
Evolving 3D Models of Trees Using Genetic Programming 
 

Guillaume Poncin 
Gates Building 3-362 
Stanford University 

Stanford, California 94305 
gponcin@cs.stanford.edu 

 
ABSTRACT 

This paper describes a technique to evolve 3D models of plants based on deterministic 
automata. It uses cellular encoding to obtain these automata from trees evolved in standard 
genetic programming software. The fitness is a combination of high-level characteristics of 
the model, including overall shape, number of branches and geometric characteristics. We 
introduce a grid-based constraint evaluation as a way for the designer to shape a tree. This 
approach can be extended to modeling more than plants. 

 

1. Introduction 
As 3D Graphics push the limits of virtual reality in movies 
and games, it is more and more the case that 3D artists 
want to model complex outdoors scene including trees and 
biological structures. These plants have to look realistic 
but also have to integrate smoothly in their environment. 
Conventional approaches can produce reasonably detailed 
trees by randomly varying parameters on a hand-modeled 
template. However, they usually require modeling all the 
trees individually. 

It is desirable, though, not to ask human designers to 
create templates branch by branch but to let them specify 
high-level descriptions such as density of leaves and 
overall shape. In addition, realistic scenes often require 
generating plants that respond to constraints imposed by 
the environment. For instance, a large object could block a 
tree from developing on one side, or ivy will naturally 
grow against a wall. 

We will describe in this paper a novel technique based 
on genetic programming to produce very diverse models. 
They all try to match the criterions specified by the 
designer as well as possible. Section 2 reviews previous 
work in the field and provides background on automata. 
Section 3 of this paper states the problem, and section 4 
describes the method. In section 5 and 6, we state and 
discuss the results. Finally, section 7 states the conclusion. 
Section 8 discusses future work. 

2. Background 
2.1. L-Systems 
A common way of describing plants is through 
Lindenmayer systems also called L-systems (Lindenmayer 
1968, Prusinkiewicz and Lindenmayer 1990). This term 
regroups a class of descriptive grammars where rewriting 
rules are used to bring an individual from one time step to 

the next. Once interpreted they act as LOGO commands, 
driving a turtle to draw the geometry of the trees and 
occasionally add flowers or leaves. Several attempts have 
been made to use genetic algorithms to evolve L-systems: 
Jacob (1995), Mock (1998) and Ochoa (1998).  

2.2. Automata 
The approach we chose is not based on L-systems and 

rewriting rules but on a similar construct developed 
currently by N. Lambert at Stanford University and 
inspired from the work of P. de Reffye (1988).  

In this model, the plant is seen as a directed graph, 
where each node represents a physical part of the plant, 
like an aggregate of cells. Each node contains the type of 
geometry, such as piece of stem or piece of leaf, and a list 
of automata that are in charge of the growth process. For 
each time step that corresponds to a cell growth, the nodes 
are executed in parallel. To execute a node we execute the 
associated list of automata in order (see Figure 1 for a 
simple example). 

We use a simpler version of the above algorithm. In 
our system, each automaton has a local geometric frame 
plus a set of variables it can use as counters or for any 
other purpose. Two variables are privileged; they designate 
the current length and thickness of the portion of tree we 
are building. The possible states of an automaton are: 

• Conditionals (if-then-else), test automaton variables 
against fixed values to determine the execution path 

• RotateH, RotateL, RotateU, rotate the local 
HLU frame of the automaton along one axis. 

• Wait, pauses the execution of the automaton  
• Killme, ends the automaton execution 
• CreateAutomaton, creates a new instance of an 

automaton designed by its number (it could also 
designate a leaf or a flower) 

• Assign, assigns a value to one of the variable. 

mailto:gponcin@cs.stanford.edu


 

• Add, Multiply, add or multiply a variable with a 
fixed value 

• Push, Pop, save the local coordinates and variables 
of the automaton and restore them. 

 
When interpreting a set of automata to in order to grow 

a plant, we start by instantiating the root automaton. Then, 
we execute the following algorithm: 

 
for each iteration do 
  for each automaton still alive do 
    repeat 
      currentstate:=currentstate.next 
      if (currentstate == Killme 
            OR end of automaton reached) 
        [Kill this automaton] 
      end if 
      [Execute currentstate, 
       Possibly instantiate new automata] 
    until (currentstate == Wait) 
    [Move one step in H direction] 
    [Record new position of the turtle] 
  end for 
end for 
         
Each automaton keeps a local turtle to draw its own 

branch. After one step, all the automata go forward in the 
H direction of their local frame and their new positions are 
recorded. To draw the skeleton of the tree, we simply join 
each new position to the previous position as we run the 
algorithm. The growth ends when all automata are dead or 
after a maximum number of iterations.  

RotateH(30) Var1=Var1+1 If Var1 % 70==0

Wait Push

RotateL(70)CreateAutomaton(2)Pop

Automaton 1

Automaton 2

RotateL(0.02) Var2=Var2+1 If Var2 > 400

Wait Killme

else then

else then

 
Figure 1.  Two automata to describe a tree 

 
Figure 1 shows a set of two automata resulting in the 

helix shaped tree of Figure 2. We used 1000 iterations to 
produce this very simple example. 

For the first automaton, one time step ends when we 
return to the Wait state. The first RotateH performs the 
rotation around the axis of the trunk. The else branch of 
the if state does not do anything, which means we just 
move the turtle forward a little bit every time. Every 70 
time steps, the then loop starts a new branch at a 70 
degrees angle from the trunk by creating a new Automaton 
2. Since we have a Push/Pop pair, the coordinate system 
of Automaton 1 is not affected by this creation. 

Automaton 2 is responsible for the branches: it just 
moves forward for 400 iterations. The RotateL state 
slightly bends the branch downwards. Each branch is built 
by a different instance of Automaton 2. They all work in 
parallel to build the tree. 

The two variables Var1 and Var2, initialized to zero 
at the beginning of the simulation, serve as counters and 
are updated in a while-loop fashion. 

 
Figure 2.  3D helix produced by the automata in Fig. 1 

 
This scheme can be easily extended with new operators 

to account for additional effects. The main problem is that 
it is extremely difficult to design complex plants by hand. 
We introduce below a mechanical way to build the 
automata. 

3. Statement of the problem 
Given a high level description of the shape and density of a 
tree, we want to be able to obtain a 3D model that looks 
reasonably like a tree and matches the designer 
description. 

The specifications that we are given can be: 
• Shape, surface where the endpoints of all the 

branches should lie 
• Number of branches, approximate number of 

branches and optionally sub-branches that we want 
• Level of branch recursion, 1 corresponds to just 

having the trunk, 2 to having branches, 3 to having 
sub-branches and so on… 

• Presence or absence of leaves 
• Favorable / forbidden zones, regions of the space 

where we want more or fewer branches/leaves 
If some of the characteristics are not specifically 

defined, we consider them as free variables that the 
algorithm can experiment with to come up with the best 
possible model. 

Additional implicit constraints need to be specified in 
order to get tree-like shapes and not random geometric 



 

forms. We want the endpoints of the branches to be as 
distant as possible from each other. We also impose that 
the tree grows upwards in the beginning and that the trunk 
automaton can only create branch automata, the branch 
automata can only create sub-branch automata, etc. Leaves 
can only be added by the last level of sub-branches. 

4. Methods 
We make use of genetic programming techniques (Koza 
1992) to evolve trees in the form of automata. Starting 
from simple individuals it is possible to obtain refined 
individuals that fit the description of a particular tree. 

4.1. From an individual to a model of tree 
We have seen how to represent trees as automata. But 

how can we make this representation friendly to genetic 
programming? Figure 3 shows the data flow from 
individuals to the fitness evaluation. What we call 
individual is a tree with operators, as usually employed in 
genetic programming algorithms.  

GP individual

Set of automata

Tree skeleton
+ additional data

(thickness, leaves...)

Fitness 3D Model

RotateH(30) Var1=Var1+1 If Var1 % 70==0

Wait Push

RotateL(70)CreateAutomaton(2)Pop

Automaton 1

Automaton 2

RotateL(0.02) Var2=Var2+1 If Var2 > 400

Wait Killme

else then

else then

Se q

Ro tateH

3 0
If

Va r1 % 70

Seq

Wa it

Seq

Pus hPoCellular encoding

Simulator

MesherEvaluator

 
Figure 3.  Operations leading from a GP individual to a 

3D model with a fitness 
 
We explain in section 4.2 how to go from the 

individual to the set of automata. The details of the genetic 
programming evolution are given in section 4.3. We cover 
the evaluation of the fitness in section 4.4. Finally, we give 
more insight on the meshing of a tree skeleton into a full 
3D model in section 4.5.  

4.2. Cellular Encoding 
Individuals are represented by strongly typed trees 
containing several automata. Each automaton, one for the 
trunk and one for each level of branches, is described 
using cellular encoding techniques, similar to those 
described by F. Gruaut (1994) for neural networks. 

We employ a collection of operators in our GP trees. 
All of them are of the same type TreeNode. We have 3 
types for the input parameters of these operators: variable 

number, value between -10 and +10 and automaton 
number. We group the operators in three classes. 

 
Some of the operators are in direct correspondence 

with the automata operators defined earlier. They form our 
first class of operators: 

• Rotate_H, Rotate_L, Rotate_U each take a 
value parameter  

• Wait, Killme with no parameter 
• CreateAutomaton taking an automaton number 

parameter 
• Assign, Add, Multiply with a variable number 

and a value parameter. 
We can see on Figure 4 an example of the 

transformation from the tree representation to the 
automaton representation. Each state in the automaton has 
an incoming transition and an outgoing transition. 
 

RotateH

3.2

RotateH(30)

 
Figure 4. A simple operator made into an automaton 

 
The second class of operators contains architecture 

modifying functions (see example in Figure 5): 
• Seq juxtaposes two TreeNodes in the automaton. 

During the construction of the automaton we simply 
link the two states by a pointer. 

• Loop creates a loop back transition in the 
automaton. There is no outgoing transition in this 
case, which may be a problem if we want to 
juxtapose a loop with some other state. That is why 
we did not allow this construct in the end. 

• If allows for conditionals. The then transition is 
considered as the outgoing transition of this state.  

 
Seq

Wait Killme

Wait Killme

Loop

Wait

If

Var1 > 5.3 Wait

If Var1 > 5.3

Wait

Wait

else

then

 
Figure 5. Complex operators translated into automata. 
Each Wait or Killme could be replaced by a subtree. 

 
The third class of operators is formed of compounds 

based on the previous operators. They help GP to find a 
solution in a reasonable amount of time by introducing 



 

interesting sub-blocks that would otherwise need a fairly 
large quantity of generations to be selected as efficient. In 
our tests they only appeared in a viable form after 100 
generations or so. Given a larger computational power, we 
should not need these compounds.  

• Push/Pop embeds a subtree between a Push-Pop pair. 
It prevents unmatched Push and Pop states and 
guarantees we only have well-formed automata. 

• Repeat allows for the repetition of the same subtree 
for a number of times given as parameter. The Count 
variable is an additional variable of the automaton, 
independent for each Repeat loop. 

Figure 6 gives examples of these compounds. 
 

Count:=0

Push/Pop
Push

Wait

Wait Pop

Repeat

8 Wait

If Count < 8

WaitCount++

else

then

 
Figure 6. Compound operators. 

 

4.3. Genetic Programming 
It is now clear how to get automata from trees of operators. 
Using cellular encoding, we make sure that the automata 
we produce are viable and that all their states can be 
reached. We do not need to perform checks before 
executing the simulator.  

Table 1 shows the characteristics of the genetic 
programming runs we are doing. We have been trying 
several combinations of the possible functions and 
parameters, so this table only reflects one particular run. 

Our implementation is based on Lilgp with strong-
typing support. The tree-modifying operations such as 
mutations and crossovers are the standard GP operations 
for strong-typed trees. We usually have 2% mutations, 
88% crossover and 10% reproduction during the breeding. 

We do not include automatically defined functions in 
our runs because it is not clear how that kind of reuse 
would be helpful to the genetic programming algorithm. 
After several attempts we did not notice any use of ADFs 
in the top individuals of a generation. The repeat loop and 
the separation between several automata running in 
parallel already guaranties some reuse, which seems 
sufficient. 

Depending on the severity of the constraints, we can 
obtain acceptable results with 200 individuals and 50 
generations or we may need 60000 individuals and 500 
generations (see Section 5). One individual is usually made 
of twenty to five hundred nodes. The average individual 
we observed is around 100 nodes. 

Automaton1
Subtree

Seq

RotateL

0.02

If

Var2 > 400

Seq

Wait

Seq

KillMe

Loop

Add

1Var2

Top

 
Figure 7. Tree representing the second automaton in 

figure 1. We did not detail automaton 1. 
 

 4.4. Fitness Evaluation 
The expressivity of the system of automata that we use is 
extremely large.  Thanks to cellular encoding we can 
restrict ourselves to the space of fully viable automata. But 
we want to limit the search space even more, to the shapes 
that look like trees. That is why we impose the restriction 
that an automaton can only create an automaton that is 
considered as a sub-branch, i.e. which appears later in the 
list of children for the Top node. It would not make sense 
to allow a branch to recreate a trunk, at least in our first 
model. 

The fitness is probably the cornerstone of our system. 
From a very abstract goal “get a plant that looks nice”, we 
need to set precise goals to GP to get interesting results. 
We have two classes of terms linearly combined in our 
fitness expression. Some terms try to solve the problem 
given by the user. The others are there to make sure we get 
plant-like shapes. We detail below each component of the 
fitness. 

All the fitness functions we compute lie between 0 and 
+infinity. They are mapped between 0 and 1 in the form of 
adjusted fitness by Lilgp: adj. fitness = 1 / (1+std. fitness), 
closer to 1 being better. 
4.4.1. Solving the problem  
We have three terms to get a plant as close from the goal 
specifications as possible. All the values in the following 
formulas are arbitrary but have been shown to work well. 

 

 
Figure 8. Branch-target distancefor Fpos  

 



 

First, the position fitness 
average over all the endpo
instantiated during a simulatio
close as possible from a predef
sphere in most cases, centered
150 in most cases. Figure 8 
fitness for one branch. 

150
int

−=
sendpo

pos PAverageF

 
The second term FNum is 

endpoints. It is desirable to 
endpoints; otherwise we end 
take too long. Moreover, this f
creation of branches i.e. the
Automata 1. Typically, if we u
around 30 branches, and if we 
150 sub-branches. 

num NF 30 −=
To be more specific, we ma

this one for each level of branch
4.4.2. Making sure we have a t
Even though we may match the
to make sure that we find a 
restrictive than the space of pos
our automata.  

The main property we want
the branches. In nature, mos
around their trunk, not just i

Objective Find
Terminal set Wai

Also
(inc

Function set Top
Rot
Seq
Pus
auto

Fitness case All 
Raw Fitness Ave
Standardized  fitness Raw
Hits N/A
Wrapper Sim
Parameters M =

Num
Success predicate Non
Rules of construction • Ro

• Re
• An

au
Table 1. Tableau for a typical plant generation problem 
 a tree encoding a given number of automata to solve the plant generation problem 
t, Killme for TreeNode type of nodes. 
: automaton number, fixed point values between -10.0 and +10.0 and variable number 

luding special variables Length and Thickness). 
, to start the tree 
ateH, RotateL, RotateU, CreateAutomaton, Assign, Add, Multiply 
, If and variations on the If operator to handle different types of comparisons 
h/Pop, Repeat and variations on the repeat operator to use the index of the current 
maton to initialize the counter. 

branch end points 
rage for each fitness case of the distance between the endpoint and the target surface 
 Fitness, modified to account for all the additional fitness parameters (see Section 4.4) 
 
ulator and 3D meshing to get a 3D model 
 10000, G = 150 usually. 
ber of automata to generate, usually 2 or 3.  

e… (see Section 4.4) 

ot is always a Top node, which has one child for each automaton we have to generate. 
Fpos, is computed as the 
ints of all the automata 
n. The goal is to come as 
ined shape. We are using a 
 at (0,200,0) and of radius 
shows an example of this 

( )0,200,0int −endpoos  

based on the number of 
have a limited number of 
up with computations that 
itness term encourages the 
 use of Automata 2 by 
se two automata, we want 
use three automata, around 

sendpoum int  

y define a fitness term like 
es. 

ree 
 user expectations we have 
tree, which is much more 
sible structure described by 

 to have is the dispersion of 
t trees have branches all 
n one plane. This can be 

justified by weight repartition considerations, symmetry in 
the process that creates the branches, etc. These concepts 
are hard to incorporate in a fitness evaluation. So we will 
only consider a function that favors distant endpoints for 
the branches. It is fairly fast to evaluate and combined to 
the other terms, we get the expected results. 

mainder of the tree does not contain any Top nodes 
 automaton can only create an automaton using CreateAutomaton if the new 

tomaton appears later in the list of children of Top 

 
Figure 9. Branch-branch distance for Fdist  

 
We have two ways to do the computation: either by 

evaluating the distance between the endpoints of all the 
branches Fdist or by evaluating the angle between two 
branches Fangle (see Figure 9). 












+−
=

∈
∈ 5

200

int
int BAsendpoB

sendpoA
dist PosPos

AverageF  

The expression of Fangle is very similar to that of Fdist 
except it is based on the angles. These two fitness 



 

functions share the same issue. They can take up to N2 
comparisons if we want to evaluate each branch against 
each other, where N is the number of branches. We resort 
to a randomized evaluation: we only take max(3N, 10) 
pairs of points. Proceeding this way, we get approximately 
20% error. Since the fitness does not need to be exact, the 
significant speedup is worth the loss in precision. 

  
Figure 10. Ideal thickness for Fthick  

 
The third term FThick evaluates how much thinner the 

ends of the branches are compared to the base of the trunk. 
This term does not need to be computed if we do not care 
about the thickness output. The thickness of the trunk is set 
to 1 at its base (enforced during the creation of the root 
automaton). Then we may want the trunk to end with 
fitness 1/6, first-level branches to end with thickness 1/9, 
second-level sub-branches to end with thickness 1/12 and 
so on (see Figure 10). These numbers are arbitrary and are 
easily modifiable by the user as an input parameter.  

The formula for the fitness Fthick is: 

referenceA
sendpoA

thick ThickThickAverageF −=
∈ int

 

Since the thickness is treated as a variable and we have 
an add operator with negative constants, the thickness 
may end up being negative. We give a penalty every time 
it occurs. 

 
4.4.3. Combining all the fitness terms 
The four fitness terms described previously all have to be 
combined into one fitness evaluation. We use a linear 
combination such as: 

distthickdistdist

numnumpospos

FwFw

FwFwF

⋅+⋅+

⋅+⋅=
 

The weights have been experimentally set to give fast 
results. The current weights are: 

wpos=5,  wnum=50,  wdist=500,  wthick=1000 
They do not exactly bring the four fitness functions on 

an equality standpoint; rather they force the distance and 
number of branches to be correctly set first. Only when 
these two measures approach zero do the other terms 
become prominent. When this happens, they allow for 

more accurate matching of the endpoint positions against 
the target surface and for research of the most balanced 
fitness in the tree. 
4.4.4. Adding constraints 
Up until this point, we can get “good-looking” trees in a 
reasonable amount of time (see Section 5 for actual 
results), which is only half of our original goal. Recall that 
we also want to be able to specify constraints on the 
geometric form of the tree. More than just reaching a 
surface, we want to be able to set regions where the plant 
should not be. This could correspond to external objects 
which prevent the plant from expanding uniformly in every 
direction (i.e. a wall). We could also specify   regions 
where the plant should try to be, corresponding to well-lit 
areas in a room for example.  

Once again, if we could model the mechanical 
environment perfectly, as well as the energy process that 
take place in the cells of the tree, we would automatically 
attain that kind of result. To keep computation time 
reasonable, we have to find a simple model that is easy to 
evaluate and accounts for all of these effects. 

 

 
Figure 11. Schematic with a 6x8 grid in 2D. Crossed 
cells are forbidden: the plant grows around them.  
Higher leaf densities appear in high-weight cells 

 
One of our major contributions in this paper is a 

density grid construct. We divide the space around the 
plant into a grid with a N = Nx . Ny . Nz cells. Each cell has 
a target number of leaves that it should contain. Each cell 
also has a weight to indicate how important it is: the larger 
the weight, the more it matters that the plant matches the 
target number of leaves in this cell. If the weight is 
negative, it means the cell is forbidden and no leaf should 
be present. A stronger negative weight gives more 
importance to a particular forbidden cell. 

Leaves are produced by the last level of branches. The 
target number for each cell helps regulate their density. We 
derived formulas to express the fitness of a particular cell 



 

Fcell. The fitness values for all the cells are averaged to 
calculate grid fitness. Given a weight w for the cell and a 
target number of leaves Ntarget, we have for w > 0, 

 













<









+⋅

>











 −
−⋅

=

0
*4

1

0
*8

1 arg

wif
N

N
w

wif
N

NN
w

F

goal

leaves
cell

goal

ettleaves
cell

cell  

These formulas mean that if w>0, the fitness is best 
when the number of leaves is close to the target. If it goes 
higher than 8 * Ngoal, then we impose a penalty for the cell. 
If w<0, the fitness is best when there is no leaf in the cell. 
We use Ntarget=15. 

Since the grid fitness is not critical in creating a viable 
tree we only let it play a role for the individuals which 
already have sufficiently good fitness. For the others we 
set it to its maximum value, which helps reduce computing 
time. 

4.5. Conversion to a 3D model 
The fitness is evaluated from the skeleton. If we actually 
want to display the results or to integrate the plant in a 3D 
environment we need to transform this skeleton into a 
shape with textures and volume. A simple path-extrusion is 
performed: we create cylindrical surface along the trunk 
and the branches with a thickness given by the data stored 
with the skeleton. The leaves are generated randomly and 
added to the model at the positions recorded during the 
execution of the algorithm. For better results, we may want 
to impose nearly horizontal leaves. This is not currently 
included in the fitness, but it is easy to do as a post-
processing step, before displaying the model. 

5. Results 
In the end, the only evaluation that matters is the visual 
aspect for a human observer, which is difficult to capture 
with formulas. That is why we do not expect our algorithm 
to come up with the best tree but rather to propose 
reasonable solutions to the problem. In this respect, we 
have generated good results. 

5.1 Performance 
Performing one generation consists of transforming each 
tree into automata, running the automata in the simulator 
and evaluating the fitness for the individual. We also have 
to breed the population based on the fitness evaluation. 

We run our program on Windows or Linux on a 3GHz 
P4 machine with 1GB of RAM. With 2000 individuals, the 
breeding phase takes virtually no time. The simulator itself 
is extremely fast, on the order of 500 individuals per 
second. The series of operations necessary to transform 
individuals feed them to the simulator and compute the 
fitness runs at a rate of 10 to 200 individuals per second 
depending on the complexity of the population. A typical 
run of 5000 individuals and 100 generations takes in the 

order of one hour to complete. The automata are executed 
with a limit of 100 iterations most of the time. 

We built a simple viewer in OpenGL to display the 
skeleton of the trees. It functions in real-time and displays 
all the details such as reference frame and grid. The 
meshing module outputs standard VRML 3D format from 
a record of points in a matter of seconds. Each file contains 
a few hundred thousand triangles. 

5.2 Early results 
The fitness functions were mostly added one by one, to 
correct aberrations in the results of the runs, until we found 
a good combination. 

When we had only the position fitness, we did not 
observe any creation of branches. The best individual was 
usually only one trunk that would hit the target surface and 
obtain a perfect fitness value for that (see Figure 12). 

  

  
Figure 12. Gallery of monsters – the target is in gray 

Left, only the position fitness: a single line 
Right, with number of branches fitness: all in one plane  

 
Then we added the fitness related to the number of 

branches, which helped correct this problem. The next 
issue was the fact that all the branches were created in the 
same plan. Since no extra rotation is needed, it is easier to 
do. (see Figure 12). Hence, we added the maximum-
distance fitness, which was successful in spreading the 
branches. It forces the plant to start growing into the third 
dimension. (see Figure 13) 

 

 
Figure 13. First results with distance fitness. 

Left, G=20, M=200: still the same plane; 
Right, G=30, M=500: first real 3D tree! 

 



 

In order to keep the computation time low, we had to 
sample a subset of all the pairs of endpoints to do the 
computation, which resulted in some individuals being 
wrongly marked as very good. To solve this, we can 
evaluate more points of course, or at least set a minimum 
threshold on the number of sample points. We should also 
reevaluate the trees at every generation instead of caching 
their values. 

It is interesting to notice that most plants pass through 
the previous 4 stages before evolving any further. With 
1000 individuals, we often get one single line after the first 
generation, one line with starting points for branches after 
2 or 3 generations, an evolved structured in the plane after 
10 generations, a fully 3D structure after 25 generations. 
Only then does it start to resemble the final shape. 

 
Figure 14. With G=40, M=1500, more complex results 

5.2 More realistic trees 
We started adding more individuals in the population and 
tweaking the parameters. Our goal was to produce tress 
with more than one level of recursion of branches.  

We also played with the thickness (see Figure 17). It 
appeared that since we were trying to stay close to zero 
without ever touching zero, we could not control precisely 
the lower bound on the thickness. The solution is to remap 
the thickness values between 0.1 and 1 (instead of the 
usual 0.001 to 1 range that we get). 

  
Figure 15. With G=50, M=3000 and flatter target 

shape. Light marks indicate the positions of the leaves 

 
Figure 16. Surprising undulation in the branches. 

This model is meshed but bears no leaf. 
 

 
Figure 17. Pine tree (with leaves!). The thickness is 

taken into account: trunk and branches shrink 
progressively. The bending is due to simulated gravity. 
 

5.3 Using the grid to get more specific trees 
The grid was meant to replace and extend the maximum 
distance as well as the position fitness. Our 
experimentations showed that it was not a good idea to 
simply replace these two. The grid is too complex for 
simple trees and we do not get past the first stage of 
evolution, where usually we should observe the separation 
of branches and the passage to 3D. 

As a result, we only start using the grid after the 
individuals become good enough. This intervenes after the 
fitness is low enough to show that the individual already 
looks like a tree. The purpose of the position fitness is not 
to define the shape of plant anymore but to favor its 
expansion during its early stages. That approach yielded 
interesting trees in 50 generations with 3000 individuals. 

The tree in Figure 19 has been made by creating a grid 
with constraints matching the shape of the house and 
taking 100 generations for 2000 individuals. 



 

 
Figure 18. Skeleton view. The 5x5x5 grid favored the 

top left side and forbade the top right side 

 
Figure 19. The plant fits nicely under the balcony. 

5.4 A step-by-step evolution 
As an illustration to all the concepts introduced above, 
figure 20 shows a step-by-step evolution. The goal was to 
get a fairly round shape (same target sphere as in section 
4), but we wanted to limit the growth of the plant as if 
there was some object above it, figured by a box in the 
pictures. We designed a 5x5x5 grid to codify this 
constraint in the form of forbidden cells at the top of the 
grid. 

Table 2. Step by step fitness evaluation 
Best of 
Generatio
n 

2 8 25 100 Weight 

Branches 36 20 30 30 - 
Fpos 35 27 13 15 5 
Fnum 6 10 0 0 50 
Fdist 5.4 2.9 1.9 0.7 200 
Fgrid 100 59.3 23.9 19.5 10 
Ftotal 2555 1808 684 410 - 

 

 
Figure 20. Four steps of an evolution with M=8000 
Best individuals for generations 2 (top left), 8 (top 

right), 25 (bottom left) and 100 (bottom right). 
Only tree and view change; the box stays the same. 

 
After generation 2, the tree is in a plane. Branches are 

starting to get irregular. Generation 8 is the first generation 
where the best individual is not just in the plane. At that 
point the grid constraint has just kicked in, which explains 
why the best individual goes through the box. Around 
generation 25, the constraint is being considered by more 
than half of the individuals. The best tree of generation 25 
does not seem to hit the box. But it is still very irregular 
and does not look all that nice. That can be explained by 
the distance maximization component of the fitness, which 
is still fairly high. After 100 generations, we get a tree that 
solves the problem: it does not hit the box at all. The 
branches have a significantly larger spread and more cells 
of the grid are covered than in generation 25, which yield a 
lower fitness. 

 
Figure 21. End result for this run, G=100. 

 



 

6. Discussion of results 
The early results we obtained were far from our best 
results. It took considerable tweaking of the fitness to get 
what we wanted. Especially since we use several numerical 
values, which are created once and for all before the first 
generation, we always ended up with a reduced set of 
values after a few generations. To correct that, we added 
2% mutations to renew the pool of values without breaking 
too many good trees. We could have mutated only the 
values but it was also interesting to have some operators 
reappear after being evicted. For instance, as long as 
getting the right number of branches is predominant in the 
fitness, everything comes down to loops and 
CreateAutomaton. It is interesting to be able to 
reintroduce multiply operators after the plant is stable, 
in order to take care of the thickness. We finally have a 
fitness function that works well to grow realistic tree. 

The feature we did not manage to fully implement was 
the multiple levels of branches. It was extremely hard to 
generate a tree with 30 principal branches but only 5 sub-
branches per branch, let alone make the tree satisfy the 
other constraints at the same time. We think it is mostly a 
computation time issue. It takes longer evaluation with 
much more individuals to solve that kind of problems in 
our framework. This explains why we could not attain 
results that really look like common trees. 

The extension to a grid of constraints works 
particularly well. Even though we could not simplify the 
fitness evaluation as we had hoped in the beginning, it 
gives powerful high-level control on the shape of the tree. 
To make best use of this technique, the design of the tree-
specific part could be left to more standard approaches 
than evolution. The genetic programming algorithm could 
just act on an additional automaton.  

7. Conclusion 
We have described a way to apply genetic programming to 
a tree-modeling problem. Starting from high-level 
constraints of shape and density, we defined adequate 
fitness functions. We used an automata model to represent 
trees and we converted these automata into genetic 
programming tree of operators using cellular encoding.  
We evolved a very general fitness function from 
experimenting with the algorithms. 

To extend our results we introduced a grid-based 
constraint description that lets us specify attractive and 
repulsive zones of the space in an easy way. We finally 
obtained the convoluted plants we expected. Since we do 
not look for the best tree but for a tree, which respects 
most of the specifications, genetic programming is very 
appropriate. It gives a variety of results that can be helpful 
for a designer.  

8. Future Work 
It seems that we only scratched the surface of an 
interesting approach to solve the problem of automatically 

designing 3D models. We could directly improve our 
results on trees by adding more precise fitness evaluation 
regarding the position and orientation of the leaves, or by 
allowing more freedom in the creation of the automata 
(more levels of branches, or different kind of organs). 

Since we only used a small subset of the expressivity of 
the automata model, we could easily extend this work to a 
larger subset, accounting for external stimulations and 
forces instead of only considering static constraints. We 
could also let a certain kind of automata operate on the 
plant after it has been built. In particular, we could make 
flowers bloom or allow for aging. This would add 
significant complexity to the simulator and the automata 
but it is a path that I am currently pursuing with N. 
Lambert. 

Our analysis could be extended to the production of 
leaves and flowers with no difficulty. It is even more 
generally applicable in general modeling problems where 
we want to design an object only through high level 
concepts. In particular the grid-based fitness is extremely 
flexible. 

Acknowledgments 
I would like to thank N. Lambert for providing the base 
code for the simulator and the 3D meshing system as well 
as for his support during the development of this project. 
The house 3D model has been designed by Alberto Garcia. 

Bibliography 
Gruau, F. Neural Network Synthesis using Cellular 

Encoding and the Genetic Algorithm. Ecole Normale 
Supérieure de Lyon, France, 1994 

Jacob, C. 1995. Genetic L-System Programming: Breeding 
and Evolving Artificial Flowers with Mathematica. 
IMS’95, Proc. First International Mathematica 
Symposium, Southampton, Great-Britain, UK, 
Computational Mechanics Publications: 215-222 

Koza, J. R. 1992. Genetic Programming: On the 
Programming of Computers by Means of Natural 
Selection. Cambridge, MA: The MIT Press.  

Lindenmayer, A. 1968. Mathematical models for cellular 
interaction in development. Journal of theoretical 
biology 18: 280–315.  

Mock, K. J. 1998. Wildwood: The Evolution of L-Systems 
Plants for Virtual Environments. Proc. International 
Conference on Evolutionary Computation ICEC’98. 
Anchorage, Alaska, USA. IEEE Press. 

Ochoa, G. 1998. On Genetic Algorithms and Lindenmayer 
Systems. Proc. PPSN IV, Lecture Notes in Computer 
Science 1498. Sringer-Verlag, Amsterdam: 335-343 

Prusinkiewicz, P. and Lindenmayer, A. 1990. The 
Algorithmic Beauty of Plants. Springer-Verlag, Berlin. 

Reffye P., Edelin C., Francon J., Jaeger M. and Puech C. 
1988. Plant Models Faithful to Botanical Structure and 
Development. Journal of Computer Graphics 22(4): 
151-158. 


	1.Introduction
	2.Background
	2.1. L-Systems
	2.2. Automata

	�
	�
	3.Statement of the problem
	4.Methods
	4.1. From an individual to a model of tree
	4.2. Cellular Encoding
	4.3. Genetic Programming
	�
	4.4. Fitness Evaluation
	4.4.1. Solving the problem
	4.4.2. Making sure we have a tree
	4.4.3. Combining all the fitness terms
	4.4.4. Adding constraints

	4.5. Conversion to a 3D model

	5.Results
	5.1 Performance
	5.2 Early results
	5.2 More realistic trees
	5.3 Using the grid to get more specific trees
	�
	5.4 A step-by-step evolution

	6.Discussion of results
	7.Conclusion
	8.Future Work

