Table 4 below shows
various other runs and their outcomes.

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200

Generation Number

B
e
s
t
O
f
G
e
n
e
ra
ti
o
n
 F
it
n
e
s
s

Table 4 Results of Runs using separate Shift and Swap Functions
File Name Seed Pop Size Gen's Converge Cities Value of M Value of N Node Count

v8.6 4357 750 500 7 10 1000 0 Na

v8.7 4357 500 50 7 10 1000 0 Na

v8.8 4357 200 50 8 10 1000 0 Na

v8.9 4357 100 50 10 10 1000 0 Na

v8.10 4357 50 50 14 10 1000 0 Na

v8.11 4357 25 50 N 10 1000 0 Na

v8.12 4357 25 500 N 10 1000 0 Na

v8.13 4357 30 500 N 10 1000 0 Na

v8.14 4357 40 500 N 10 1000 0 Na

v8.15 4357 45 500 28 10 1000 0 Na

v8.16 4357 200 50 N 10 1000 1 51

v8.17 4357 200 500 N 10 1000 1 31

v8.18 4357 500 500 N 10 1000 1 34

v8.19 4357 5000 500 N 10 1000 1 19

Runs with populations less than 40 were unable to converge within 500 generations while those with populations

over 45 were able to converge in acceptable number of generations. When the node count was factored into the
fitness to obtain parsimony, the lowest node count that used the entire function set occurred during run V8.17 and
was 31 nodes for a population of 200 after 500 generations. Although an individual with only 19 nodes was obtained
in run V8.19 by increasing the population size to 5000 individuals, the 19 node individual didn’t use all of the
functions available and was able to simply combine the paths in the correct order thus turning the problem into a
genetic algorithm problem.

It might seem surprising at first that the number of nodes seems so small when we take into account tree
parsimony. One would expect the GP to evolve the behavior of the TwoThreeSwapAndShift function by

simply calling a ShiftOne function every time the TwoThreeSwap function is called. Instead, the GP takes

advantage of the fact that when a city is added or a path is combined, a shift takes place automatically and a
ShiftOne command is not necessary. This type of illogical discontinuity is a well known advantage of genetic

programming and is illustrated well by this case.
Figure 5 illustrates the best of generation raw fitness, average individual raw fitness, and 1000 times the number

of cities visited by the best of generation for run V8.9. Note how the program realizes the need to visit all the cities
by the 5

th
 generation. The increase in cities visited directly corresponds to a decrease in the raw fitness of the best of

generation individual due to the heavy weight factor applied to missing any cites. It is also interesting to note that
the average raw fitness of the generation is following a similar path as the best of generation raw fitness as expected.

Figure 5: Raw Fitness vs. Generation Number for Run V8.9

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8 9 10

Generation Number

R
a
w
 F
it
n
e
s
s Best of Generation Raw

Fitness

Average Raw Fitness of

Generation

Number of Cities in B.O.G

individual x 1000

Average Number of Cities

Visited in Generation x 1000

5.3. Final Approach - Genetically Programmed Traveling Salesperson

While studying the data from the previous approaches it because apparent that the programs evolved might be case
specific because only one city matrix was used in the evaluation function. Even with a 10 city path, The GP may be
evolving an individual that can swap, shift and combine its way to an optimum case just by using simple GA type
search of all possible combinations of cities. To ensure that this wasn’t the case, a final approach was used that
added a twist to the fitness function to ensure that the solution was applicable to more than one order of input nodes.
The evaluation is as follows:

1. Fist the individual was evaluated using fitness function F(2) with M and N values of 1000 and zero,
respectively.

2. Next, anywhere the terminals city 3 and city 5 were located in the tree, they were swapped. This new

individual had the same function tree, but the input by way of the terminals was different.
3. the fitness of the new individual was evaluated using fitness function F(2) and the result was added to the

result of part 1 above. This resulting total was the overall individual fitness.
 The parameters used in this approach remained the same as those used in the third approach except the fitness
case was changed to reflect the steps outlined above. Using this new approach, we were able to obtain an individual
that converged in the 7

th
 generation of a run of 200 individuals per generation. While this is not proof that we are

obtaining the solution for all traveling salesperson problems, it is proof that the program is not suited for merely one
case of inputs. In fact, the GP managed to optimize the unaltered individual several times in generation 5 but was
only able to optimize the altered individual once. This data proved to be very exciting and indicates that there is
potential for evolving a general case solution to a traveling salesman problem.

6. Conclusions

Several different approaches were used to create an evolved genetic program that is able to solve a Round-Trip
Symmetric Traveling Salesperson Problem. The first method had a very low AI ratio in that the functions given
performed most of the work and the genetic program merely had to ensure that all cities were contained in the path.
These solutions converged far to fast and the solution was too trivial allowing the program to evolve the solution in
the initial generation of randomly generated individuals. Runs that did not converge were only obtained by
substantially limiting the population size.
 The second approach to the TSP problem replaced the OptimzePath function with an interesting function

similar to the 2-optimum improvement heuristic. This method provided a cleaner-handed approach and thus a higher
AI ratio. The solutions using the applied function set continued to converge rather quickly. An investigation into
parsimonious programs was performed by adding a multiple of the number of nodes in the program trees to the
fitness functions. This new fitness measure provided individuals that had approximately one-quarter the number of
nodes as those previously discovered in the second approach.
 The third approach to the TSP problem further increased the AI ratio by separating the
TwoThreeSwapAndShift function into two separate functions, TwoThreeSwap and ShiftOne. This

resulted in later convergence of an individual with optimal path configuration. A noteworthy observation occurred in
the third approach that involved a well known characteristic of genetically evolved programs. This characteristic
was realized as the individuals evolved using a larger function set were able to use a similar amount of nodes.
 Finally, in the fourth approach, a more advanced fitness measure was performed that ensured that the evolved
program was not case specific. The fitness function used a clever swapping of the city 2 and city 5 terminals

to achieve this.
 The results obtained show that it is possible to evolve a round trip symmetric traveling salesperson problem
involving 10 cities. The data gathered also indicates that the solution obtained is proven to be case independent but
not matrix independent.

7. Future Work

Future work should be performed to evolve solutions that are not matrix or case specific. This could be done by
evaluating an individual against many different paths and summing the individual deviations from the ideal distance
for the particular city set. Also, more cities should be added to the city matrix so that the problem becomes
increasingly complex. Along the same lines, more distance matrices could be used to perform the fitness evaluation.
Perhaps an individual could be measured against totally different sets of cities to ensure that we are not simply
optimizing for one set of cities. Also, new functions should be employed that continue to increase the AI ratio of the
approach. Such function sets could involve more mathematical operations and thus force the GP to evolve
quantitative expressions to determine an optimal path.

Acknowledgments

The author would like to thank Mark Swope for his Java debugging expertise.

Bibliography

Applegate, D. et al. 1998. On the solution of traveling salesman problems Documenta Mathematica - Extra Volume,
International Conference on Mathematics III. Pages 645-658.

Davis, L. D. et al. 1999. Evolutionary Algorithms. New York, NY: Springer.

Huai-Kuang Tsai, et al. 2002. Applying Genetic Algorithms to Finding the Optimal Gene Order in Displaying the
Microarray Data. Langdon W., et al. (editors). Proceedings of the Genetic and Evolutionary Computation
Conference, Gecco 2002. San Francisco, CA: Morgan Kaufman Publishers. Pages 610-617.

Miettinen, K. et al. 1999. Evolutionary Algorithms in Engineering and Computer Science. New York, NY: John
Wiley & Sons, LTD.

Koza, John R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection.
Cambridge, MA: The MIT Press.

