
Genetic Programming as Policy Search
in Markov Decision Processes

Chris Gearhart

P.O. Box 11491
Stanford, CA 94309

cmg33@stanford.edu

ABSTRACT

In this paper, we examine genetic
programming as a policy search
technique for planning problems
representable as Markov Decision
Processes. The planning task
under consideration is derived
from a real-time strategy war
game. This problem presents
unique challenges for standard
genetic programming approaches;
despite this, we show that genetic
programming produces results
competitive with standard
techniques, albeit with certain
trade-offs.

1. Introduction
The problem of planning under uncertainty is
afflicted by what Bellman famously called the “curse
of dimensionality” [1]. In a setting where a single
agent attempts to make optimal decisions in a
stochastic environment, the curse refers to the fact
that the number of possible states of the environment,
many or all of which must be considered as possible
immediate or long-term outcomes of the agent’s
actions, grows exponentially in the number of
variables used to describe the environment. Thus,
naïve representations and solutions of stochastic
planning problems, such as the framework of general
Markov Decision Processes (MDPs), quickly become
intractable as the size of the problem description
increases.

Recent work [2,4], however, has resulted in the
Factored Markov Decision Process (FMDP)
approach, which can efficiently solve problems with
large but structured state and action spaces by
decomposing a planning system into a set of small

subsystems that have limited interactions with each
other. The cost of planning in this way is often
exponentially less than the cost of planning naively.
Furthermore, while the assumption of
decomposability rarely obtains in interesting
domains, it is thought to often be “nearly” true, and
therefore this approach is often an effective
approximation.

However, FMDP techniques suffer from more
subtle problems. In particular, quality
approximations often require problem-specific
knowledge from the user that encodes information
about the form of the solution. The necessity of
human expertise prevents the FMDP framework from
being an automated planning solution.

As an alternative, we propose the use of genetic
programming (GP) [5] as a method for directly
obtaining MDP solutions. GP is a generic framework
that does not require problem-specific information,
unlike standard FMDP techniques. We show that
policy search in MDPs is a challenging task for GP to
address, but that competitive and substantially more
efficient results can be obtained if the robustness of
the solution is unimportant.

In the following section, we outline the MDP
framework and address its shortcomings, along with
those of its factored variant. In section 3, we discuss
several issues that arise in employing GP as a method
for policy search. In section 4, we present a
challenging problem based on an aspect of a real-
time strategy war game. Finally, in sections 5 and 6,
we describe a series of progressively superior
approaches to the problem and present their results.

2. Markov Decision Processes
Markov Decision Processes are a general framework
for representing stochastic planning problems. An
MDP is a 4-tuple (X, A, R, P) where X is a finite set
of states; A is a finite set of actions; R is a reward
function R : X × A → ℜ; and P is a Markovian
transition model such that P(x’ | x, a) is the
probability of transitioning from state x to state x’

after taking action a. Thus, an agent (or set of
agents) responds to the state of the environment by
taking some action. Note that the full set of actions A
is available regardless of the environment state. This
action, in turn, has a stochastic influence on the state
of the environment as specified by P. The Markovity
of P implies that future states are independent of
previous states given the current state and action.
The agent receives a reward depending on the state it
encounters (and, in general, on the action it takes
from that state; for our purposes, however, we will
assume that the reward depends only on the state).
Our goal is to determine a mapping from states to
actions (known as a policy) that will maximize the
agent’s expected long-term reward from any state.
We assume that the MDP has an infinite horizon,
meaning that the agent never stops acting in the
environment, and thus we bound the expected long-
term reward by discounting future rewards
exponentially by some γ ∈[0, 1).

The optimal policy can be computed through any
of a variety of methods. Many such procedures first
compute a value function V : X → ℜ, which specifies
the expected long-term value of acting optimally
from a particular state. The optimal value function is
the fixed point of the Bellman equations:

∑+=
'

)'(),|'(),(max)(
x

a xVaxxPaxRxV γ

Once the value function is computed, the optimal
policy π : X → A can be computed in a greedy
fashion:

∑+=
'

)'(),|'(),(maxarg)(
x

a xVaxxPaxRx γπ

Unfortunately, computing the value function is
intractable in the general case. The total number of
states under consideration is exponential in the
number of variables that describe the environment,
and the total number of actions that can be taken is
exponential in the number of agents being modeled in
a multi-agent setting. Thus, even storing the value
function or the optimal policy may be infeasible.

For many problems, however, this framework is
overly generic. It may be the case, for instance, that
the reward function has a compact description, or that
some of the state variables may transition in a manner
that depends only on a subset of the state variables, or
a subset of the agents. Factored MDPs make exactly
these assumptions in the hopes of achieving
tractability by exploiting structure. Unfortunately,
compactness in the reward and transition functions
does not entail compactness in the value function;
variables that are independent across a single step
may become correlated over time. Thus, FMDPs can
usually only approximate the value function,

generally by restricting attention to a class of
compact value functions. Automatic methods of
specifying this class so as to ensure a quality
approximation given tractable computation are
presently unknown. In practice, the approximating
class is determined by human expertise or trial-and-
error. The quality of the policy obtained depends
heavily on the choice of approximating class (usually
in a problem-specific way), and this is a significant
disadvantage of the approach.

3. GP as Policy Search
Of course, approximating the value function is
unnecessary if we can determine a good policy
directly. Our purpose in this paper is to apply
genetic programming to the problem of directly
computing an optimal or near-optimal policy for a
Markov Decision Process (which will be factored in
our example). In this context, GP becomes a
technique for policy search. We are interested in the
successful application of GP to this task because GP
tends to be more problem-independent than the
FMDP solution methods mentioned above. In
particular, although GP requires user specification of
the function and terminal sets being used, in addition
to various run parameters such as the population size,
it does not generally require significant information
about the structure of the solution. By contrast,
specifying an appropriate approximation for a value
function often requires user expertise in the problem
domain, and the approximation often encodes
nontrivial information about the form of the solution.
In effect, FMDP solution algorithms often require
that the user supply them with information about the
solution (such as whether two variables are
independent or correlated in their effect on the value
function), which is undesirable. GP, on the other
hand, could be capable of evolving compact
approximate policies for many problems with
relatively generic function and terminal sets.

However, MDP policy search also presents
several difficulties for GP, which we address but do
not fully resolve in the course of this paper. The
most significant problem is that of evaluation. In
general, the quality of a policy is specified by its
corresponding value function. Computing the value
of a particular policy is easier than computing the
optimal value function (in the former case, the value
function is the fixed point of a set of linear
equations), but is still intractable if the number of
states is sufficiently large. Thus, performing an exact
evaluation of an individual in a nontrivial MDP
policy search problem is effectively as difficult as
solving the MDP in the first place.

For most problems, we must therefore
approximate the value function. Using a user-
specified approximation class would effectively
negate the advantage of using GP, so we must turn to
other options. One such method is Monte Carlo
simulation. We can place the agent at some initial
state and simulate the policy’s interaction with the
stochastic environment for some fixed number of
steps while tracking the total discounted reward
received. If we perform several such runs, the mean
value (per run) obtained will approach the value of
the initial state. Unlike general value function
determination, Monte Carlo focuses the computation
on probable states at the expense of less probable
states. This is generally a mixed blessing. On one
hand, it is desirable to take knowledge of an initial
state into account, and we can feel reasonably sure
about our assessment of the value at that state. On
the other, states that are rarely reached receive little
evaluation. Thus, Monte Carlo may not be able to
distinguish the optimal policy from a policy with a
similar value at the initial state but highly suboptimal
values at less probable states.

In addition, Monte Carlo typically requires a very
large number of runs for reasonable accuracy. The
number of runs depends heavily on the overall
distribution over states. Clearly, performing a
thousand simulations (which is not an unreasonable
number for Monte Carlo, depending on the problem)
of a possibly complex stochastic environment for
each unique individual in a large population over
many generations will be infeasible. However,
inaccurate evaluation is also hardly an option, unless
we want policies to succeed through chance as much
as through fitness. Monte Carlo evaluation is in fact
used in our approach, and we show a technique for
dealing with this problem in subsequent sections.

Another problem is the potential sensitivity of the
environment defined by an MDP to subtle changes in
a policy. For example, changing a single agent’s
action in a multi-agent domain requiring coordination
between agents may have disastrous effects on the
long-term collective reward received. Furthermore,
subtle state changes may require dramatic changes in
actions. Thus, the value surface over the (very large)
space of policies tends to be spiky and discontinuous.
As we will show, using a simple policy construction
which accepts as input an integer indexing the set of
possible states and returns as output an integer
indexing the set of possible actions (even assuming
that the problem is sufficiently tractable to do so) can
easily lead to poor results. However, we also present
an improvement that allows for coordination between
agents in our multi-agent setting in a way that
minimizes the effect of small policy changes.

4. Freecraft Tactical Problem
For our experiments, we used an instance of the
Freecraft domain outlined in [3]. Freecraft is a
freeware real-time strategy war game. The goal of
playing is to control a set of agents and manage
resources so as to construct an army and defeat an
opponent. The problems introduced in [3] are
simplified variants of different aspects of Freecraft,
but are sufficiently interesting that the policies
obtained from the simple models can be successfully
employed as part of an in-game strategy.
Furthermore, these simplified problems are difficult
to solve by themselves, even for FMDP techniques.
Generally speaking, Freecraft problems tend to
involve dense, rather than isolated, interactions
between variables, so they are not readily factored.
Coordination between agents is essential, but no
natural coordination structure is implied by the
problem. In summary, Freecraft is an excellent
challenge problem for MDPs, and we can
demonstrate the value of GP as a policy search
technique by solving such a problem.

Figure 1: Freecraft Tactical Problem

The tactical problem is a test of agent control; an
in-game screenshot of the tactical scenario is shown
in Figure 1. The player (or agent, in our example)
starts with n footmen, and is confronted by an enemy
with an equal number of equivalent footmen. Each
footman is capable of attacking any individual
enemy, and may switch targets at any time. In our
model, enemies are assigned distinct and static
targets. This is done both for simplicity and to
provide structure for a smart policy to exploit.
Rewards are achieved for each enemy killed, and the
overall goal is to defeat the opposing force as quickly
as possible.

More formally, each footman and enemy are
associated with state variables representing their
health states. Each such variable can take one of five
values: Unhurt, Barely Wounded, Wounded, Badly

Wounded, and Dead. Additionally, each footman’s
action at each time step is an integer ranging from 1
to n, and specifies which enemy it targets at that time
step. Note that any valid policy will automatically
target and attack some enemies. This increases the
difficulty involved in finding the optimal policy,
because the difference in value between the optimal
policy and other policies is diminished.

Each living footman and enemy has an 80%
chance of striking his opponent in a given time step.
If it strikes successfully, it lowers the target’s health
status by one (unless the target is already dead). If
multiple footmen target the same enemy, they each
have an independent chance to strike, and each
successful strike will lower its health status by one.
The reward collectively received by the footmen at
each state is equal to the number of dead enemies in
that state.

For our experiments, we use n = 3 and γ = 0.98 as
a discount factor. Three footmen and enemies do not
constitute particularly large state and action spaces,
but nonetheless require considerable computational
effort for FMDP methods. Indeed, instances with n =
4 prove infeasible. Fortunately, the optimal policy
with n = 3 is sufficiently interesting for our purposes.

5. Methods
In this section, we present a series of GP approaches
to the problem under consideration. We begin with
relatively simple attempts, analyze their limitations,
and refine them to yield progressively better policies.

5.1. Simple Integer Mapping
Our initial attempt was the most general and scalable,
and also the least successful. The corresponding
tableau is shown in Table 1 below. All terminal and
function values are typed as integers. The terminal
set consists of two integer inputs to the program, P
and E. P is an integer index into the set of all
possible player (agent) health states, and E is an
index into the set of all enemy health states. Thus, P
and E completely describe the Markov state, although
in too general a manner to be particularly useful. The
function set is a smattering of arithmetic, logical, and
conditional functions. Most have direct equivalents
in C, with the exception of the protected division
operator %. For any integers a and b, %(a,b) = a / b
unless a = b = 0, in which case %(a,b) = 1. The
ternary operator ? is shorthand for the ?: operators in
C; ?(a,b,c) is equivalent to the C statement a ? b : c.
All integers are interpreted as Boolean values
according to C conventions (namely, an integer is
true if and only if it is nonzero).

Objective: Find a policy for the
Freecraft tactical problem
that has the maximum
expected value

Terminal Set: P, E

Function Set: +, -, *, %, &&, ||, !, ?

Raw Fitness: Average of 10 Monte
Carlo runs of 20 steps
each

Standardized
Fitness:

150 – Raw Fitness

Adjusted
Fitness:

1 / (1 + Std. Fitness)

Wrapper: Return value interpreted
as index into set of all
possible actions

Parameters: Population size = 10000
of generations = 100
Internal crossover = 0.8
External crossover = 0.09
Reproduction = 0.1
Mutation = 0.01

Depth
restrictions:

Initial: 5-10

Success
Predicate:

The best-of-run individual

Table 1: Simple Integer Map Tableau

The return value of an individual is interpreted as
an index into the set of all possible actions. If the
value is lower than the smallest possible index, it is
simply set to that index, and likewise if larger than
the largest possible index. The raw fitness measure is
the average of a small number (in this case, 10) of
Monte Carlo evaluations. A loose maximum on the
value obtained can be determined mathematically as
(Rmax / (1 - γ)), which evaluates to 150 in this case.
A measure of standardized fitness can therefore be
easily obtained. The run parameters were selected to
be representative of standard GP parameter values;
no special effort went into selecting these values.
All initial populations were created with a depth
ramp ranging from 5 to 10, and subsequent
populations can have individuals of any depth.

The results of this approach (shown, along with all
subsequent results, in Table 4 in section 6) are quite
poor when compared to the policy computed by
FMDP techniques. We also tested whether doubling
the population size, number of generations or number
of Monte Carlo runs per fitness evaluation had any

effect on the value. These changes were ineffectual;
the problem with simple integer mapping is more
systemic.

5.2. Coordinated ADFs
Simple integer mapping is not robust to small
changes in its input or output, and generally does not
map well onto the sort of problem that we are trying
to solve. Small changes to an input terminal can map
onto very different Markov states, and small changes
to the output value can map onto very different
actions, regardless of the orderings associated with
the state and action sets. Furthermore, an attempt to
find a single, pure mapping from states to actions is
very general, but does not take advantage of any
features of the problem under consideration.

Correspondingly, we make two revisions to the
simple integer map model. First, we replace the
terminals P and E by the full set of state variables in
the problem. It is thereby easier to evolve a program
that examines particular nuances of the state because
they are readily available as separate terminals; they
don’t need to be picked out of the integer encoding
the state. Furthermore, we can view our problem
more appropriately as a coordinated multi-agent task.
Rather than determining a single joint action for all
agents, we can each agent determine its own action
separately. This effectively decomposes the problem
into a set of much simpler sub-problems, where each
requires a considerably smaller program to be solved.
However, we must have coordination between our
agents (they will often want to ensure that they attack
the same target, for instance). We do so by imposing
a general coordination hierarchy on the problem: we
specify an order in which actions will be determined,
and allow each agent to see all actions that were
previously determined. Thus, we are interested in
evolving a set of separate programs that make use of
each other; in other words, we want a set of
automatically defined functions (ADFs), one for each
agent, without a central result-producing branch.

The resulting revisions to the simple integer map
tableau are shown in Table 2. Note that we call each
ADF separately when evaluating the overall policy.
Agent 1 determines its action and submits it to Agent
2, who takes it into action, determines its action, and
submits both actions to Agent 3, who takes both into
account in determining its own action. Each
individual policy is relatively simple, and we
therefore cap the maximum depth of a program at a
relatively shallow level.

The policies yielded by this approach are a
significant improvement over those computed by
simple integer mapping, although they still fall short
of the FMDP results.

Terminal Set
(for all ADFs):

P1, P2, P3, E1, E2, E3

ADF1
Function Set:

+, -, *, %, &&, ||, !, ?

ADF2
Function Set:

+, -, *, %, &&, ||, !, ?,
ADF1

ADF3
Function Set:

+, -, *, %, &&, ||, !, ?,
ADF1, ADF2

Wrapper: Each ADF is interpreted
as the value for a
particular agent.

Depth
restrictions:

Initial: 2-5
Maximum depth: 5

Table 2: Coordi nated ADF Tableau Revisions

5.3. Best-of-last-generation Selection
Up to this point, we have not considered any methods
of dealing with the evaluation problem described in
section 3. One technique implicitly used in the
above approaches is to recompute fitness for an
individual each time it is encountered, rather than
computing once and caching the result. This is
effectively a way of extending Monte Carlo
evaluation for individuals that appear often in a
population. More precisely, if a given individual
appears m times in a given population, and each
occurrence is evaluated by a distinct Monte Carlo
simulation of n runs, then the average fitness for that
individual in the population (which fundamentally
determines its success) is equivalent to the result of a
Monte Carlo simulation with mn runs. Individuals
that benefit (or suffer) from lucky (or unlucky)
simulations will be evaluated again in later rounds as
a hedge against chance. Throughout the entire
process, individuals that succeed will receive
increasingly careful scrutiny, which can increase or
diminish their success as appropriate.

Given the above, however, choosing the best-of-
run individual is a very poor way of selecting the
fittest policy. Generally speaking, it selects among
decent candidates by picking the one with the most
favorable one-time limited-accuracy evaluation. It is
much more reasonable to restrict our attention to
individuals that survive until the final generation,
given the above results. Furthermore, we can
perform more accurate evaluations on this limited
population, and select the fittest candidate
accordingly.

This iteration’s tableau revisions are shown in
Table 3. Note that we have also doubled both the
number of generations (which allows greater
confidence in the success of the last generation) and

the number of Monte Carlo runs. These changes are
allowed by the considerably improved running time
of the coordinated ADF approach.

Raw Fitness: Average of 20 Monte
Carlo runs of 20 steps
each

Parameters: # of generations = 200

Success
Predicate:

The best of last generation
individual, according to
the average of 100 Monte
Carlo runs of 20 steps
each

Table 3: Best-of-last-generation Tableau
Revisions

Once again, the resulting policies are an
improvement over those of the previous approach,
but do not yet match FMDP policies.

5.4. Revised Standardized Fitness
We can achieve better results still by tightening the
bound on raw fitness used in computing standardized
fitness, thereby increasing the difference in fitness for
policies with similar values. In particular, we note
that the upper bound of 150 is utopian and cannot be
obtained by any policy, since a minimum of 5 steps
are necessary before maximum reward can be
received. Furthermore, none of our Monte Carlo
evaluations extend past 20 steps, where the upper
bound of 150 is the infinite limit of reward received.
Observing that raw fitness values of 35 and 37 are
rather small when compared to this upper bound, and
noting that they correspond to adjusted fitness values
of 0.00862 and 0.00877, respectively, we can see that
they will be considered as almost equally fit in our
GP runs. Given that only 20 steps of reward will be
considered in each Monte Carlo evaluation, and
assuming an ideal case where every footman always
hits and every enemy always misses, we can tighten
our upper bound to 43, which is much more in line
with the received fitness values. Given this new
upper bound, raw fitness values of 35 and 37
correspond to adjusted fitness values of 0.11111 and
0.14286, which are far more readily differentiated
(the percentage increase between the values has
changed from 2% to 29%).

Given this revised standardized fitness, the value
of the policies improves to match that of the FMDP
policy. Even so, the policies are not equal: the GP
policy behaves poorly, as predicted, in states that are
rarely reached, where the FMDP policy does not. We
discuss this further in the following section.

6. Results
All GP experiments were implemented in C using
LIL-GP [6] and were run on a 900 MHz Sun
UltraSPARC-III+ workstation. All runs were
initialized with the same random seed, implying that
two runs with identical population sizes and
restrictions have identical initial populations. All
values were obtained by 1000 Monte Carlo runs of 20
steps each on the selected candidate. All times shown
are in seconds. The FMDP solution is based on a
technique presented in [3], and was implemented in
C++ and executed on a 700 MHz Pentium III. Our
results are reported in Table 4 below.

 Integer Mapping Integer Mapping
Gen. = 200

Value 27.0988 27.9260

Time 10894 36244

 Integer Mapping
Pop. = 20000

Integer Mapping
Runs = 20

Value 28.3471 27.7703

Time 21305 47147

 Coordinated
ADFs

Best-of-last
Selection

Value 32.1184 35.8467

Time 1893 3735

 Revised
Standardized

Fitness

FMDP
Solution

Value 37.8953 37.3289

Time 4906 36031

Table 4: Experimental Results

We note, initially, that changing the number of
generations, population size, or number of Monte
Carlo runs per evaluation has little effect on the
values of the policies obtained via the simple integer
mapping method. By contrast, working to take
advantage of problem structure in the coordinated
ADF method yields a noticeable improvement in
policy value and an order-of-magnitude improvement
in running time. Eventually, the fourth iteration of
our approach yields a policy value which is
essentially identical to that of the FMDP solution, in
roughly 1/7 the time.

This policy, however, is not optimal; unlike the
FMDP policy, it selects poor actions in states that are
seldom reached. For example, in one Monte Carlo
run, the agents initially focus their attacks on Enemy

3. Once Enemy 3 is badly wounded, two of the
agents attack another target and leave the third to
finish off the nearly dead enemy. However, over the
course of these steps, Agent 3 has never been struck
by Enemy 3, which has a 0.008 probability of
occurrence. After killing Enemy 3, the attacking
agent continues to attack his corpse, which is clearly
suboptimal. However, in another, more likely run, all
agents again initially focus their attacks on Enemy 3.
Again, two of the agents attack another target and
leave the third to finish off Enemy 3. This time,
however, Agent 3 has been struck, and when the
attacking agent kills Enemy 3, he moves on to
another target. This trend pervades the GP policy, as
expected. It is a fundamental flaw of using Monte
Carlo for evaluation in this way.

7. Conclusions
Clearly, more remains to be said about the use of GP
as a policy search technique for MDPs. Here,
however, we have shown that GP using Monte Carlo
evaluation and a coordinated ADF structure can
effectively and very efficiently match FMDP
solutions for difficult coordinated multi-agent
problems. GP combined with Monte Carlo exploits
knowledge of an initial state in order to produce
policies with high overall value in a minimum of
time, while MDP solution algorithms expend extra
time to produce more robust policies that have high
value from any state, however improbable. However,
unlike approximate MDP approaches, GP does not
require problem-specific knowledge about the value
structure, and may be superior when truly automated
planning is desired.

Bibliography
[1] R. E. Bellman. Adaptive Control Processes: A

Guided Tour. Princeton University Press,
Princeton, New Jersey, 1961.

[2] C. Boutilier, R. Dearden, and M. Goldszmidt.
Exploiting structure in policy construction. In
Proc. IJCAI , pages 1104-1111, 1995.

[3] C. E. Guestrin, D. Koller, C. Gearhart, and N.
Kanodia. Generalizing plans to new environments
in relational MDPs. In Proceedings of the
Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI-03), Acapulco,
Mexico, Aug. 2003. Morgan Kaufmann.

[4] C. E. Guestrin, D. Koller, R. Parr, and S.
Venkataraman. Efficient solution algorithms for
factored MDPs. Accepted in Journal of Artificial
Intelligence Research (JAIR) , 2002.

[5] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge, Massachusetts,
1992.

[6] B. Punch and E. Goodman. Available at
http://garage.cps.msu.edu/software/lil-gp/.

