
Fundamental Analysis Using Genetic Programming For
Classification Rule Induction

C. Gregory Doherty

Oracle Corporation
Redwood Shores, California 94065
greg.doherty@oracle.com

ABSTRACT

This paper details the application of a genetic programming framework for induction of
useful classification rules from a database of income statements, balance sheets, and cash
flow statements for North American public companies. Potentially interesting
classification rules are discovered. Anomalies in the discovery process merit further
investigation of the application of genetic programming to the dataset for the problem
domain.

1. Introduction
Fundamental analysis involves the analysis of economic data, industry conditions, company fundamentals, and corporate
financial statements (Little and Rhodes, 1983). Data mining consists of the extraction of interesting novel knowledge from
real-world databases (Fayyad et. al., 1996). Near boundless effort is expended in analyzing time series consisting of market
and company metrics to predict future outcomes in order to achieve above average returns. This paper details an application
of genetic programming to the problem of obtaining interesting (valuable) knowledge from the COMPUSTAT (North
America) database consisting of annual time series of income statement, balance sheet, and cash flow statement data for
North American companies from the period 1972 – 1999.

(Freitas, 1997) proposes a genetic programming framework for induction of both classification and generalized rules from
databases. The framework outlines a method for classification using tuple set descriptors (TSD) in the form of WHERE
clauses for SQL queries, and a count of rows of a goal attribute class matching the TSD. A sample TSD is of the form ((A1 >
V1) AND (A2 < V2)) OR (A3 < A4), and represents a SQL query of the form in Figure 1. The encoding of the sample TSD
into prefix ordering for genetic programming manipulation is detailed in Figure 2.

SELECT <goal attribute>, COUNT(*)
FROM <data table>
WHERE <tuple set descriptor>
GROUP BY <goal attribute>

Figure 1 TSD and Goal Attribute form in SQL

(OR
 (AND
 (> A1 V1)
 (< A2 V2)
)
 (< A3 A4)
)

Figure 2 Encoding Of Sample TSD for Genetic Programming Manipulation

A sample instance of a classification rule for a given goal attribute value is of the form: IF <tuple set descriptor> THEN
<goal attribute> <relational operator> <class designation value>.

2. Methods
All data mining tasks involve at least three steps: data preparation, data analysis, and decision-making. This work consists
of the first two steps.

2.1 Data Preparation
The Standard & Poors COMPUSTAT (North America, annual) database contains 334 attributes, spanning 50 years of data
for nearly 10,000 active (trading on public markets) and 11,000 inactive (non-trading, acquired, or failed) companies.

Some attributes for a given company at a given time may be unavailable (NULL); for instance, the database attributes are
sparse for periods before 1972. In addition, the database is sparse for the most recent period (2001) for this edition of the
database due to differences in fiscal year definition for different companies vs. the date of COMPUSTAT publication. For
this reason, the period mined is 1972 – 1999 (a bug unaddressed prior to GP runs left out 2000).

There are 78,263 rows for the 8,259 active companies during the period 1972 – 1999. In order to allow for cross-validation,
a learning set of 4,264 companies and 39,054 rows was selected over the period and the remaining set of 4,265 companies
and 39,209 rows were reserved for validation of the induced classification rules.

The data set is normalized by converting to a time series of period-to-period percent change of each attribute. In addition, n
order to facilitate classification, the attribute value period-to-period percent changes are rendered to a discrete domain by
rounding each percent change to the nearest discrete quantum expressed as a multiple of 5%. Percent changes in attribute
values of greater than 100% or less than –100% are arbitrarily mapped to +100% and –100% respectively.

Of the 334 available attributes, 52 are selected for mining based on two criteria: subjective estimation of the relevance of the
attributes to the domain-specific classification problem, and a sparseness rule eliminating those attributes for which, during
the 1972 – 1999 period, more than 50% of the rows containing those attribute values were unavailable (NULL). The
selected attributes are detailed in Table 1.

Table 1 COMPUSTAT Attributes (metrics) Selected For Mining
Metric %Change in … Metric %Change in …
 m01 Cash and Short-Term Investments m27 Discontinued Operations
 m02 Receivables m28 Receivables-Estimated Doubtful
 m03 Inventories m29 Accounts Payable
 m04 Assets m30 Deferred Taxes
 m05 Property, Plant, Equip m31 Common Stock
 m06 Long-Term Debt m32 Treasury Stock Dollar Amt
 m07 Sales m33 Sale of Property, Plant, Equip
 m08 Depreciation and Amortization m34 Sale of Common and Pref. Stock
 m09 Interest Expense m35 Sale of Investments
 m10 Special Items m36 Purchase of Common and Pref. Stock
 m11 Dividends-Preferred m37 Receivables-Trade
 m12 Dividends-Common m38 Deferred Charges
 m13 Price-CalYear-Close m39 Accrued Expenses
 m14 Common Shares Outstanding m40 Prepaid Expense
 m15 Employees m41 Net Income (Loss)
 m16 Intangibles m42 Liabilities
 m17 Debt in Current Liabilities m43 Selling, General, Admin. Expenses
 m18 Retained Earnings m44 Extraordinary Items
 m19 Invested Capital m45 Short-Term Investments
 m20 Cost of Goods Sold m46 Receivables-Current-Other
 m21 Advertising Expense m47 Goodwill
 m22 Research and Development Expense m48 Notes Payable
 m23 Rental Expense m49 Capital Surplus
 m24 Nonoperating Income (Expense) m50 Stockholders Equity

 m25 Interest Income m51 Acquisition-Income Contribution
 m26 Amortization of Intangibles m52 Acquisition-Sales Contribution

2.2 Data Analysis
The technique used for data analysis is the aforementioned genetic programming framework for evolving tuple set
descriptors for a given goal attribute. The goal attribute selected is change in stock price greater than 15% in an ensuing
year. A single goal attribute and value was selected due to the experienced increase in evaluation time when attempting to
find rules for each value of the goal attribute. The relation PRICE >= +15% was selected for its value as knowledge, should
a consistent correlative classification rule be found.

The members of the terminal set for the TSD are of four types: the metric change in percent, the average of the percent
change in a metric over a 1-3 year period, based on availability of data in the preceding periods, and including the current
period for a given time t, and min and max over the same form of preceding and current time period. In addition 41
terminals are defined for the discrete percent change domain, e.g. –100%, -95%, …, 0%, 5%, … 100%. This results in a
terminal set with 249 members.

The function set consists of the Boolean operators AND, OR, NOT, and the relational operators less than (<) and greater than
(>). To deal with unavailability of a metric for a given company at a given time, all of the operators return NULL if any of
their arguments are NULL. If the result of a TSD tree is NULL, rather than TRUE or FALSE, then during evaluation of
fitness the TSD tree neither gains nor loses fitness as a result of processing the TSD for that row.

Initial and mutated TSD trees of depth N are constrained so that at depths 1 – (N-2), the only allowed functions are AND,
OR, and NOT, and the only functions allowed at depth (N-1) are > and <. The crossover operation is limited to choosing
crossover points that are internal nodes, i.e. functions. At depth N, the left-hand side of the operators > and < are constrained
to terminals referencing the metrics or aggregates of the metrics. The mutation operator is allowed to choose any arbitrary
point, with the constraint that if a terminal point is chosen, mutation can only introduce a new randomly selected terminal.
These constraints ensure that trees formed by the genetic operators remain valid as TSD’s and are interpretable as IF...THEN
classification rules.

A sample TSD tree and its translation into intelligible terms are given in Figure 3.

(or (not (or (and (not (> min(m21) min(m51)))
 (> max(m52) max(m32)))
 (or (> m46 avg(m26))
 (> max(m19) -5%))))
 (not (> min(m13) -65%)))

 translated to

(or (not (or (and (not (> min(Advertising Expense) min(Acquisition-Income
Contribution)))
 (> max(Acquisition-Sales Contribution) max(Treasury Stock Dollar Amt)))
 (or (> Receivables-Current-Other avg(Amortization of Intangibles))
 (> max(Invested Capital) -5%))))
 (not (> min(Price-CalYear-Close) -65%)))

Figure 3 Sample Tuple Set Descriptor

The search space is approximately
12

max

1

1 2492
−

⋅∑
=

− d
depth

d

d possible TSD trees, where 249 is the number of terminals, and 2d-1 is

the number of internal nodes in a TSD of depth d. The “curse of dimensionality” is evident in the cardinality of the set of
possible TSD’s. Genetic programming runs evolving TSD trees were limited by memory size to a maximum depth of 30 and
a maximum number of nodes of 3,000, thus failing to provide for full exploration of the TSD space, but leaving the hope that
a valuable rule would be found in the diminished TSD search space.

For each row, the TSD tree is evaluated, possibly referring to 1-2 prior rows in the case of aggregates, and the goal attribute ,
price change >= 15% in the ensuing year, is determined. Using the two Boolean results, a count of true positives, true
negatives, false positives, and false negatives is determined for all rows in the learning set. The fitness measure is the
correlation of the TSD predicting the correct goal attribute across the entire learning set. As a specific case, trees of 1 node
are given punishing fitness to work them out of the population, as they do not constitute valid TSD’s. In summary, a GP
tableau is presented in Table 2.

 Table 2 Tableau For Classification

 Objective: Induce a classification rule using fundamental company
metrics at year Y to predict >= +15% stock value
appreciation at year Y+1

 Terminal Set: MDD, avg(mDD), min(mDD), and max(mDD), where
DD in { 01,02,…,52}, and where aggregate functions
avg(), min(), and max() have an implicit prior/current
period range of <= 3 years.

 Function Set: AND, OR, NOT, <, >

 Fitness Cases: 34,790 rows of attributes containing metrics at year Y
and goal attribute (price) at year Y+1, where Y is in
{1972, …, 1999}

 Raw fitness: Correlation:

C =
)()()()(fptpfntpfptnfntn

fpfntntp

+⋅+⋅+⋅+

⋅−⋅

 Standardized fitness:
C =

2
1 C−

 Hits: Not applicable

 Parameters: Populations: M=5000, 20000, 50000
Generations: G <= 50
Pcrossover = 0.85, Pmutation = 0.05, Preproduction = 0.05

 Success predicate: C = 1.0 or max(C) within G generations

3. Results
Multi-threaded LILGP was used for all genetic programming runs. Runs were executed with population size 5,000 on a
single processor 2.8GHz Pentium-4 system, population size 20,000 on a 24 processor 336MHz UltraSPARC symmetric
multiprocessor (SMP), and population size 50,000 was run on a 4 processor Itanium (Madison) SMP. The amount of
computation cycles for fitness evaluation, even in the case of additional and more powerful processors, inhibited practical
duration runs to ~10 generations.

In each case, the best of the generation 0 populations was found to have a correlation on the validation set proportional to the
size of the population. The best of run was found invariantly in generation 1 for each population size. The additional
generations resulted only in raising the mean fitness of the population towards the best of run correlation, while the mean
TSD tree size also increased. Interestingly, the population included both large and small trees that achieved similar
correlations. The highest correlation on the validation set for population 20,000 runs was ~0.08, and for the population 5,000
runs was ~0.05. Interestingly, the fitness for the best of generation rule was observed to decrease in some generations, but
was recovered in subsequent generations.

An example best of run individual TSD, with correlation 0.083, predicting 6,421 true positives, 13,212 true negatives, 8,486
false positives, and 7,164 false negatives is given in Figure 4.

(and (not (or (and (> min(m09) 65%)
 (< min(m51) min(m48)))
 (and (< max(m45) max(m28))
 (> min(m18) max(m05)))))
 (not (not (not (< max(m26) avg(m13))))))

translated to

IF

(and (not (or (and (> min("Interest Expense") 65%)
 (< min("Acquisition-Income Contribution") min("Notes Payable")))
 (and (< max("Short-Term Investments") max("Receivables-Estimated
Doubtful"))
 (> min("Retained Earnings") max("Property, Plant, Equip")))))
 (not (not (not (< max("Amortization of Intangibles") avg("Price-CalYear-
Close"))))))

THEN
(Price > 15%)

Figure 4 Best Of Run Individual (correlation 0.083 on validation set)

It is interesting to note that the best of run individuals had a distinct propensity to prefer aggregate operators on the percent
change metrics over the metrics themselves.

Suspecting that the “curse of dimensionality” was evident, subsequent runs were performed with population size 5,000 on
the single processor Pentium-4, and 10,000 on the multiprocessor Itanium using only four metrics: Sales, Stock Price, Net
Income, and Stockholder’s Equity, performed against reduced learning and validation sets, specifically, the learning set was
selected to be only performance metrics for Microsoft Corporation, and the validation set was selected to be only the
performance metrics for Oracle Corporation.

For population 5,000 runs at G=100, classification rules with correlation 0.358 were discovered. These were significantly
more correlative than the lesser generation classification rules discovered for the larger number of attributes and data sets.
Satisfyingly, mean population and best individual of generation fitness were observed to rise proportional to the number of
generations. Interestingly, the best of generation 100 individual rule on the learning set produced a correlation of –0.0159 on
the validation set. The second best individual had a correlation of 0.073 on the validation set, however, the third through
tenth best individuals had correlations of 0.358. For population size 10,000 at G=16 (limited by time), the sixth best
individual (on the learning set) achieved a correlation of 0.524, predicting 5 true positives, 9 true negatives, 1 false positive,
and 1 false negative. It’s form is detailed in Figure 5, and it can be observed that the increase in tree size is proportional to
prediction accuracy.

 (and (not (not (not (not (or (not (< Price-CalYear-Close 35%))
 (or (< avg(Dividends-Common) -45%)
 (< Stockholders Equity max(Sales))))))))
 (and (and (or (or (or (and (> Net Income (Loss) Price-CalYear-Close)
 (< avg(Sales) 10%))
 (and (< min(Stockholders Equity) 25%)
 (< max(Net Income (Loss)) avg(Net Income (Loss)
))))
 (or (and (< Price-CalYear-Close min(Stockholders Equity
))
 (> min(Net Income (Loss)) -95%))
 (and (< avg(Stockholders Equity) -50%)
 (< max(Net Income (Loss)) -95%))))
 (or (not (or (< max(Sales) Sales)
 (< max(Sales) 15%)))
 (not (or (< max(Stockholders Equity) -40%)
 (> Price-CalYear-Close min(Sales))))))
 (and (not (not (or (> min(Net Income (Loss)) -85%)
 (< Net Income (Loss) -80%))))
 (and (or (and (< min(Stockholders Equity) 100%)
 (> max(Sales) Net Income (Loss)))
 (not (> max(Price-CalYear-Close) 70%)))
 (or (not (> avg(Dividends-Common) 5%))
 (and (> max(Stockholders Equity) -85%)
 (> Net Income (Loss) max(Stockholders Equity
)))))))

 (and (or (or (or (not (> avg(Net Income (Loss)) max(Sales)))
 (and (< max(Net Income (Loss)) 50%)
 (> avg(Net Income (Loss)) 5%)))
 (or (not (> Price-CalYear-Close max(Sales)))
 (not (> max(Price-CalYear-Close) -90%))))
 (and (not (not (> avg(Net Income (Loss)) avg(Dividends-Common
))))
 (or (and (< avg(Dividends-Common) min(Net Income (Loss)
))
 (> max(Stockholders Equity) 5%))
 (or (> Net Income (Loss) max(Stockholders Equity))
 (< min(Price-CalYear-Close) Net Income (Loss)
)))))
 (not (not (or (not (> avg(Sales) avg(Sales)))
 (not (> min(Net Income (Loss)) avg(Sales)))))))))

Figure 5 Classification Rule (6 best of run, M=50,000) With Highest Correlation (0.524) On Validation Set

It is also interesting to note that the best of run individuals with the highest validation set (Oracle) correlation based on a

learning set (Microsoft) correctly classified both Oracle’s stock drop in 1991, and it’s rise in 1999, based on data from 1990
and 1998 respectively, processed by the discovered classification rules. Additonal work is required to determine the
significance of such results.

4. Discussion
Certainly the underlying large data set is noisy. The mystery of the early plateau in fitness and the early generation discovery
of apparent maximum correlation, with both large numbers of TSD attributes and large datasets, seem to imply a local
maximum discovered in the search space, or a pragmatic failure to process a large enough population for enough generations
to better explore the search space. One area investigated was the impact of NULL TSD results over the learning set. This
was found to not be an operative factor in the evaluation of fitness in any of the runs.

It is interesting that some rules with positive correlation are discovered, classifying the validation set more correctly than not
correctly. Further work is required to determine if the discovered classification rules confer an equity trading advantage over
common trading strategies such as buy-and-hold, or exceeding the performance of the S&P 500 index. Owing to the results
to date and the low positive correlations in classification rules discovered for large datasets and large numbers of attributes,
further investigation is required before the classification rules were to be put to real-world use, if at all. The results on the
smaller learning and validation sets for much smaller number of relevant attributes is promising, but cannot be absolutely
determined to be because of the metrics: both companies were in an industy known to grow significantly in net wealth
creation over the concerned time period.

Additionally, other considerations, such as which the terminals are defined such as the lack of looking at other companies in
the same industry or observation of key economic data and market indices limits the view of the TSD’s. Ratios commonly
used in fundamental analysis may or may not be useful to add to the set of metrics available to the TSD’s. No attempt was
made to use GP to rediscover these or novel other relevant ratios. It is also not certain that any form of fundamental analysis
is significantly predictive of future equity prices.

5. Conclusion
A framework for using genetic programming to induce classification rules has been applied. Classification rules with positive
correlation for predicting price changes greater than or equal to 15% were discovered, with prediction on the validation set
being more right than wrong. It is difficult to determine if better rules could be discovered in the TSD search space, due to
practical limits computational cycles and memory capacity for evaluating significant populations of TSD trees over
reasonably large data sets comprising reasonably large numbers of metrics, over a significant number of companies and time
series histories. Further work is required to investigate the reasons for the plateau of fitness across generations of genetic
programming runs for larger numbers of attributes and larger datasets..

Life can only be understood backwards, but it must be lived forwards.
 -Soren Kierkegaard

Acknowledgments
The author would like to thank John Koza for his guidance and his timely advice to avoid premature tilts at windmills,
Stanford GSB for access to COMPUSTAT (North America), Oracle Corporation for supporting this work, and Angelina,
Conor and Brennan for their forbearance and support.

Bibliography
COMPUSTAT (North America). 2001. http://www.compustat.com/www/db/na_descr.html, Standard & Poors Institutional

Market Services, Englewood, CO, USA.

Fayyad, U.M., Piattetsky-Shapiro, G., and Smyth, P. 1996. From data mining to knowledge discovery: an overview.

Advances in Knowledge Discovery and Data Mining, 1-34. AAAI/MIT Press.

Fidelis, M.V., Lopes, H.S., and Freitas, A.A. 2000. Discovering comprehensible classification rules with a genetic

algorithm. Proc. Congress on Evolutionary Computation - 2000 (CEC-2000), 805-810. La Jolla, CA, USA.

Freitas, A.A. 1997. A genetic programming framework for two data mining tasks: classification and generalized rule

induction. Genetic Programming 1997: Proc. 2nd Annual Conf. (Stanford University, July 1997), 96-101. Morgan
Kaufmann.

Goldberg, David E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley Longman,

Inc.

Little, J. B. and Rhodes, L. 1983. Understanding Wall Street. Liberty Publishing Company, Cockeysville, MD.

Koza, John R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge,

MA: The MIT Press.

