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ABSTRACT 
This study investigates the ability of diploid GA to approach a class of problems in which 
the fitness landscape is reciprocally affected by the population itself.  This problem class 
is common in many fields of science, engineering, and the humanities, in which the entire 
system of environment plus population is maintained in a state of dynamic equilibrium.  
In particular, a system is created here in which individuals with three simulated metabolic 
enzymes inhabit and influence an environment with a three-gas atmosphere.  Through 
feedback loops and frequent environment/individual interactions, diploid populations are 
shown to create fit, stable solutions to this problem type. 

 
 
1.0     Introduction 
 
1.1     Dominance and diploidy in GA 
 
In the last four decades, the use of genetic algorithms (GA) has developed into a powerful optimization and 
problem-solving technique in a diverse range of fields.  Originally, GA was modeled on the biological process of 
evolution by natural selection: variation in individuals results in a range of reproductive fitnesses, which translates to 
fitter individuals having a greater genetic representation in future generations.  Because primitive GA was inspired 
by biological genetics, the reproductive functions used to guide propagation in most algorithms also borrowed from 
a biological repertoire, and the processes of crossing over, mutation, and asexual reproduction became instantiated 
into mainstream evolutionary algorithm strategies.  At that point, increasing availability of computer power and an 
unending store of potential problems led GA into many different fields, often relying on the same catalog of 
crossover, mutation and reproduction with slight variations in algorithm metastructure. 

The aim of this study is to return to some of the primary ideas behind the conception of evolutionary problem 
solving, and to extend them in order to create more powerful techniques that can be applied to an entirely new class 
of problem.  In particular, standard GA problems in many fields are concerned with either optimizing an individual 
(or product) in a static fitness landscape, or solving a problem in which the fitness evaluation of different strategies 
is measurable against a schedule of static costs or benefits (either directly or indirectly, such as via a simulation).  
Meanwhile, problems with dynamic fitness evaluations have been only modestly approached with GA, because the 



“best” of the classic algorithms, or one that causes individuals to quickly converge on a solution, is not necessarily 
good at continuous adaptation in the face of a changing environment and fitness landscape. 

Some attempts have been made to apply GA to changing-fitness problems, but all have had significant 
shortcomings.  Bagley (1967) used the concept of diploidy, or pairs of homologous chromosomes, to model a 
population of individuals with a dominance map that determined which of two alleles would be expressed as the 
phenotype in a given situation, thereby presenting the opportunity of an individual to carry a hidden trait without 
expressing it.  However, the individuals were evaluated under static fitness conditions, the dominance maps 
converged too early, and furthermore, the amount of information stored in the dominance maps was on the same 
order as all of the information stored in the genotypes of the individuals.  In terms of memory storage and 
manipulation, Bagley effectively had to account for triploid individuals, instead of diploid ones.  Soon after, 
Hollstein (1971) used a dominance schedule with much better memory efficiency, but again used a static fitness 
landscape, and suggested that diploidy did not offer a significant advantage to fitness.  He did note, though, that 
population diversity increased with diploidy, as latent recessive traits would emerge and create more variability 
between individuals. 

More recently, Goldberg (1989) took a step toward solving dynamic fitness problems by using diploidy to 
create individuals in changing, often oscillating, fitness environments.  As predicted, the diploid populations were 
able to adapt to changing environments more readily than haploid populations, a result that many people attribute to 
the act of calling upon once-successful traits that were cached in combinations of recessive alleles that could re-
emerge at random times and potentially exploit different environments.  The use of multiploidy, beyond two 
chromosomes, found similar results (Collingwood 1995).  
 
1.2     Stating the problem 
 
This paper investigates the ability of GA to move beyond this type of problem-solving in an independently-changing 
environment.  Instead, it uses GA to create entire systems in states of dynamic equilibrium, in which maintaining 
diversity of individuals in a population is as important to the solution as is maintaining high fitness.  In order to 
achieve the evolution of a complex system, GA must be applied to a new class of problem, one with links to 
numerous disciplines including traffic control, electrical engineering, population ecology, and endocrinology.  All of 
these fields, plus many others, rely not only on the power of the environment to influence the individual parts of the 
system, but also on the reciprocal impact of the individuals on the environment itself. 

In the following study, a GA protocol is first presented as a tool to approach dynamic systems with this type of 
reciprocal individual-environment interaction.  Next, a model problem is presented, in which a population of 
simulated creatures live and metabolize in a three-gas atmosphere.  The resulting complex system is judged in terms 
of 1) fitness of the individuals, and 2) equilibrium of the environment itself.  Finally, the characteristics of this new 
GA variant are discussed, and possible applications are explored. 

 
 
2.0     Methods 
 
2.1     GA platform and protocol 
 
A program designed for multiploid GA with dominance was created in Matlab, based upon standard GA concepts 
presented in Koza (1992) and Goldberg (1989) along with biological operators that are overlooked in many popular 
algorithms.  The framework allowed for the creation of populations with varying numbers of subpopulations, and 
with migration of individuals between subpopulations.  Mating pools were selected in tournament style, with 
tournament size based upon the desired certainty of the best-of-population individual reproducing.  In the 
reproduction stage, individuals in haploid populations could undergo single-point crossover, mutation, and (asexual) 
reproduction.  The handling of diploid populations, however, diverged from that of standard haploid GA. 

Dominance was determined in diploid populations according to the triallelic map created by Hollstein (1971) 
shown in Figure 1, in which binary bits at each locus were replaced with three choices: 0, 1, or 2.  The phenotype of 
an individual, which represented the traits that the individual expressed in its phenotype, were determined in the 
following way: the ‘2’ allele at a locus was globally dominant, and resulted in a ‘1’ in the corresponding phenotype.  
The ‘1’ genotype allele also resulted in a phenotype of ‘1’, but was recessive to the ‘0’ allele, which returned a ‘0’ in 
the phenotype.  Because the probability of a ‘1’ in the phenotype was twice as great as a ‘0’ (six genetic 



combinations lead to a phenotype of ‘1’ versus only three that lead to a ‘0’), the initial population creation during 
haploid runs was altered so that a ‘0’ occurred in a haploid genotype half as often as a ‘1’. 

When diploid individuals reproduced, they were subjected to the gamut of crossover, mutation, and asexual 
reproduction, plus extra diploid-only operations.  Crossing over was able to be applied to a single string from each 
parent, or to both strings simultaneously.  Also, sexual reproduction was executed in place of, or in conjunction 
with, the other operations: two parents swapped one entire chromosome string with each other, presenting the 

while an allele of '1' gives the same phenotype but is recessive. 

possibility of recombination of recessive alleles.  See the tableau in Table 1 for probabilities of these operations. 

under conditions of high atmospheric oxygen, enzyme2 is analogous but acts on carbon dioxide (CO2), and enzyme3 
acts on atmospheric nitrogen (N2).  Therefore, an individual’s fitness is the sum of a function on the partial pressures 
of these three gases: in this case the sum of the squared enzyme activity, times the partial pressures.  Standardized 
fitness is the raw fitness normalized to a scale of 0, being no fitness, to 2, or maximal fitness.  The following 
e
 

i
 
The atmosphere, meanwhile, is reciprocally changed by the byproducts of the population during each generation: 
enzyme one, which acts on O2, produces CO2 as a byproduct; enzyme two uses CO2 but produces N2; and enzyme 

N2) are dynamic, and are reevaluated during each generation.  The following 
quation multiplies over the j individuals in a population, where M is the population size and q normalizes the 

partial pressures to maintain a total a

e integer value of the 10-digit binary phenotype 
ring normalized to a number between zero (completely inactive enzyme) and one (fully active).  A single 

population of 1000 individua e; the size of the population 
was chosen to emphasize the goal of creating a fit, stable system in dynamic equilibrium, rather than simply a single 

Figure 1:  Hollstein's triallelic dominance map.  The allele from chromosome lies accross the top of the 
square, and the allele from chromosome two is along the left.  '2' is dominant and gives a phenotype of '1', 

2.2     Atmosphere and Metabolism Problem 
 
The atmosphere/metabolism problem of focus here simulates a biochemical system within an individual, and its 
interaction with the environment, though variations can be applied to a wide variety of other applications.  Every 
individual is represented by a chromosome (or two chromosomes, in diploid runs) of three genes, each encoding a 
different metabolic enzyme: enzyme1 uses oxygen (O2) as a substrate and therefore operates most productively 

three uses N2, producing O2 as a result.  Total atmospheric pressure is held constant at 1 bar, but the partial pressures 
of the gases, P(O2), P(CO2), and P(

quation sums over the three genes: 

Fitness = ∑ (activity of enzymei)2 * P(gas ) 

e
tmospheric pressure of 1 bar: 

 
P(O2) = [ P(O2) +  ∏ (1+((activity of enzyme3)j / M)) ] / q 

P(CO2) = [ P(CO2) +  ∏ (1+((activity of enzyme1)j / M)) ] / q 
P(N2) = [ P(N2) +  ∏ (1+((activity of enzyme2)j / M)) ] / q 

 
In the runs presented here, each of the three genes was composed of ten bits, and the value of the gene, 

corresponding to the productivity of the simulated enzyme, was th
st

ls was used in each run, which is large for a 30-bit genom



individual which solves a p nt the average best-of-
generation fitness tended to d subsequent atmosphere 
hanges) per generation.  These extra evaluations were designed to test the effects of environment changes on 

diff

roblem.  Runs were terminated after 20 generations, at which poi
plateau, but half of the runs used two fitness evaluations (an

c
ering time scales on the success of populations in showing high fitness and stability. 
 

Table 1: Tableau for the atmosphere/metabolism problem. 

Objective To use GA with diploidy and dominance to create a stable, fit population of 
individuals, each with three metabolic enzymes acting on three gases in a simulated 
atmosphere. 

Representation scheme Three genes, each of a fixed length of 10 bits.  Alphabet of {0,1,2}, following 
Hollstein’s triallelic dominance scheme.  Each gene encodes for a metabolic 

dations of productivity level. enzyme, with 1024 different gra

Fitness cases One during the GA run, another to analyze the stability of the resulting populations. 

Raw fitness he squared enzyme productivities times the partial pressures of their 
substrates. 
The sum of t

Standardized fitness The raw fitness normalized to a scale from 0 to 2, with 0 as no productivity and 2 as 
full enzyme productivity. 

Global parameters 
G=20, with one or two fitness evaluations per generation 
M=1000 

Haploid run parameters utation=0.01, reproduction=0.1 xover=0.9, m

Diploid run parameters Double string xover=0.9, asexual reproduction=0.1, sexual reproduction=0.8, 
mutation=0.01 

Termination criteria Completion of 20 generations, at which point the best-of-generation fitness was 
generally stable 

Result designation The best-of generation individual and atmospheric conditions at each generation 

 
 
 
 
3.0      Results and dis
 
T ither a Pe ere 
designed to run for many replications of each parameter setting.  In most cases, the best-of-generation fitness 

ached a plateau within 15 to 20 generations. 

.1  Fitness results 

same atmospheric conditions, with P(O2)=P(CO2)=P(N2)=0.333.  As a 
sult, the best of generation individual in both the haploid runs and diploid runs was the individual with the greatest 

cussion 

rials were run on e ntium IV 1.6 GHz personal computer or a Sun Blade 2000 Workstation, and w

re
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Generation 0 of each trial began with the 
re
activity in all three enzymes, or in other words, with the greatest number of ‘1’ alleles in its phenotype.  For a 
haploid run, a representative best-of-generation-0 individual is the following, which had a standardized fitness of 
1.744 out of a possible of 2.000: 
 



1110011111 1111110101 1111001010 

2222122200 2111100112 1222100201 
 

eneration 0 and at generation 1 was dramatic, and always 
volved a significant drop in best fitness.  This drop  greedy over-imprinting on the initial set of values 

of atmospheric conditions.  During the production ng pool at the end of generation 0, the algorithm 
behaved as if it were acting on l changes had yet been caused.  
However, by the next generation, it was evident that the f ness evaluation was not fixed, and those individuals that 
had overzealously fixed themselves on the initial con  no longer the most fit. 

By the final generation of e e same template.  Instead, the 
reatest fitness was weighted toward the individual that not only had high enzyme activity, but also had the ability to 

y inactive enzyme1 from gene 1 and the resulting inability to get fitness from O2, this 
dividual still achieved a very high fitness (1.900 y exploiting the other atmospheric gases and 

ignoring O2, which had reached such a low level as t le. 
A perfect standardized fitnes d when it did occur, it usually 

followed a generation during which the equilibrium of atmospheric gases experienced a crash to near-zero levels of 
one or two of the gases.  Therefore, while a fitness o s like a goal of interest, it was actually an indicator 
of problems with the system.  Mor

 a slight fitness advantage toward haploid 
pop

ther hand, it was also beneficial to have 
igh enzyme production levels in general, in order to utilize an atmospheric gas to its fullest potential.  Haploid 

ess variation between individuals, judged by frequency of 
henotypic alleles, and the greater diversity in the diploid populations may have hurt them when compared to a 

As predicted, the increased frequency of environmental changes with respect to the lifetime of an individual 
resulted in a shift from haploid success to diploid success (Figure 2, graph at right).  Again, the trend applied to both 

 
An example of a diploid best-of-generation-0, which was qualitatively the same, had the following genotype and 
phenotype, achieving a standardized fitness of 1.766: 
 

Genotype: 
2002110112 2111210112 2200201020 

Phenotype: 
1111111101 1111100111 1111100110 

 
he contrast between best-of-generation fitness at gT

in  results from
of the mati

static fitness measures because no environmenta
it

ditions were
ach run, the best of generation did not follow th

g
exploit the atmosphere to the greatest extent.  For example, one diploid run’s best of generation 20 had the following 
genotype and phenotype: 
 

Genotype: 
0100221212 1222110200 2110120111 
0022011202 1222111220 2122022012 

 
Phenotype: 

0011111101 1111110110 1111011011 
 

espite having a relativelD
in  out of 2.000) b

o be negligib
s of 2.000 out of 2.000 was rarely observed, an

f 2.000 sound
e discussion of system stability is below. 

 
3.2     Time scale of environmental change 
 
Surprisingly, the atmosphere/enzyme runs explained above gave

ulations, despite the changing environment (Figure 2, left graph).  This trend was true of both the mean fitness 
and best fitness of the generations.  This observation most likely lends itself to the trade-off of benefit schedules 
presented to the populations: on the one hand, it was beneficial to an individual to concentrate enzyme activity on 
avenues that were unexploited by other members of the population.  On the o
h
populations tended to have approximately three times l
p
greedy haploid algorithm. 

However, a different scenario became apparent when two fitness measures and subsequent atmosphere changes 
were conducted during each generation.  This algorithm variation was introduced in order to observe the results of 
environmental change at different timescales with respect to the lifetime of an individual, which is a serious 
consideration in many living systems.  As an example of a real application of this, consider that some types of fungi 
can alternate between haploid and diploid genotypes, respectively, to quickly adapt to 1) a single, dramatic 
environment change, or 2) a greater number of smaller changes, as often occurs in day-to-day life. 



the mean fitness and best fitness of each generation  Conceptually, the greater variance of individuals in a diploid 
population results in more diversity, or a less-dense cluster of genotypes in phenotype-space (in this case 30-space, 
because the phenotypes have 30 alleles).  When the environment changes, the location of the peak fitness location in 
30-space shifts slightly; if the cluster of individuals covers more area, as in diploid populations, it is more likely that 
an individual will be close to the new potentially best location. 

 
Figure 2:  Plots of best of generation fitness for cases of one fitness evaluation per generation (left) and two 
fitness evaluations per generation (right).  Solid lines correspond to diploid populations, broken lines are 
haploid.  The diploid populations show a dramatic improvement when the environment changes on a 
timescale greater than that of a generation, as in the graph at right. 

 
 

The concept of a sparser cluster in phenotype-space provides a better explanation for the success of diploidy 
than previous attempted explanations.  In nearly all GA-related diploidy papers, increased fitness in a changing
environment is explained as an allowance for the inexpensive storage of the memory of past solutions in the

notypes, even in novel scenarios. 

.3     System dynamics and equilibrium 

The

gned to make an atmosphere with P(O2) = P(CO2) = P(N2) = 
.333 have a value of 1.  As a result, the E-value of a system can range between 0, in which one or two gases are 

le 
stem.  As mentioned before, the genotypes of individuals in diploid populations form sparser clusters in 

 
 

recessive alleles of a gene.  However, this does not emphasize well enough the ability of diploid populations to seek 
out and exploit novel environments, or environmental states that have never occurred before.  The sparse-cluster 
explanation is more suitable, as it explains that diploid populations have the ability to cover more volume of 
phenotype-space, and therefore can quickly discover potentially-best phe
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 final measure of the ability of GA to create complex, self-reinforcing systems is to create a measure of the 
stability of the populations.  If an atmosphere became completely devoid of all but one of the atmospheric gases, for 
example, the resulting population of individuals would hardly be considered to be in a dynamic system in 
equilibrium.  Therefore, the measure used to determine the state of the system relies on comparing the partial 
pressures of the three gases, and seeing if they are nearly equivalent.  The following equation works to this effect: 
 

E(O2, CO2, N2) = (1-P(O2)) * (1-P(CO2)) * (1-P(N2)) / q 
 
In this equation, q is a normalization constant desi
0
completely absent from the atmosphere and the gases are not in equilibrium, and 1, in which all three gases occupy 
the same partial pressure. 

Figure 3 shows the difference between diploid and haploid populations in maintaining stability of their 
respective dynamic systems after twenty generations.  Diploid runs resulted in greater average E-values than did 
haploid runs (p<0.05, n=20 replications of each type), suggestive of the creation and maintenance of a stab
sy



phenotype-space than do those of haploid individuals, and as a result, the systems are more stable and less prone to 
collapses resulting from environment-driven selection. 

 

 
Figure 3:  A measure of the E-value of each system, which reflects the stability of a population and its 
environment.  Diploid runs resulted in a significantly greater mean stability of the system than haploid runs.  
Bars show mean values, lines are standard errors of the means. 

 
 

 
4.0     Conclusions 
 

rocal interaction between the individuals of the 
pop ation and the environment.  In cases in which the environment changed only once per generation, which is on 
the same timescale as the lifetime of an individual, haploid populations were shown to have a small advantage in 

ean and best fitness in the population.  However, with frequent environment/population readjustments with respect 
ess was shown to achieve levels significantly greater than those predicted by classic 

Equally important to the atmosphere/metabolism problem, the diploid populations were able to sustain an 

r reward from that same decision in the future. 

any problems involving the system of creating and delivering 

osph

Through the simulated metabolism of a three-enzyme individual in a world with a three-gas atmosphere, this project 
has revealed the ability of GA with diploidy and dominance to create dynamically stable systems without a loss of 
fitness.  The foundation of this class of problem rests on the recip

ul

m
to individual lifetimes, fitn
haploid GA. 

environment in equilibrium better than haploid populations.  This phenomenon can be explained not just by the fact 
that dominance structures allow for the inexpensive storage of past solutions, but also on the fact that diploid 
populations are clustered more sparsely in phenotype-space, and  are therefore less likely to collapse under small 
changes in environmental states. 

These results can be applied to numerous other problems, spanning a variety of fields, including the following: 
• Traffic engineering.  The fitness of a certain path is inversely related to the number of 
individuals exploiting that path, but conversely the exploitation of one particular path leads to a 
lowe
• Information transmission.  Similar to the traffic control scenario, a certain band can lead 
to the greatest potential rates of information transmission when left virtually unused by individuals 
in a population.  Through the process of discovery and crowding of that band, though, an 
individual decreases its potential transmission capacity if it continues to make the same decision. 
• Endocrinology.  M
hormones within the human body are regulated by negative feedback loops, which relate to the 
atm ere/metabolism class of problems.  For example, low blood sugar levels activate the 
production of the hormone glucagon, which raises blood sugar.  This, however, acts through an 
intermediary to inhibit glucagon production. 



• Economics.  Popular belief that a particular stock is undervalued leads to a potential 
reward situation, and therefore drives an increased demand for that stock.  The increase in 
demand, though, drives up the price of the stock, thereby minimizing or erasing the reward 
situation. 

 
 
5.0     
 
Further w directed in a few primary directions.  First, a system should be 
created in which n each 
other; th ividual 
lifetime, ulation 
size sho mined, to discover the smallest number, or critical size, of a population that maintains an 
nvironment in equilibrium; this could have great importance for cost-effectiveness in the creation of all types of 
etworks, including computer and human networks.  Also, the operations specific to diploidy, such as sexual 

ng crossover, should be studied in closer detail.  They are less well known than the 
perations in classic haploid GA, and their levels should be optimized.  Once more is known about the specifics of 
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Future work 

ork with dominance and  diploidy should be 
 the population and environment are continously renegotiating their states and pressures o

is continuous crosstalk is the upper limit of the environmental change timescale with respect to ind
 and should result in the greatest advantage of diploidy over haploidy.  Next, the parameter of pop
uld be exa

e
n
reproduction and double-stri
o
how diploid GA with dominance can create and maintain stable systems, it will smooth the progress of research in 
the field of complexity, which holds some of the most exciting, yet elusive, problems in science today. 
 
 
Acknowledgments 
 
Thanks to Debby Soo, David Garfield, and Professor John Koza. 
 
 
Bibliography 
 
B

University of Michig
 
C

Other Problems.  MSc thesis.  Department of Information
 
G

Wesley. 
 
Hollstein, R.B.  Artificial Genetic Adaptation in Computer Control Systems.  PhD thesis.  University of Michigan 

1971. 
 
Koza,  J.R.  1992.  Genetic Programming: On the Programming of Computers by Means of Natural Selection.  

Cambridge, MA: The MIT Press. 


