

Using Genetic Programming to Evolve a General Purpose

Sorting Network for Comparable Data Sets

Peter B. Lubell-Doughtie

Stanford Symbolic Systems Program
Stanford University

P.O. Box 16044
Stanford, California 94309

650-740-2784
pld@stanford.edu

ABSTRACT

This paper demonstrates how
non-typed genetic programming
may be used to evolve sorting net-
works; specifically a sorting net-
work for a seven-element integer
data sequence. This problem has
shown importance over time be-
cause programs generated to solve
it consume a fixed amount of time
and operate in a way that is oblivi-
ous to the contents of the data se-
quence being sorted. Both of these
factors lead to sorting networks
being more desirable than recur-
sive sorts for data sequences of
limited length.

1. Introduction
The problem to be addressed in this paper is that of
using genetic programming to evolve a sorting net-
work which properly orders a data sequence, of
length n = 7, under the relation ≤ for the elements of
the index set J = {0, …, 6}. The solution to a set of
this specific size can be extended to apply to any data
sequence of length n, however the computational
effort required will vastly increase, as n × n! com-
parisons are needed to rigorously check the validity

of a program against all possible permutations of the
list to be sorted. The sorting problem can be con-
ceived of as consisting of reordering an arbitrary data
sequence a0, …, an-1 ∈ A to a data sequence aϕ(0), …,
aϕ(n-1) such that: aϕ(i) ≤ aϕ(j) for i < j where ϕ is a per-
mutation of the index set J.
 The motivation behind developing such a sorting
network is that it can serve as a parallelizable and
computationally efficient method of sorting data se-
quences that are relatively short. In addition sorting
networks have an advantage over other sorting meth-
ods because they operate in a fixed amount of time;
that is with a fixed computational complexity. Addi-
tional motivation behind this problem comes from
the relative simplicity with which field programma-
ble gate array (FPGA) integrated circuits can be pro-
grammed and reprogrammed in the field to evolve
solutions to this problem.

2. Comparator Networks
A definition of comparator networks will now be
given towards obtaining a definition of sorting net-
works.
 Given a set A denoting an order relation ≤ and a
data sequence of length n and given a set of all order-
ings of that data sequence, that is all of it’s permuta-
tions, An, a comparator is defined as a mapping from
[i:j] : An → An, i, j ∈ {0, …, n – 1} with:

[i:j](a)i = min(ai, aj)
[i:j](a)i = max(ai, aj)
[i:j](a)k = ak for all k with k ≠ i, k ≠ j

for all a ∈ An Knuth (1973). A comparator stage,
which is one step in a sorting network, can now be
defined as a composition of comparators
 S = [i1:j1]⋅…⋅ [ik:jk], k ∈ N
such that all ir and js are distinct, even among each
other.
 Now we are ready to define a sorting network as a
comparator network that sorts all the input se-
quences. A program to accomplish this will be
evolved.

3. Methods
The genetic programming tableau used to evolve a
sorting network is presented in table 1.

Objective: Find a sorting network that cor-
rectly orders integers in a data
sequence of length seven.

Terminal set: Data Terminals: D0, …, D6
Function set: COMPARE-EXCHANGE,

PROG2, PROG3, PROG4
Fitness cases: Each element of the sorted array

compared to the result of the
application of the generated pro-
gram to each permutation of the
sorted array. This results in n ×
n! (7 × 7! = 35280) fitness cases.

Raw fitness: The sum of number of elements
correctly sorted in the array
sorted by the generated program
for each permutation of the
sorted array.

Standardized
fitness:

The maximum number correctly
sorted elements n × n! (7 × 7! =
35280) minus the raw fitness
plus one one-hundredth of the
number of COMPARE-
EXCHANGE functions executed.

Hits: The number of COMPARE-
EXCHANGE functions executed.

Wrapper: None.
Paramaters: M = 2,048. G = 151. Nrpb = 1.
Result-
Designation:

The best so far individual.

Success predi-
cate:

The standardized fitness is equal
to or below 0.16 (for n = 7)

Table 1: Genetic programming tableau for 7 input
sorting network

3.1. Terminals
Because this genetic program was implemented with-
out strong typing the only necessary terminals are

those data terminals which index values of the array
to sort to exchange.1

3.2. Functions
The COMPARE-EXCHANGE function receives two
scalars, which are interpreted as indexes into the ar-
ray to be sorted, it then compares the values of the
elements in the array to be sorted at these indexes
and exchanges these values if either index one is less
than index two and index value one is greater than
index value two or index one is greater than index
two and index value one is less than index value two.
It essentially performs a swap function constrained to
when swapping will result in the array becoming
more sorted than it previously was. A value of zero is
returned by this function.
 The PROGN functions string together N sequences
of program evaluations. They are necessary to link
the comparator stages together in order to form a
sorting network. A value of zero is returned by each
of these functions.

3.3. Evaluation of Fitness
At a high level of abstraction the fitness of an indi-
vidual is evaluated by comparing the ordering of the
elements of a stored sorted data sequence with the
ordering of those in the test data sequence after the
program has been run on it. This comparison is done
for each permutation of the original data sequence
leading to an evaluation of the performance of the
program under all possible initial circumstances. By
performing the evaluation in this way it is made ap-
parent when the sorting network will perform well
for some data sequence orderings but not all. This is
an essential feature of the fitness evaluation because
it allows programs that perform well in the entire
search space to receive a higher probability of reuse
in subsequent generations of a genetic programming
run. The algorithm used to generate all possible per-
mutations was presented in Rosen (1999).
 The standardized fitness range has an upper
bound of n × n! + one one-hundredth the number of
comparison swaps executed, which is greater than n
(for n > 3). The lower bound of the standardized fit-
ness is equal to the last term of the upper bound; one

1 It may be noted that were strong typing used it

would become necessary to include a NOP terminal
that could be bound to the PROGN functions. This is
necessary in the current implementation of Java-
based Evolutionary Computation and Genetic Pro-
gramming Research System (ECJ) by Sean Luke
(Version 10 2002). However, it will be unnecessary
in feature versions.

one-hundredth the number of comparison swaps
greater than n (for n > 3). For n = 7 the upper bound
is 35,280 plus one one-hundredth the number of
comparison swaps, which is indeterminate because
the PROGN functions allow for an arbitrary stringing
of COMPARE-EXCHANGE functions. The lower
bound is precisely the success predicate of 0.16 (16 is
one one-hundredth the minimum number of
COMPARE-EXCHANGEs necessary to solve the prob-
lem).

3.4. Sample Trees
Figure 1 pictures a sample sorting network for four
inputs. The values to be swapped at each comparator
stage are indicated by the black dots. Each dot is to
be swapped with the dot to which it is connected by a
black line.

Figure 1: A 4 input sorting network

This sorting network can be represented by the fol-
lowing 100% correct lisp S-expression:

(PROG4 (PROG2
 (COMPARE-EXCHANGE 1 2)
 (COMPARE-EXCHANGE 3 4))
 (COMPARE-EXCHANGE 1 3)
 (COMPARE-EXCHANGE 2 4)
 (COMPARE-EXCHANGE 2 3))

This expression has a standardized fitness of the
number of permutations multiplied by the length of
the data sequence minus the result of comparing the
run of the program on these unsorted permutations
with the sorted data sequence plus one one-hundredth
of the number of COMPARE-EXCHANGE operations
performed. When calculated the fitness of the above
expression is 0.05 (96 – 96 + .01 × 5). This value
would satisfy the success predicate for a data se-
quence of length four.
 During a genetic programming run a less parsi-
monious individual designed to solve this same sort
problem might be evolved such as below:

(PROG4 (PROG4
 (COMPARE-EXCHANGE 1 2)
 (COMPARE-EXCHANGE 3 4)
 (COMPARE-EXCHANGE 2 4)
 (COMPARE-EXCHANGE 2 3))

 (COMPARE-EXCHANGE 3 2)
 (COMPARE-EXCHANGE 1 3)
 (COMPARE-EXCHANGE 2 3))

This 100% correct individual would receive a fitness
value of 0.07. Because of its lack of parsimonious-
ness this individual would not satisfy the success
predicate for a data sequence of length four. As dem-
onstrated above a 100% correct individual that is not
parsimonious could be evolved but still not satisfy
the success predicate.

3.5. Parameters
The population size used was 2,048 individuals with
a maximum number of generations set at 151. Runs
were initially performed with the default ECJ popula-
tion size of 1,024 individuals. The initial population
was randomly generated. No primed individuals were
included. Subsequently runs were made with the
population size doubled and it was decided that the
increased diversity of the initial population resulted
in a desirable outcome. The breeding phase consisted
of the crossover function, which was performed with
a probability of 0.9, and the reproduction function,
which was performed with a probability of 0.1. Tour-
nament selection was performed with a maximum
depth of 17.
 Given the initial population of individuals con-
tains a sufficient amount of genetic diversity the
crossover and reproduction operators used allow all
the structures in the space of all possible structures to
be created. This is true because the space of all sort-
ing networks is finite in size and the operations allow
for the creation of all possible structures by creating
the actual structure or creating an equivalent structure
which may be either more parsimonious or less par-
simonious, but will none the less be equivalent.

3.6. Success Predicate
The success predicate for n = 7 is set to 0.16 because
this value is one one-hundredth of the known mini-
mum number of comparison exchanges necessary to
create a valid sorting network. For an arbitrary data
sequence length n this value should be set to one one-
hundredth the known or lower bound of the number
of comparison exchanges necessary to create a valid
sorting network for a data sequence of the length n.
For data sequences where a proof does not exist de-
termining a lower bound on the number of compari-
son exchanges necessary an arbitrary low bound may
be set such that it is still reasonable, greater than the
lower bound for a data sequence of length n – 1. An
individual which satisfies the success predicate will
be designated best of run and terminate the run.

4. Results and Discussion
The experiment was performed on a 996MHz Pen-
tium III processor with 512 MB of RAM running
Windows XP Professional. The base genetic pro-
gramming environment was ECJ 10 compiled under
Eclipse 2.1.1. For a data sequence of length 7 the
runtime of a single genetic programming run varied
between 15 minutes and 45 minutes depending prob-
abilistically on the individuals generated.

4.1 Results
The first experiment was done with a data sequence
of length four (using the data terminals D0, …, D3)
for the purpose of testing the efficacy of the fitness
measure and the validating the function of members
of the function set. The individual generated scored
the success predicate of .05 (one one-hundredth the
known required number of steps to complete a sort of
this length).
 Next an experiment was done with a data se-
quence of length five to confirm the scalability of the
problem as formed. This test was successful and the
initial problem of a data sequence of length seven
was next addressed.
 The typical behavior observed during one run for
a data sequence of length seven was a best individual
of generation zero scoring a standardized fitness of
roughly half that of the generation average standard-
ized fitness, this percentage would decrease through
proceeding generations. The best of generation indi-
vidual’s fitness was then approximately halved each
proceeding generation until an intermediate genera-
tion is reached. It was found that this intermediate
generation would be near generation four. Thereafter
the standardized fitness rapidly decreased by ap-
proximately 75%. Subsequently the standardized
fitness would drop to just above the fitness required
by the success predicate. This most likely happens
because the best of generation individual is a 100%
correct sorting network however, it lacks parsimoni-
ousness so much that the additional factor of one
one-hundredth the number of COMPARE-
EXCHANGEs performed pushes its standardized fit-
ness above the success predicate.

4.2 Discussion
The results above indicate that genetic programming
was able to successfully evolve a sorting network for
data sequences of length four, five, and seven. Due to
the adaptable and general way in which the genetic
program was implemented, adjusting of the data se-

quence size field in the ECJ parameters file2 will al-
low for solutions to sorting network problems of any
input data sequence size to be generated. This is of
course within the constraints of time and computing
power.

4.3 Problem Scope
Sorting networks, due to the rapid increase in com-
parators necessary to solve the problem, are best
suited for small data sequences. This problem was
initially formulated to generate a solution to the more
general problem of efficiently sorting a data sequence
of any size. For longer data sequences a heap sort or
quick sort would be evolved and for shorter se-
quences, short probably to be defined as 16 and un-
der, a sorting network would be evolved. These two
functions would then be linked together and the ap-
propriate one chosen based on the length of the data
sequence. Due to computing resource limitations the
scope of the problem was reduced to the evolution of
sorting networks. This will be discussed further in
Further Work.

5. Conclusions
This paper demonstrated how genetic programming
can be used to evolve a program which implements a
sorting network for data sequences of length 7. These
genetic programs were represented as S-expressions
and reproduced and recombined according to a fit-
ness measure evaluating the function of the sorting
network on the entire search space of the problem;
that is all permutations of the sorted data sequence.
 Standard non-typed genetic programming meth-
ods were used in program generation. Because non-
typed genetic programming was used many (all in
solutions to data sequences of non trivial length)
functions, such as the follow program segment:

(PROG4 D1 D0 D3 D0)

had no effect on the order of array elements and
could be eliminated. After these ineffectual program
segments were removed generated programs con-
tained a number of COMPARE-EXCHANGEs equal to
the known minimum necessary to solve the problem.
 A generated program which satisfies the success
predicate is guaranteed to be a valid sorting network
because the fitness measure ensures correct program
performance for all possible inputs to the program.
Because the fitness cases were so numerous, and

2 This file is used to specify the terminal set,

function set and additional parameters for the pro-
gram.

reevaluation of the program was required for each
fitness case, individual evaluation was rather expen-
sive and generations were often time consuming.
However, because of the efficiency of the fitness
measure, a large number of generations was not nec-
essary to find an individual satisfying the success
predicate.

6. Further Work
As previously mentioned the problem addressed in
this paper is a reduced version of the problem origi-
nally intended to be addressed. Future work extend-
ing only the sorting network portion of this problem
might involve allowing genetic programming do the
work of evolving a COMPARE-EXCHANGE function
from more primitive functions such as IF, OR, AND,
GT (greater than), LT (less than), and WRITEMn and
READMn functions.
 Extending the program to become a link between
two separately evolved genetic programs for short
and long data sequences would involve significantly
more time and resources. A terminal set and function
set designed to lead to the creation of a quick sort
function (if automatically defined loops, functions,
and recursion are not incorporated) would include
those presented in table 2.

Terminal
set:

L, R: statics to hold array start in-
dex position (0) and end index
position (length – 1). M1, M2, M3:
memory variables, two to hold
indexing values and one to hold a
partition position.

Function
set:

SORT: the function itself, included
to allow for recursion (this could
also be implemented using auto-
matically defined recursion), ADD:
addition, INCF / DECF: increment
/ decrement, useful because the
sort involves counting, READM1,
READM2, READM3: read memory
variables 1, 2, or 3, READ (usage
READ K): retrieve element at posi-
tion k in array based memory, SUB:
subtraction, WRITEM1, WRITEM2,
WRITEM3: write memory variables
1, 2 or 3, SWAPARRAY (usage
SWAPARRAY X1 X2): swap val-
ues a positions X1 and X2 in array,
WRITE (usage WRITE X K):
write value X to position k in array
based memory, DU: do until itera-
tion function, WHEN: allow for

conditional execution, GT / GTE:
returns a positive value if argument
1 is greater than / greater than or
equal to argument 2, to be used by
conditional functions, (in addition
possible DIV to set the partition
value, if it is not specified by the
programmer).

Table 2: Proposed genetic programming functions
and terminals for a quicksort program

The fitness measure could be defined similarly to that
for a sorting network. The evolved program would be
run against all permutations of the sorted list and the
number of correctly sorted elements counted.
 Of course genetic programming may not evolve a
program that conforms to our typical notions of a
quick sort. However, this is a positive feature of ge-
netic programming. If the fitness measure also takes
into account the time required to sort the list it is pos-
sible that a new sorting technique could be devel-
oped.

Acknowledgements
I would like to thank Sean Luke and Liviu Panait for
the information they provided concerning the current
implementation of ECJ.

Bibliography
Knuth, Donald E. 1973. The Art of Computer Pro-

gramming, volume 3: Sorting and Searching. Ad-
dison Wesley.

Koza, John R. 1992. Genetic Programming: On the

Programming of Computers by Means of Natural
Selection. Cambridge, MA: The MIT Press.

Rosen, Kenneth H. 1999. Discrete Mathematics and

Its Applications. Fourth Edition. WCB / McGraw-
Hill.

	1. Introduction
	2. Comparator Networks
	3. Methods
	3.1. Terminals
	3.2. Functions
	3.3. Evaluation of Fitness
	3.4. Sample Trees
	3.5. Parameters
	3.6. Success Predicate

	4. Results and Discussion
	5. Conclusions
	6. Further Work

