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ABSTRACT 

This paper demonstrates how 
non-typed genetic programming 
may be used to evolve sorting net-
works; specifically a sorting net-
work for a seven-element integer 
data sequence.  This problem has 
shown importance over time be-
cause programs generated to solve 
it consume a fixed amount of time 
and operate in a way that is oblivi-
ous to the contents of the data se-
quence being sorted. Both of these 
factors lead to sorting networks 
being more desirable than recur-
sive sorts for data sequences of 
limited length. 

 

1. Introduction 
The problem to be addressed in this paper is that of 
using genetic programming to evolve a sorting net-
work which properly orders a data sequence, of 
length n = 7, under the relation ≤ for the elements of 
the index set J = {0, …, 6}. The solution to a set of 
this specific size can be extended to apply to any data 
sequence of length n, however the computational 
effort required will vastly increase, as n × n! com-
parisons are needed to rigorously check the validity 

of a program against all possible permutations of the 
list to be sorted. The sorting problem can be con-
ceived of as consisting of reordering an arbitrary data 
sequence a0, …, an-1 ∈ A to a data sequence aϕ(0), …, 
aϕ(n-1) such that: aϕ(i) ≤ aϕ(j) for i < j where ϕ is a per-
mutation of the index set J. 
 The motivation behind developing such a sorting 
network is that it can serve as a parallelizable and 
computationally efficient method of sorting data se-
quences that are relatively short. In addition sorting 
networks have an advantage over other sorting meth-
ods because they operate in a fixed amount of time; 
that is with a fixed computational complexity. Addi-
tional motivation behind this problem comes from 
the relative simplicity with which field programma-
ble gate array (FPGA) integrated circuits can be pro-
grammed and reprogrammed in the field to evolve 
solutions to this problem. 
  

2. Comparator Networks 
A definition of comparator networks will now be 
given towards obtaining a definition of sorting net-
works.  
 Given a set A denoting an order relation ≤ and a 
data sequence of length n and given a set of all order-
ings of that data sequence, that is all of it’s permuta-
tions, An, a comparator is defined as a mapping from 
[i:j] : An → An, i, j ∈ {0, …, n – 1} with: 

[i:j](a)i = min(ai, aj)  
[i:j](a)i = max(ai, aj)  
[i:j](a)k = ak for all k with k ≠ i, k ≠ j 



 
for all a ∈ An Knuth (1973). A comparator stage, 
which is one step in a sorting network, can now be 
defined as a composition of comparators 
 S = [i1:j1]⋅…⋅ [ik:jk], k ∈ N 
such that all ir and js are distinct, even among each 
other. 
 Now we are ready to define a sorting network as a 
comparator network that sorts all the input se-
quences. A program to accomplish this will be 
evolved. 
 

3. Methods 
The genetic programming tableau used to evolve a 
sorting network is presented in table 1. 
 

Objective: Find a sorting network that cor-
rectly orders integers in a data 
sequence of length seven. 

Terminal set: Data Terminals: D0, …, D6 
Function set: COMPARE-EXCHANGE, 

PROG2, PROG3, PROG4 
Fitness cases: Each element of the sorted array 

compared to the result of the 
application of the generated pro-
gram to each permutation of the 
sorted array. This results in n × 
n! (7 × 7! = 35280) fitness cases. 

Raw fitness: The sum of number of elements 
correctly sorted in the array 
sorted by the generated program 
for each permutation of the 
sorted array. 

Standardized 
fitness: 

The maximum number correctly 
sorted elements n × n! (7 × 7! = 
35280) minus the raw fitness 
plus one one-hundredth of the 
number of COMPARE-
EXCHANGE functions executed. 

Hits: The number of COMPARE-
EXCHANGE functions executed. 

Wrapper: None. 
Paramaters: M = 2,048. G = 151. Nrpb = 1. 
Result-
Designation: 

The best so far individual. 

Success predi-
cate: 

The standardized fitness is equal 
to or below 0.16 (for n = 7) 

Table 1: Genetic programming tableau for 7 input 
sorting network 

3.1. Terminals 
Because this genetic program was implemented with-
out strong typing the only necessary terminals are 

those data terminals which index values of the array 
to sort to exchange.1  
 

3.2. Functions 
The COMPARE-EXCHANGE function receives two 
scalars, which are interpreted as indexes into the ar-
ray to be sorted, it then compares the values of the 
elements in the array to be sorted at these indexes 
and exchanges these values if either index one is less 
than index two and index value one is greater than 
index value two or index one is greater than index 
two and index value one is less than index value two. 
It essentially performs a swap function constrained to 
when swapping will result in the array becoming 
more sorted than it previously was. A value of zero is 
returned by this function. 
 The PROGN functions string together N sequences 
of program evaluations. They are necessary to link 
the comparator stages together in order to form a 
sorting network. A value of zero is returned by each 
of these functions. 
 

3.3. Evaluation of Fitness 
At a high level of abstraction the fitness of an indi-
vidual is evaluated by comparing the ordering of the 
elements of a stored sorted data sequence with the 
ordering of those in the test data sequence after the 
program has been run on it. This comparison is done 
for each permutation of the original data sequence 
leading to an evaluation of the performance of the 
program under all possible initial circumstances. By 
performing the evaluation in this way it is made ap-
parent when the sorting network will perform well 
for some data sequence orderings but not all. This is 
an essential feature of the fitness evaluation because 
it allows programs that perform well in the entire 
search space to receive a higher probability of reuse 
in subsequent generations of a genetic programming 
run. The algorithm used to generate all possible per-
mutations was presented in Rosen (1999). 
 The standardized fitness range has an upper 
bound of n × n! + one one-hundredth the number of 
comparison swaps executed, which is greater than n 
(for n > 3). The lower bound of the standardized fit-
ness is equal to the last term of the upper bound; one 

                                                           
1 It may be noted that were strong typing used it 

would become necessary to include a NOP terminal 
that could be bound to the PROGN functions. This is 
necessary in the current implementation of Java-
based Evolutionary Computation and Genetic Pro-
gramming Research System (ECJ) by Sean Luke 
(Version 10 2002). However, it will be unnecessary 
in feature versions. 



 
one-hundredth the number of comparison swaps 
greater than n (for n > 3). For n = 7 the upper bound 
is 35,280 plus one one-hundredth the number of 
comparison swaps, which is indeterminate because 
the PROGN functions allow for an arbitrary stringing 
of COMPARE-EXCHANGE functions. The lower 
bound is precisely the success predicate of 0.16 (16 is 
one one-hundredth the minimum number of 
COMPARE-EXCHANGEs necessary to solve the prob-
lem ).  
 

3.4. Sample Trees 
Figure 1 pictures a sample sorting network for four 
inputs. The values to be swapped at each comparator 
stage are indicated by the black dots. Each dot is to 
be swapped with the dot to which it is connected by a 
black line. 

 
Figure 1: A 4 input sorting network 

 
This sorting network can be represented by the fol-
lowing 100% correct lisp S-expression: 
 
(PROG4 (PROG2 
            (COMPARE-EXCHANGE 1 2) 
            (COMPARE-EXCHANGE 3 4)) 
       (COMPARE-EXCHANGE 1 3)  
       (COMPARE-EXCHANGE 2 4)  
       (COMPARE-EXCHANGE 2 3)) 
 
This expression has a standardized fitness of the 
number of permutations multiplied by the length of 
the data sequence minus the result of comparing the 
run of the program on these unsorted permutations 
with the sorted data sequence plus one one-hundredth 
of the number of COMPARE-EXCHANGE operations 
performed. When calculated the fitness of the above 
expression is 0.05 (96 – 96 + .01 × 5). This value 
would satisfy the success predicate for a data se-
quence of length four. 
 During a genetic programming run a less parsi-
monious individual designed to solve this same sort 
problem might be evolved such as below:  
 
(PROG4 (PROG4 
            (COMPARE-EXCHANGE 1 2) 
            (COMPARE-EXCHANGE 3 4)  
            (COMPARE-EXCHANGE 2 4)  
            (COMPARE-EXCHANGE 2 3)) 

       (COMPARE-EXCHANGE 3 2)  
       (COMPARE-EXCHANGE 1 3)  
       (COMPARE-EXCHANGE 2 3)) 
 
 
This 100% correct individual would receive a fitness 
value of 0.07. Because of its lack of parsimonious-
ness this individual would not satisfy the success 
predicate for a data sequence of length four. As dem-
onstrated above a 100% correct individual that is not 
parsimonious could be evolved but still not satisfy 
the success predicate. 
 

3.5. Parameters 
The population size used was 2,048 individuals with 
a maximum number of generations set at 151. Runs 
were initially performed with the default ECJ popula-
tion size of 1,024 individuals. The initial population 
was randomly generated. No primed individuals were 
included. Subsequently runs were made with the 
population size doubled and it was decided that the 
increased diversity of the initial population resulted 
in a desirable outcome. The breeding phase consisted 
of the crossover function, which was performed with 
a probability of 0.9, and the reproduction function, 
which was performed with a probability of 0.1. Tour-
nament selection was performed with a maximum 
depth of 17. 
 Given the initial population of individuals con-
tains a sufficient amount of genetic diversity the 
crossover and reproduction operators used allow all 
the structures in the space of all possible structures to 
be created. This is true because the space of all sort-
ing networks is finite in size and the operations allow 
for the creation of all possible structures by creating 
the actual structure or creating an equivalent structure 
which may be either more parsimonious or less par-
simonious, but will none the less be equivalent. 
 

3.6. Success Predicate 
The success predicate for n = 7 is set to 0.16 because 
this value is one one-hundredth of the known mini-
mum number of comparison exchanges necessary to 
create a valid sorting network. For an arbitrary data 
sequence length n this value should be set to one one-
hundredth the known or lower bound of the number 
of comparison exchanges necessary to create a valid 
sorting network for a data sequence of the length n. 
For data sequences where a proof does not exist de-
termining a lower bound on the number of compari-
son exchanges necessary an arbitrary low bound may 
be set such that it is still reasonable, greater than the 
lower bound for a data sequence of length n – 1. An 
individual which satisfies the success predicate will 
be designated best of run and terminate the run. 



 

                                                          

 

4. Results and Discussion 
The experiment was performed on a 996MHz Pen-
tium III processor with 512 MB of RAM running 
Windows XP Professional. The base genetic pro-
gramming environment was ECJ 10 compiled under 
Eclipse 2.1.1. For a data sequence of length 7 the 
runtime of a single genetic programming run varied 
between 15 minutes and 45 minutes depending prob-
abilistically on the individuals generated. 
 
4.1 Results 
The first experiment was done with a data sequence 
of length four (using the data terminals D0, …, D3) 
for the purpose of testing the efficacy of the fitness 
measure and the validating the function of members 
of the function set. The individual generated scored 
the success predicate of .05 (one one-hundredth the 
known required number of steps to complete a sort of 
this length). 
 Next an experiment was done with a data se-
quence of length five to confirm the scalability of the 
problem as formed. This test was successful and the 
initial problem of a data sequence of length seven 
was next addressed. 
 The typical behavior observed during one run for 
a data sequence of length seven was a best individual 
of generation zero scoring a standardized fitness of 
roughly half that of the generation average standard-
ized fitness, this percentage would decrease through 
proceeding generations. The best of generation indi-
vidual’s fitness was then approximately halved each 
proceeding generation until an intermediate genera-
tion is reached. It was found that this intermediate 
generation would be near generation four. Thereafter 
the standardized fitness rapidly decreased by ap-
proximately 75%. Subsequently the standardized 
fitness would drop to just above the fitness required 
by the success predicate. This most likely happens 
because the best of generation individual is a 100% 
correct sorting network however, it lacks parsimoni-
ousness so much that the additional factor of one 
one-hundredth the number of COMPARE-
EXCHANGEs performed pushes its standardized fit-
ness above the success predicate. 
 
4.2 Discussion 
The results above indicate that genetic programming 
was able to successfully evolve a sorting network for 
data sequences of length four, five, and seven. Due to 
the adaptable and general way in which the genetic 
program was implemented, adjusting of the data se-

quence size field in the ECJ parameters file2 will al-
low for solutions to sorting network problems of any 
input data sequence size to be generated. This is of 
course within the constraints of time and computing 
power.  
 
4.3 Problem Scope 
Sorting networks, due to the rapid increase in com-
parators necessary to solve the problem, are best 
suited for small data sequences. This problem was 
initially formulated to generate a solution to the more 
general problem of efficiently sorting a data sequence 
of any size. For longer data sequences a heap sort or 
quick sort would be evolved and for shorter se-
quences, short probably to be defined as 16 and un-
der, a sorting network would be evolved. These two 
functions would then be linked together and the ap-
propriate one chosen based on the length of the data 
sequence. Due to computing resource limitations the 
scope of the problem was reduced to the evolution of 
sorting networks. This will be discussed further in 
Further Work. 
 

5. Conclusions 
This paper demonstrated how genetic programming 
can be used to evolve a program which implements a 
sorting network for data sequences of length 7. These 
genetic programs were represented as S-expressions 
and reproduced and recombined according to a fit-
ness measure evaluating the function of the sorting 
network on the entire search space of the problem; 
that is all permutations of the sorted data sequence. 
 Standard non-typed genetic programming meth-
ods were used in program generation. Because non-
typed genetic programming was used many (all in 
solutions to data sequences of non trivial length) 
functions, such as the follow program segment: 
 
(PROG4 D1 D0 D3 D0) 
 
had no effect on the order of array elements and 
could be eliminated. After these ineffectual program 
segments were removed generated programs con-
tained a number of COMPARE-EXCHANGEs equal to 
the known minimum necessary to solve the problem. 
 A generated program which satisfies the success 
predicate is guaranteed to be a valid sorting network 
because the fitness measure ensures correct program 
performance for all possible inputs to the program. 
Because the fitness cases were so numerous, and 

 
2 This file is used to specify the terminal set, 

function set and additional parameters for the pro-
gram. 



 
reevaluation of the program was required for each 
fitness case, individual evaluation was rather expen-
sive and generations were often time consuming. 
However, because of the efficiency of the fitness 
measure, a large number of generations was not nec-
essary to find an individual satisfying the success 
predicate. 
 

6. Further Work 
As previously mentioned the problem addressed in 
this paper is a reduced version of the problem origi-
nally intended to be addressed. Future work extend-
ing only the sorting network portion of this problem 
might involve allowing genetic programming do the 
work of evolving a COMPARE-EXCHANGE function 
from more primitive functions such as IF, OR, AND, 
GT (greater than), LT (less than), and WRITEMn and 
READMn functions. 
 Extending the program to become a link between 
two separately evolved genetic programs for short 
and long data sequences would involve significantly 
more time and resources. A terminal set and function 
set designed to lead to the creation of a quick sort 
function (if automatically defined loops, functions, 
and recursion are not incorporated) would include 
those presented in table 2. 
 

Terminal 
set: 

L, R: statics to hold array start in-
dex position (0) and end index 
position (length – 1). M1, M2, M3: 
memory variables, two to hold 
indexing values and one to hold a 
partition position. 

Function 
set: 

SORT: the function itself, included 
to allow for recursion (this could 
also be implemented using auto-
matically defined recursion), ADD: 
addition, INCF / DECF: increment 
/ decrement, useful because the 
sort involves counting, READM1, 
READM2, READM3: read memory 
variables 1, 2, or 3, READ (usage 
READ K): retrieve element at posi-
tion k in array based memory, SUB: 
subtraction, WRITEM1, WRITEM2, 
WRITEM3: write memory variables 
1, 2 or 3, SWAPARRAY (usage 
SWAPARRAY X1 X2): swap val-
ues a positions X1 and X2 in array, 
WRITE (usage WRITE X K): 
write value X to position k in array 
based memory, DU: do until itera-
tion function, WHEN: allow for 

conditional execution, GT / GTE: 
returns a positive value if argument 
1 is greater than / greater than or 
equal to argument 2, to be used by 
conditional functions, (in addition 
possible DIV to set the partition 
value, if it is not specified by the 
programmer). 

Table 2: Proposed genetic programming functions 
and terminals for a quicksort program 

 
The fitness measure could be defined similarly to that 
for a sorting network. The evolved program would be 
run against all permutations of the sorted list and the 
number of correctly sorted elements counted. 
 Of course genetic programming may not evolve a 
program that conforms to our typical notions of a 
quick sort. However, this is a positive feature of ge-
netic programming. If the fitness measure also takes 
into account the time required to sort the list it is pos-
sible that a new sorting technique could be devel-
oped. 
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