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ABSTRACT 

This paper is an exploration of strategies in the classic game Othello using the 
genetic algorithm.  By assigning specific values to each position on the board, 

a computer program can evaluate what move is best in a certain situation.  
Using the genetic algorithm to discover a good set of values results in the 

computer being able to play a strategically sound game without using time-
consuming game tree searches.  

 
1. Introduction 
The game of Othello is a complex board game, mixing elements of go and checkers.  A quick summary of 
the rules is as follows: 1) the board is made up of an 8x8 square grid, with pieces placed one per cell 2) red 
and white alternate placing a piece on the board, in such a way that one ore more opponent pieces are 
between the placed piece and another friendly piece.  The enemy pieces are then flipped to the placer’s 
side.  3) when neither side can place in this way, the winner is the player with mose pieces on the board.  A 
complete explanation of game rules can be found at the British Othello Federation webside 
(www.ugateways.com/bof4.html).  The size of the branching factor in Othello, combined with how quickly 
the balance of the game can swing, makes it an interesting and difficult game for computers to play.  The 
standard approach in AI game playing is to make a simple function to evaluate how “well” a player is doing 
in a certain board configuration, then harness the power of computing to search many moves in the future, 
and use that knowledge about how the game will play out to choose the most advantageous move.  It is 
necessary for a computer to look many moves in the future because of the inherent difficulty of 
extrapolating what is a good move by examining only the current board configuration.  However, if enough 
were known about the advantages and disadvantages of holding certain spots on the board, it should be 
possible to effectively play Othello while only considering one move into the future.  This was the 
philosophy that inspired the application of the GA to Othello. 
  

 
2. Background 
In order to successfully evolve weights for board positions, a strategy for how to assign weights was 
needed.  Although a typical Othello board is 8x8 squares, a 6x6 board will be used for this experiment in 
order to reduce the complexity of the problem.  This should not change how games are played at all, and in 
fact patterns that emerge in the weighting of this reduced board will probably carry over to an 8x8 board as 
well.  An examination of the Othello board reveals a rotational symmetry that allows us to significantly 
reduce the complexity of this problem.  This rotational symmetry means that there are only really six 
unique board positions on a 6x6 board.  Table 1 shows the 6 base positions in bold, and the rest of the 
board is filled in to demonstrate how those unique positions are reflected around the board.   

 



Table 1 – Unique board positions and their rotational symmetry 

1 2 4 4 2 1 

2 3 5 5 3 2 

4 5 6 6 5 4 

4 5 6 6 5 4 

2 3 5 5 3 2 

1 2 4 4 2 1 

      
3. Methods 
To set up the problem to be solved by the genetic algorithm, several steps needed to be completed.  The 
most important were deciding how to represent the problem in terms that the GA could deal with, namely 
how to represent the weights as a chromosome, and how to measure the fitness of those chromosomes.  
Then parameters of the GA run needed to be decided upon, and actual runs made to come upon a solution. 
 
3.1 Representing weights 
Once a weighting scheme was arrived upon, all that remained was to set up a GA run to choose the best 
weights for each of the 6 unique board positions.  It was decided to assign each position a value ranging 
from –2 to 2.  The values of this range don’t actually matter, simply the ratio between them, which results 
in the computer “wanting” to hold one position more than the others, so the range was mostly chosen so 
that the chosen weights would be most meaningful to a person.  The only important thing was that the 
range have both positive and negative values, so that if squares were disadvantageous to own, they could be 
negatively weighted.  This range of values was represented as 6 floating point numbers, each being stored 
using a binary string of length 16.  The GALib software that was used in experimentation has a facility for 
converting between binary and decimal, so it only needed to be told that the chromosome contained 6 
numbers in the range –2 to 2, and how many bits to use to represent them, which essentially decided how 
precise the values evolved would be. 
 Because there are 6 weights with 216 = 65,000 possible values, it would seem that the search space 
is huge.  However, there are two factors that reduce this size enough to make the problem solvable with a 
reasonable population size and number of runs.  The most significant of these is the fact that the individual 
values are not important, simply the ratio between them.  This is because the search algorithm which 
chooses the correct move simply compares scores for different board configurations, all using the same 
weights, and chooses that which produces the highest score.  This means that weights {.2, .3, .6, -.2, -.8, .5} 
are exactly equivalent to, and will produce the same game behavior, as weights {.4, .6, 1.2, -.4, -1.6, 1.0}.  
The second factor decreasing the search size is that similar ratios will produce the same behavior as well.  
If a single square is weighted 5 times higher than another, changing it’s weight to 5.1 times higher will not 
favor it that much more.  The difference in the games played by these two different weights will be 
negligible, so they are virtually equivalent.  Also, the search space is continuous, there is no absolute 
correct set of weights, we are simply striving to improve performance.  We do not need to arrive at any 
exact set of weights for the problem to be solved, we simply need a set which performs well, so there is 
certainly some fuzziness allowed in the correctness of the results.  These factors all combine to allow the 
search space to be tractable even given its significant size. 
 



3.2 Measuring fitness 
Once the GA knew how to represent the weights, it needed a way to evaluate the fitness of those weights.  
This problem constitued the majority of the programming and thought that went into this experiment.  A 
networked game playing client and server were already written from another project, all that needed to be 
done was to harness this functionality to measure the effectiveness of the given set of weights.  This was 
done by modifying  the client program so that if it received a certain flag, it would read a set of weights 
from a file, and then play a game using those weights. 
 Each turn, the client would iterate through all of its possible moves, generate the board that would 
result from each of those moves, and then add up how many pieces both it and the opponent had on that 
board.  It would then move to maximize its pieces in relation to the opponents: essentially greedy search.  
However, when tabulating the score for a  certain board configuration, each piece was not worth 1 point, 
but was instead worth the weight assigned to the square that it was in.  By greedy searching using the 
weights, the program favored moves which captured highly weighted squares and avoided negatively 
weighted ones.  Once a game were successfully completed, the client would then write what the final result 
of the game was out to a file. 
 Once this modified client were written, the fitness function for the weights was simple to write.  It 
simply wrote the current set of weights to be evaluated out to a file, then called the client and server 
programs to play a game with those weights.  Once both of those processed had returned, indicating that the 
game was over, the fitness function read the results of the game from another file.  Raw fitness was 
assigned based on how badly the weighted program either won or lost the game.  This number was later 
scaled using sigma trunction, which also dealt with the fact that many of the fitness scores were negative. 
 One interesting problem in measuring the fitness was how to set up the opponent that the weighted 
program played against.  Because the objective of the experiment was to show that brute-force deep 
searching was not the only way to effectively play, an opponent using exactly this deep-searching strategy 
was used.  The opponent would be configured so that it evaluated boards using a strict greedy search, my 
pieces versus yours, but looked several moves ahead in the game tree before making a decision.  This 
would mean that the fitness would measure how well a given set of weights peroformed against an 
opponent looking many moves ahead, facilitating the objective of showing that this is not the only way to 
effectively play Othello by computer. 
 
3.3 Tuning the fitness measure 
Once a basic fitness strategy was arrived upon, it had to be modified in order to arrive at meaningful 
results.  The main variable to be changed was how far ahead to have the opponent program look.  
Preliminary runs had him only looking ahead 2 or 3 moves.  Unfortunately, pure greedy search at this low 
of a depth is not a great heuristic, and one of the members of the population in the first generation or two 
would be able to beat it.  This is because, although the weights at that early stage essentially resulted in 
random play, a significant percentage of all random games will at least minimally beat a low-depth greedy 
search.  The starting population size was large enough to include a couple of these, and they ended up 
looking more fit than they actually were.  The only solution to this problem was to have a better adversary, 
which meant a deeper search depth.  Although this did increase computation time significantly, it was the 
only solution. 
 Some optimizations were performed to allow searching deeper in the same amount of time, but the 
most important strategy change was simply being more patient to wait for long runs to complete.  It is an 
interesting commentary on the complexity of Othello that, although moving randomly will not win 
consistently, it will beat a fairly weak opponent enough times to throw off results.  It was necessary to 
essentially make the opponent much more difficult in order to arrrive at results that would reliably win. 
 One possible strategy that could have been used to combat the problem of essentially random wins 
skewing results would have been to play several different games with a set of weights, and then take the 
average of the fitness score for each game as the actual fitness of that set of weights.  Unfortunately, the 
determinism of the opponent’s algorithm meant that playing multiple games that acutally had different 
results was fairly difficult.  Some experimentation was done with introducing non-determinism into the 
opponent and playing multiple rounds, but being non-deterministic while staying competitive ended up 
being fairly difficult.  Insead, several runs were done, and the top individuals from each run were all 



combined to give a final set of weights.  By utilizing patterns in many separate, but all highly fit 
individuals, the possibility of the weights being overfit to a specific game against the greedy opponent was 
reduced. Perhaps, given more time, exploring the possibility of multiple games to measure fitness could be 
examined more fully. 
 
3.4 Running the GA 
Once a fitness measure and chromosome representation were arrived upon, all that remained was to 
establish some parameters for a GA run, and then actually do the run. 

Population sizes of around 100 were used for most runs.  This number was so low mostly to keep 
runtime down.  Because of the factors discussed above that decrease the size of the search space, this ended 
up being large enough to search through enough of the space to end up with a working result.  The number 
of generations was allowed to vary more between runs, from 30 to 50.  Lower numbers were used initially, 
then some of the later runs were allowed to run longer.  This allowed the average fitness to catch up to the 
fitness of the best couple individuals, so that multiple highly-fit individuals from the final population could 
be examined. 

The standard genetic operators of mutation, reproduction and crossover were used.  Mutation was 
given a typically low probability of 0.1, because there was no reason to set it abnormally high.  Crossover 
was set to 0.8, higher than the standard value of 0.6.  This is because the objective of the experiment was to 
evolve a population that was highly fit and combine several individuals for a final result.  By utilizing 
crossover more than normal, the probability that a single, fit individual simply reproduces and doesn’t share 
its genetic code with the population is reduced.  By sharing more genetic code through increased 
crossovers, it is possible that the best individual may grow slightly slower, but the population as a whole 
should stay more tightly bunched, resulting in a more useful set of individuals as the end of the run. 

The tableau below was used for the final result-producing GA runs.  Because of the inability to 
run multiple fitness tests for each individual discussed above, several runs with slightly different 
parameters were done, and their results combined to come upon the final set of weights.  This negated any 
false-positives arrived at by testing against a single opponent. 
 

Table 2 – Tableau for GA runs 
Objective: Maximize the score of a game played with 

weighted board positions, versus an opponent 
performing greedy search to depth N, where N 
ranges from 4 . . 6. 

Representation scheme: 6 weights, ranging from –2 to 2, represented each 
by binary strings of length 16. 

Fitness: Fitness is measured by playing a game against an 
opponent using greedy search.  The piece 
differential of the weighted opponent to the greedy 
opponent is the measure of fitness, with negative 
values indicating a loss. 

Parameters: Population size: 100 

Termination criteria: A certain number of generations are run, between 
30 and 50, depending on time constraints and 
opponent search depth. 

Result designation: A combination of the weights of several of the best 
individuals from a run. 

  
 The software used for the GA runs was GALib 2.4.5, available at “lancet.mit.edu/ga/”.  It provides 
many advanced GA features, but only the basic algorithm from Goldberg’s book was used.  One advanced 
GA feature that did prove useful was sigma trunction scaling, which scores fitness based on deviation from 



the average.  This is useful because it handles negative raw fitness scores well, which was certainly 
necessary in the case of this experiment, because any loss to the greedy program resulted in a negative 
fitness score. 

The code used for playing Othello games is derived from the code provided for the CS-221 
artificial intelligence class at Stanford, but was modified both to improve performance of the adversary 
player, and to allow the weighted player to interact with GALib.  Many of the performance problems that 
were encountered during the experiment were due to the interaction between GALib and the Othello 
codebase.  Because the Othello code was a completely separate program that ran separate processes for the 
server and each of the players, it needed to be launched for every evaluation of an individual during a run.  
The only means of communication between the GA code and Othello code was reading from and writing to 
files.  Unfortunately, forking processes and file input/ouput are fairly expensive operations, which 
expended close to half the computation time of each run.  Some progress was made in integrating the 
Othello codebase into the objective fitness function, so that only a single process would be active for the 
entire run, but complexity and size of the Othello codebase made this an infeasible task given time 
constraints on the experiment. 

 
 
4. Results 
In every one of the runs performed, an individual was evolved that could beat the greedy opponent by a 
significant margin.  More impressive though, especially the above discussion of the fact that a single game 
against the greedy opponent is not necessarily an absolute measure of performance, is the fact that the 
average performance of the population also increases well above 0.  This means that by the end of a run, 
most of the individuals in the population are able to beat a greedy opponent searching far further down the 
tree than they are.  Shown below  in table 3 are the abbreviated results of one such run. 
 

Table 3 – Improvement of Population as a Whole 
Generation 
Number 

Best of Gen Fitness Average Fitness 

3 2 -24.99 

6 8 -16.53 
9 18 -9.76 

12 28 -4.56 

15 28 7.4 
18 28 12.16 
21 30 15.03 

24 30 20.84 
27 32 20.50 
30 30 21.12 

  
 Once we have a satisfactory run that shows a highly evolved population such as this one, we 
simply take several of the top individuals, by having the GA report its population at the end of the run, and 
take the average of their weights.  Shown in table 4 below are 4 individuals from the final population, and 
the final weight determined by averaging their weights.  The weights are given to only 1 decimal accuracy 
because this is the format the the GA program output them as, it does not indicate the precision of the 
actual weight, but we are averaging them anyway, so this should not affect results.  Note that especially 
weight 4 is not completely converged, but that is the point of taking the average as we do.  A run to a 
higher number of generations did not improve the convergence of weight 4, so this possibly indicates that it 
just isn’t that important to overall performance. 
 



Table 4 – Top Individuals and Final Result 
Individual W1 W2 W3 W4 W5 W6 

1 1.9 1.9 1.3 1.2 -1.2 0.8 
2 1.7 1.8 1.3 1.1 -1.4 0.6 
3 1.6 1.9 1.3 -0.5 -1.8 0.5 
4 1.8 1.8 1.4 -0.7 -1.3 0.8 

avg 1.75 1.85 1.32 0.87 -1.42 0.67 
 

 
5. Analysis of results 
The first thing to notice about the results is that the stated goal was indeed accomplished.  With an 
opponent searching even 6 moves in the future and moving greedily, we are able to beat him without 
searching ahead at all.  The fact that the weights of several of the best individuals all look similar indicates 
that these are close to the true values of those squares, but they are different enough that it is probably a 
good idea that we are taking a synthesis of several of the top individuals.  Perhaps if we could improve 
efficiency, doing runs with higher population and number of generations would be able to improve this 
convergence, especially with the increased crossover discussed above.  However, because the obtained 
weights are so successful, there is no doubt that they are at least approaching optimal. 
 It is also interesting to try to glean bits of strategy from the values of the weights.  It is not 
surprising that weight 1, the corner weight, is so high because the corner is impossible to capture.  Likewise 
for weight 2, because it is on an edge and more difficult to capture.  More interesting is the fact that the 
values for weight 4 are so different amont equally successful individuals indicates that it is probably not of 
great importance to the overall outcome of the game.  Most interesting is the fact that weight 5 is weighted 
against so heavily.  Perhaps the reason is its proximity to an edge, making it vulnerable to being taken on 
the way to capturing an edge.  This is not true of weight 3 though.  This indicates that there is perhaps more 
to Othello strategy than is immediately obvious, and a fact like this would have been difficult to discover 
without the problem-ignorant approach of the GA.  It seems to have discovered a complexity that is not 
immediately obvious to an outside observer, which is perhaps the greatest testament of its power. 
 
6. Conclusion 
This paper shows that it is possible to successfully apply the genetic algorithm to the problem of generating 
a heuristic function for playing Othello.  Although the 6x6 board operated upon is smaller than an actual 
Othello board, and the greedy search function that results were measured against is far from the best 
Othello algorithm available, these are only factors that shortened the time necessary to achieve a positive 
result.  This is essentially a proof-of-concept that genetic principles can be applied to play Othello, and a 
exploratory foray into how to actually do so.  Although the results may be of limited utility on their own, 
the framework for allowing the GA software to talk to Othello effectively is now in place. Possibilities for 
further exploitation of this work follow in section 7. 
 
7. Future work 
The most obvious avenue to explore in the future is expanding the search space to address the full 8x8 
Othello game board instead of the reduced 6x6 version.  This was infeasible for this project only due to 
time constraints. Moving to 8x8 would increase the search space from 6 unique positions to 10, requiring 
runs with larger populations and more generations to adequately search the whole space.  However, this is 
not the only increase in time that would result.  The branching factor would also be significantly higher for 
the greedy opponent’s search tree, meaning much more time would be required for his search.  Because this 
is already the most processor-intensive component of the fitness evaluation, this would increase the time 
needed for a run significantly.  If more time were available, however, these increases in time complexity 
would be acceptable in exchange for the possibility of developing weights that were applicable to actual 
games of Othello. 



 Another avenue to explore in the future would be using genetic programming to evolve an entire 
evaluation function, not just weights for an established greedy evaluation.  One of the major limitations of 
the weighting scheme is that the weight of each position does not depend on the value of the others.  For 
example, edge pieces are much more valuable if you own all the squares until a corner, because that means 
that the position is safe from capture.  A GP approach would be able to take this into account.  
Unfortunately, using this strategy would eliminate the rotational symmetry that was so useful in shrinking 
the size of the search space for the weighting approach.  This means that any GP evaluation function would 
need to take 36 inputs, one for each square on the board.  While this is not an intractably large problem, it 
would certainly require a larger population size, and probably a number of generations in the hundreds to 
reach any meaningful result.  Given many months of processor time in which to perform experiments, this 
would be the most attractive avenue to follow for future research. 
 


