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ABSTRACT

GAs have been successfully used in an aerodynamic shape design optimization. Time efficiency issues related to
the evaluation of a fitness are becoming a critical point as large calculations are needed. In this paper two efficient
methods are applied to the original GAs to save computational time. Firstly, parallelized GA is used for a single
disciplinary optimization to investigate the scalability corresponding to the number of processors. Without other
disciplines, only a minimization of sonic boom is sought using a parallelized GA.

The minimization of the sonic boom ground signature often leads to the undesirable aerodynamic properties such
as increase of the drag. These disciplines are often conflicting, and it is important to balance aerodynamic
performance and sonic boom requirements in a way that represents the best compromise for the overall design.

Therefore, secondly, multi-objective methodology can be used to find a set of non-dominated solutions called the
optimal Pareto sets for minimizing drag and sonic boom at the same time. Non-dominated sorting GA is used to get
these optimal Pareto sets. To decrease the increase of computation time caused by adding more disciplines and
comparing the ranks each other, micro-GA with external memory is inserted in the original non-dominated sorting
GA.

Results of a shape optimization of a low-boom supersonic jet with 15 design variables are presented. CPU time in
running a parallel GA and micro-GA with external memory is compared with a serial GA and a usual non-
dominated sorting GA respectively. Both methods are shown to be successful by decreasing run time significantly.

1. INTRODUCTION and BACKGROUND

For decades, the development of economically and environmentally acceptable supersonic aircraft has been
identified as a key step toward the next generation of aviation history that could improve many aspects of human life
and foster economic growth. The key technology barrier for this class of aircraft is the elimination, or reduction to
acceptable levels, of the sonic boom for flight over land while guaranteeing the challenging performance
requirements of the other major disciplines. This essentially means that all major disciplines including
aerodynamics, structures, stability and control, mission, and propulsion should be taken into account from the early
stages of design process; therefore, boom reduction must be considered as an additional aspect of the multi-
discipline optimization (MDO) problem.

Since the ground sonic boom is typically not a smooth function of the design variables and may actually contain
multiple local minima, it is important to select an optimization algorithm that is able to cope with this kind of design
space. Since GAs do not require sensitivity information, they are ideally suited to this kind of realistic design
environments where discontinuities, multimodality and noisy response may exist. They also have considerable
advantages for multi-objective design problems to obtain Pareto optimal sets. But major drawback of the GA
approach is that it requires many generations to locate the global optimum point and consequentially is quite
computationally demanding with large number of evaluations. In addition, accurate prediction of aerodynamic
performance like C; (lift coefficient) and Cp (drag coefficient) as well as sonic boom ground boom signature usually
requires very expensive three dimensional Euler Flow Solver in computational fluid dynamics (CFD).

Therefore, significant improvement in several aspects should be implemented to make use of the GAs accurately
and efficiently. For the improvement of GA itself, parallelized GA can reduce the computation time to evaluate the
individual objective functions, by distributing jobs to many processors. According to Gordon and Whitlely [6],
parallel GAs can be classified according to two different models in terms of accessing the global population. Island



model uses multiple subpopulations and cellular model (often called a fine-grained model) employs partitioning of a
single population. Section 4.1 gives a brief overview of these two forms of parallelism used in parallel GAs and of
the island model in particular. In this study, I used PGApack parallel genetic algorithm library made by Argonne
National Library[10]. PGApack is applied to minimize the sonic boom ground signature of supersonic jet and this
problem can be seen single discipline optimization problem.

But real design problem usually consists of rather multi-disciplines with conflicting objective functions than single
discipline. To preserve or enhance the aerodynamic properties such as C; and Cp, while minimizing sonic boom, GA
appropriate to multi-criteria optimization is necessary.

In a multi-objective optimization problem, the notion of optimality is not so obvious. If we agree in advance that
we cannot link the values of the different objectives, we must find a different definition of optimality, a definition
which respects the integrity of each criterion. Then, the concept of Pareto optimality arises.

There is no solution that is the best for all the criteria, but there exists a set of solutions that are better than other
solutions in all the search space, when considering all the objectives. This set of solution is known as the optimal
solutions of the Pareto set or non-dominated solutions [1]. The usual approach has been to use a ranking procedure
to classify a population of individuals based on their Pareto dominance. One of this popular methods is Non-
dominated Sorting Genetic Algorithm (NSGA) based on the algorithm of Srinivas and Deb[16]. This ranking
procedure normally consumes most of the running time of an evolutionary multi-objective optimization technique
[2]. Several researches have focused their recent efforts on reducing the checking for nondominance and in the
development of efficient approaches to keep diversity. Micro-GA with the use of external files is suggested by
Carlos [3]. Details are explained in section 4.2.

In this paper, I used both of NSGAII and Micro-GA with external memory to compare the performance of those
multi-objective optimizers both in terms of time required to find a solution and the quality of the solution obtained.

Finally, for improvement of function evaluation tools, expensive CFD-based computation method should be
replaced with the accurate approximation models. In this study, Kriging approximation model was used.
Since this CFD issue isn’t the main purpose of this paper, only short descriptions are given in section 3.

2. STATEMENT OF PROBLEM
Configuration of interest : Low-Boom Supersonic Business Jet(SBJ) Design

The design problem in question involves the simultaneous ground boom and drag minimization of a supersonic
business jet wing-body-tail-nacelle for the configuration at a specified lift coefficient, C; = 0.07104, which
corresponds to a cruise weight of 100,000 Ibs at a cruise altitude of 50,000 ft. The wing reference area is 1,032 ft*.
The free-stream flow conditions were fixed at Mach number = 2.0 which means twice of the sound speed. The
aircraft geometry and flow conditions were parameterized directly in CAD using 108 design variables [4]. The list
of geometric design variables and their upper and lower bounds for the 15-dimensional design problem which we
will describe later is given below:

X, = wing position along fuselage
X, = wing dihedral angle

X3 = wing sweep angle 26.856,41.610] deg
X4 = wing aspect ratio 4.643, 7.148]

€ [49.643, 65.278]ft
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x5 = wing leading edge extension e [0.776, 1.244]
S
S
S
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-0.273, 3.611] deg

X¢ = upper fuselage radius at 12.50\% of fuselage length 2.33,3.0321]

x; = upper fuselage radius at 18.75\% of fuselage length 3.1633, 3.9967]
xg = upper fuselage radius at 25.00\% of fuselage length 3.4905, 4.6384]
Xo = upper fuselage radius at 31.25\% of fuselage length [3.3081, 4.6058]
X10= upper fuselage radius at 37.50\% of fuselage length € [3.3015,4.6177]
x11 = lower fuselage radius at 12.50\% of fuselage length € [2.33,3.0321]

X, = lower fuselage radius at 18.75\% of fuselage length € [3.1633, 3.9967]
X3 = lower fuselage radius at 25.00\% of fuselage length € [3.4905, 4.6384]
x14= lower fuselage radius at 31.25\% of fuselage length € [3.3081, 4.6058]



x15 = lower fuselage radius at 37.50\% of fuselage length € [3.3015,4.6177]

The wing planform for this configuration was designed with experience from our previous supersonic work to have
a portion with a subsonic leading edge followed by an outboard panel with a supersonic leading

edge. This helps increase the span to achieve better low-speed performance at a small cost in cruise performance.
The airfoil sections for the outboard portion of the main wing and the horizontal tail were chosen to be simple
biconvex airfoils of varying thickness, while an RAE2822 was used for the inboard part of the main wing with a
subsonic leading edge. Surface mesh triangulation is shown at fig.1 to simply demonstrate baseline configuration.

Fig.1 Surface triangulation of baseline configuration
Specifications of problems in GA

All the fifteen design variables have their own bounds for the realistic aerodynamic shape and they are obtained by
experiments performed before. Fig.1 shows the baseline configuration corresponding to initial setup for 15 design
variables, i.e. {55, 1, 35, 6, 1, 2.68, 3.6, 4.0, 4.0, 4.0, 2.68, 3.6, 4.0, 4.0, 4.0}. Lower and upper bounds for all the
design variables are normalized between 0 and 1 to be compatible with a randomizing function in the GA. All the
alleles are set to the values selected uniformly and randomly from the specified intervals. Total count depends on
how uniformly and randomly the alleles are picked in the interval. If I assume to have only three choices for each
interval, then total count would be 3"

Objective functions are the drag coefficient and sonic boom ground signature calculated either from exact CFD
analysis or alternative Kriging approximation model. The Drag coefficient and sonic boom ground signature for the
baseline configuration is about 0.01 and 0.6 psf or so. I can assume all the possible objective function values with
realistically constrained design variables doesn’t deviate much from those values. The goal is to achieve minimum
sonic boom and drag coefficient. Since we don’t know the exact minimum values in advance, my termination
criteria is set as the number of no changes in the best solution found through several generations, in single discipline
case. But in the multi-discipline case, the termination criteria is dependent of decision maker’s option with the trade-
offs between the objectives. In this study, I set the maximum generation number as the stopping criteria and
investigated the Pareto sets afterwards.

Both of the GAs use common genetic operators like reproduction, crossover and mutation. For the multi-objective
optimization case, there were more stages than those of the original GAs such as ranking and elitism. The details of
those stages are explained in section 4.2.

3. FUNCTION EVALUATION
High-fidelity three dimensional Euler Flow Solver

One of high-fidelity CFD analysis tool, an Euler Flow Solver, is developed in my laboratory by incorporating
CAD-based geometry engine, unstructured, adaptive meshing techniques [5, 7]. This analysis is fully parallelized
with a partitioned computation domain and all the independent modules are automated. But as stated in the
introduction, the accurate function evaluation using this tool is very expensive. This high-fidelity computation tool
needs at least several minutes of computation to evaluate the accurate Cy, Cp and sonic boom ground signature
corresponding to each individual. Therefore it is almost impossible to connect directly Euler Flow Solver with GAs.
Faced with these problems, the alternative to the high-fidelity CFD analysis has received increased attention in



recent years. A response surface method, Kriging approximation method and Cokriging approximation are widely
used. Detailed description of these techiniques are not the main concerns of this study and they are given in [7]

Kriging approximation model alternative to expensive CFD analysis

One of the alternative to the expensive CFD analysis is the Kriging approximation model [8] which is developed in
statistics and geostatistics, in order to approximate the results of deterministic computer analysis. This is built by
interpolation of the sampled data by maximum likelihood estimation procedure, which allows for the capturing of
multiple local extrema. The cost of Kriging method is orders of magnitude smaller than the expensive CFD. But the
accuracy of a Kriging model depends greatly on the number of sample data points used and their location in
multidimensional space.

In this study, using the latin hypercube sampling technique, 140 sampling points around the baseline design points
in the design space were selected and their performance values were computed using CFD analysis. A Kriging
model was then generated based on the sampled data and used for the function evaluation routine within the several
GAs used in this study. Validation of results with CFD calculation is another issue but I didn’t include it in this
study. All the numerical specifications and details are in [7].

4. METHODS

4.1 Parallel GA for single disciplinary optimization

Several approaches grew out of the desire to easily parallelize GAs, one is the cellular model. The cellular model
[13] uses fine grained, massively parallel architectures. These machines consist of a huge number of simple
processors typically connected in a ring or torus topology. One individual is assigned to each processor. Selection
and crossover is restricted to local neighborhoods of a particular processor. This model requires specialized
massively parallel computers and a large amount of communication.

The second approach is the parallel island model. The island model is designed to use a coarse grained parallel
architecture. Each processor is given a population of individuals. The processors evolve their populations using a
serial GA. Each GA is identical to but independent of the others. Each GA is usually started with a different random
seed. Periodically a processor may migrate a number of its individuals to another population. The amount of
communication involved in the island model appears to be much more manageable than the cellular models. This
island model seems much appropriate in my study considering limited numbers of processes.

In this work, PGAPack written by Argone National Laboratory is used for parallel island model. One of the
limitations for the PGAPack is that it doesn’t use migration stage through which individuals can be transmitted
between the islands to communicate each other when necessary.

PGAPack is general purpose, data-structure-neutral, parallel genetic algorithm library. Its key features on which we
are interested are:

1. Runs on uniprocessor, parallel computers , and workstation networks.

2. Binary-, integer-,real-, and character-valued native data types.

3. Full extensibility to support custom operators and new data types.

4. Parameterized population replacement.

5. Easy-to-use interface for novice and application users.

6. Multiple choices for selection, crossover, and mutation operators.

7. Large set of example problems

8. Easy integration of hill-climbing heuristics.

Tableau for sonic boom minimization is below.

Objective Minimize the sonic boom ground signature

Representation scheme e  Structure = combination of 15 design variables
e K=
e L=15
e  Mapping from points in search space of the




problem to structures in the population = each
allele is normalized floating point presentation
between 0.0 and 1.0

Fitness cases Same as fitness

Fitness Sonic boom ground signature (dp/p =(p-p0) / p)
Parameters Population size M = 1000, G=2000

Termination criteria If no change of best individuals are larger than 40

Result designation

Table. 1 Tableau for single discipline of sonic boom minimization
4.2 Micro-GA with external memory for multi-disciplinary optimization

Many real-world optimization problems, especially in MDO situations, require the simultaneous optimization of
possibly conflicting multiple objectives: this approach is often referred to as multiobjective optimization. Unlike
single-objective optimization where only one optimal solution is pursued, a typical multiobjective optimization
problem produces a set of solutions which are superior to the rest with respect to all objective criteria, but are
inferior to other solutions in one or more objectives. These solutions are known as Pareto optimal solutions or non-
dominated solutions. None of the solutions in the Pareto optimal set is absolutely better than any others with respect
to all of the objectives being considered; therefore, any one of them is an acceptable solution. Once the set of
optimal solutions is identified, it is left to the designer to choose one solution out of the many possible ones.

A genetic algorithm can use this dominance criteria in a straightforward fashion to drive the search process toward
the Pareto front. Due to the unique features of GAs, which work with a population of solutions, multiple Pareto
optimal solutions can be captured in a single run. This is the primary reason that makes GAs ideally suited for multi-
objective optimization.

But this ranking procedure normally consumes most of the running time of an evolutionary multi-objective
optimization technique [2]. Pareto ranking is O (kM?), where k is the number of objective functions and M is the
size of the population. Additionally, an extra mechanism is required to preserve diversity. This generally implies the
use of another process that is O (M?).

A recent study by Coello [14] proposed a micro-GA-based multi-objective optimization that uses an external file
of non-dominated vectors found in previous generations to accelerate the multi-objective optimization process. The
method implemented an additional elitism strategy and an adaptive grid-type technique[17] to accelerate the
convergence and to keep the diversity in the Pareto front. The Micro-GA algorithm is a specialized GA that works
with a very small population size of usually 3-6 and a reinitialization step. It has a well-known property of faster
convergence rates than other GAs. In the present research, some of the ideas of Coello's work have been adapted to a
single objective micro-GA algorithm along with the traditional Goldberg's Pareto ranking approach in order to
develop an efficient and robust design framework. The authors have modified a micro-GA algorithm originally
developed by Carroll [15].

The procedure is illustrated in Figure 2. First, a random population is generated and their objective values are
calculated as in the original micro-GA. Then, to ensure that all the non-dominated individuals have same level of
reproductive potential, Goldberg's non-dominated sorting procedure is implemented. Therefore, the fitness level of
each individual is determined based on the non-domination criterion rather than the objective function value itself.

Based on the rank of non-dominance, the population goes through the usual operations of micro-GA, namely
selection and crossover, and check to see if the nominal convergence among the population points has been reached.
If the problem is not converged, the algorithm returns to the function evaluation and non-dominance ranking steps
for the new generation, otherwise it continues on to the reinitialization step.

Two types of elitism are implemented in the reinitialization step. The first type carries on the best solutions from
the previous nominal convergence stage. This is the same elitism strategy used in the single objective micro-GA.
The second type involves the storing of non-dominated vectors produced from each cycle of micro-GA to an
external file and inserting some of the best solutions generated so far in the reinitialized population for the micro-
GA. This process is applied at regular intervals to improve the non-dominated solutions by getting closer to the true
Pareto front or by achieving a better distribution.
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Fig. 2 Flow Chart for Multiobjective GA

Representation scheme e  Structure = combination of 15 design variables
° K=
e L=15
e  Mapping from points in search space of the
problem to structures in the population = each
allele is normalized floating point presentation
between 0.0 and 1.0
Fitness cases Vector of two objective functions in fitness
Fitness Sonic boom ground signature (dp/p =(p-p0) / p) and
Drag coefficient
Parameters Population size M = 200, G=400
Termination criteria If it reaches maximum generation number.
Result designation

Table. 2 Tableau for multi disciplines of minimization of sonic boom and drag coefficient

5. RESULTS and DISCUSSION
Single-discipline optimization

[ used PGApack library to implement a typical serial GA and parallel GA using the island model. Since the same
library is used in both GAs, the GA used on each processor in the island model was identical to the one used in the
serial GA. The parallel GA was implemented at a Silicon Graphics workstation which has 32 processors. Since
Kriging-based approximate function evaluation was computationally efficient, running time was not much even for
the serial GA. Because of the little computational burden of the problem, the expected theoretical linear scalability
wasn’t exactly achieved in this problem. But still CPU time decreases as the number of processors increases.

Table. 1 shows the tendency that as population size increases, computation time increases as well. But the best
fitness values are not much different one another. So population size 500~1000 can be accepted as an optimal size
for this problem. I tried the calculations with population size 2000, but a small amount of improvement of fitness
values was achieved.




Fig. 3 shows the fitness history for the best and average. Due to the slow convergence rate at a later stage, faster
convergent modification is desirable. Gradient information can be effectively used on that purpose. Hybrid scheme
with gradient information-based local optimizer will be on the future work.

Population Number of processors CPU time (sec) Iteration number Best fitness

1 15.28
9.3 2780 4.553273x0.1
6.72

250

27.532
16.775 2530 4.551973x 0.1
11.923

500

56.00
32.778
23.0082
15.61

750

3450 4.551271x0.1

54.37
32.87
23.07
8 16.303

1000

2500 4.551376x 0.1

BIN|= O[R[N =N

Table 1. Tableau for comparison of CUP time corresponding to number of processors at several population size
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Fig. 3 Convergence history of best and Fig. 4 CPU time corresponding to several
average fitness processors at different population size

Best string with normalized design variables was {0.98235, 0.2397184, 0.6838408, 0.5419679, 0.993096,
0.3755819, 0.3325736, 0.1301846, 0.965388, 0.04221448, 0.335045, 0.9904073, 0.03419943, 0.4543103,
0.0004687757} and can be converted realistic values as {65.002, 0.658052, 36.9454, 6.00063, 1.24074, 2.5937,
3.44047, 3.63993, 4.56088, 3.35706, 2.56524, 3.98871, 3.52976, 3.89766, 3.30212}.

Multi-discipline optimization

Using a latin hypercube sampling technique, 140 sample points were selected, and their Cp and boom overpressure
(normalized difference of pressure from reference pressure) were computed using CFD analysis. A Kriging model
was then generated based on the sampled data and used for the function evaluation subroutines within the two types
of multi-object GA(MOGA) search, Micro-GA with the use of external file usage and NSGAII. The estimated
Pareto set from the Kriging-based MOGA search procedure is plotted as black in Fig. 5 and Pareto sets from
NSGALII is shown at Fig. 6. Both Pareto sets have similar distribution of optimal points. If I put more points in the
Pareto sets from micro-GA based GA, the fronts will be very similar each other.

In Fig. 5, the 140 samples of initial function evaluations done by CFD analysis are dotted as blue for comparison
purpose. CFD validation in red shows good agreement with the results from Kriging based approximation. If I
investigate the optimized best ground boom signature, the results demonstrate the fact that the boom design space




may have discontinuous or non-smooth regions and cause difficulties in generating accurate Kriging models.
However, the estimation produced some good design points in terms of both design criteria.

The resulting design configuration with optimized design variables are plotted along with the points on the Pareto
front. The wing sweep angle, leading edge extension, and dihedral angle increased while the wing position along the
fuselage and wing aspect ratio decreased. The nose section was deformed such that it decreased the initial shock
strength from the nose and generated an expansion region by inducing a bump-like shape at the lower fuselage
section. The effect of this expansion wave is to both weaken the initial shock and to prevent the first and second
shocks from coalescing.

CPU time corresponding to several types of the GAs for multi-objectives is evaluated and shown at table. 4. Even
if a small amount of increment of population size caused significant increase of computation time, I set a small
population size which I got through several experiments. With a bigger population size, the objective function
values in Pareto set didn’t change much. It is due to the increase of the computaion time consumed in ranking each
individuals by nondominancy criteria. After several experiments with different population size, the minimum
population size which has desirable optimal Pareto sets was set as 200. As we can expect, conventional non-
dominated sorting GA such as number 1 and number 3 in table.4 has long CPU time, while Micro-GA with the use
of external file has minimum CPU time in this comparison.

1. NSGAII 2. Micro-GA with external 3. Number 2 GA vyithout
use Micro-GA option
CPU time (sec)
Pop =200 65.94 25.28 59
Maximum gen = 400

Table. 4 Comparison of CPU time corresponding several GAs for multi-objective functions.
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6. CONCLUSIONS and FUTURE WORKS

In this work, two ways of improving efficiency of conventional GAs are investigated in a problem of design
optimization of low-boom supersonic jet. Fifteen design variables related to the shape of the fuselage and wing are
encoded as genes in each chromosome. For the alternative to the expensive high-fidelity CFD analysis, Kriging




approximation model is built by initial 140 CFD calculations of randomly generated points in design space. These
tools are directly connected with the several GAs in this work. The parallel GA is used for single discipline case and
micro-GA based GA is utilized for multi-discipline case. Both GAs show desirable speedups compared to the
original GAs. Application of the methods in this work to bigger problems will demonstrate obviously improved
performance. If I include other major disciplines such as structural stability, control, mission or propulsion, more
realistic optimization can be performed. Therefore, the suggested efficient GAs in this paper will be well suited to
find global optimum in this enlarged multi-objective design space.

Some researchers have suggested the use of a distributed GA in which Pareto dominance is applied only to
neighbors within a certain region [18]. Such kind of approach can handle the problems of big computation time of
ranking and possible lack of diversity previously mentioned simultaneously. The approach is efficient because
Pareto dominance is applied in parallel to small groups of individuals. Diversity does not require an extra
mechanism, since it naturally emerges from the distributed population. So parallelization of current non-dominated
sorting GAs for multi-objective optimization will be good future work to improve the efficiency of GAs.

As stated early, a slower convergence rate of GAs at a later stage can prevent the efficiency as well. A combination
of local optimizer which has more information such as gradients with the original GAs can improve the convergence
history.

Those are left for the future works as well.
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