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ABSTRACT 
 

This paper determines the plausibility of using genetic algorithms as a method for 
finding optimal solutions to a three dimensional packing problem.  Specifically, it 
will look at the problem of putting together a cube that has been partitioned into 
six pieces.  Search spaces consisting of the locations and orientations of the set of 
six pieces will be represented by strings of bits.  These search spaces will then be 
sifted through by genetic algorithms in order to attempt to put the cube back 
together from the six pieces.  Various different representations and methods will 
be tried, with their outcomes discussed. 

 
INTRODUCTION 
 

During late February of 2002, I had partitioned a 3x3x3 cube into six pieces, 
consisting of a 3-polycube, a 4-polycube, and four 5-polycubes.  After finding 
two solutions that were not trivially similar, I had passed this puzzle around, 
observing how people would approach the problem, and hoping to find a solution 
to the puzzle that I had yet to see before. 

 
Eventually, many frustrated people had suggested using a computer to obtain 
other possible solutions to the puzzle.  Seeing that writing a program that would 
exhaustively scan through all possible placements of the six pieces within a 
reasonable amount of time would have been a daunting task, I had turned to 
genetic algorithms to attempt to quickly search over the possible search space, in 
the hopes that an optimal solution will be found. 

 
BACKGROUND 
 

Genetic algorithms have been known to efficiently find good solutions in large 
search spaces.  With their basic ideas lifted from biology, genetic algorithms use 
duplication, crossover, and mutation techniques to generate populations of strings 
representing points in a search space.  Each string in a population is scored using 
a heuristic fitness function.  The next population is then generated using ideas 
such as survival of the fittest to attempt to produce a population with a better 
average fitness score, while maintaining a good variation among the strings at the 
same time. 
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FIGURE 01:  The Six Pieces Used to Construct a 3x3x3 Cube 
From Left to Right:  Piece I, Piece W, Piece S, Piece V, Piece U, and Piece L 

 
 
STATEMENT OF PROBLEM 
 

The specific three dimensional packing problem we will explore consists of the 
six polycube puzzle pieces shown in Figure 01.  To refer to these pieces 
individually, each one has been given a name that refers to a Roman alphabet it 
closely resembles.  The names are provided in the caption to the figure. 
 
Restricting the orientation of the puzzle pieces to 900 rotations along the three 
primary axes and assigning one of the cubes in each of the polycube pieces to be 
the key cube in the piece, a total of 24 orientations with respect to the key cube 
can be obtained for each piece.  A packing will then be defined as the assignment 
of an orientation for each piece, as well as a location for the key cube of each 
piece.  The locations for the key cubes will be restricted to integer coordinates.  
The locations can either be defined as absolute coordinates, or as coordinates 
relative to a piece whose absolute coordinates have already been determined by 
the coordinates of itself and/or the previously placed pieces. 
 
A valid packing is defined as a packing that can actually be modelled by the 
puzzle pieces, ie. a packing with no pieces overlapping each other.  If the packing 
can be completely enclosed by a cube whose side length is less than or equal to 
the side length of the enclosing cube of any other packing, then the packing is 
called an optimal packing. 
 
For example, since the six puzzle pieces in Figure 01 are a partition of the 3x3x3 
cube, they can obviously be packed in such a way that the enclosing cube has side 
length 3.  Obviously, since the total volume of the six pieces is 27, there can be no 
other packing with an enclosing cube of shorter length.  Therefore, the packing of 
the pieces into a 3x3x3 cube is an optimal packing. 
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So far, I have discovered two optimal packings that are not trivially similar.  They 
are illustrated in Figure 02.  Due to chirality and rotational symmetry 
considerations, each of the two solutions actually represents 48 different but 
trivially similar solutions.  Since the solution on the left utilizes Piece I in the 
center of the cube, while the solution on the right has Piece I on the corner of the 
cube, the solution to the left will be referred to as the Piece I in Center solution, 
and the other as the Piece I in Corner solution. 
 

 
 

FIGURE 02:  Two Distinct Optimal Solutions of the Three Dimensional Packing Problem 
Piece I in Center solution on left, Piece I in Corner solution on right 

 
It can be proven that the Piece I in Center solution, along with its 47 other related 
solutions, are the only possible solutions with Piece I in the center.  Although the 
proof is not difficult, it is irrelevant to the main discussion of this paper, and is 
therefore left to the reader as an interesting exercise.  However, it has not been 
proven whether or not the Piece I in Corner solution, along with its 47 trivially 
similar solutions, are the only solutions with Piece I not in the center. 

 
A REDUCED VERSION OF THE PROBLEM:  THE TWO DIMENSIONAL CASE 
 

In order to test the feasibility of using genetic algorithms to solve this three 
dimensional packing problem, a greatly simplified two dimensional version of the 
problem was first formed.  In this case, a 3x3 square is divided into three identical 
rectangular strips, each of size 1x3.  Restricting the definitions of packing, valid 
packing, and optimal packing to two dimensions, one can easily see that an 
optimal packing of these three strips would have an enclosing square of length 3. 
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REPRESENTATION IN THE TWO DIMENSIONAL CASE 
 

Defining a key square in each of the triomino pieces, there are a total of four 
different orientations for the triomino to assume with respect to its key square.  
We can interpret a number in the set {0, 1, 2, 3} as a specific orientation by 
assigning each number in the set to one of the four orientations. 
 
Using a square with coordinates in {0, 1, 2} for both dimensions, the possible 
values of absolute coordinates of the first piece to be placed will be from {0, 1, 2} 
for both coordinates.  If each subsequent piece is then placed with coordinates 
relative to the previous piece’s key square, then a coordinate for any subsequent 
piece will be taken from the set { -2, -1, 0, 1, 2}.  The following table summarizes 
the bits used in the representation string. 

 
 First Piece    

 Absolute X-Coord Absolute Y-Coord Orientation    

Range 0 to 2 0 to 2 0 to 3    

Number of Bits 2 2 2    

       

 Second Piece Third Piece 

 Relative X-Coord Relative Y-Coord Orientation Relative X-Coord Relative Y-Coord Orientation 

Range -2 to 2 -2 to 2 0 to 3 -2 to 2 -2 to 2 0 to 3 

Number of Bits 3 3 2 3 3 2 

 
FIGURE 03:  Representation as Binary String in Two Dimensional Case 

 
Obviously, the search space will be of size 222, or 4096, since the representation 
string is 22 bits long. 

 
FITNESS IN THE TWO DIMENSIONAL CASE 
 

The fitness function used for this algorithm was relatively simple.  Since there are 
bit strings which represent values that are out of range (such as the bit string 
“110” for the relative x-coordinate of the second piece), these strings are docked 
with a huge penalty, chosen as 10,000,000 per invalid value in this case.  Any 
string that represents a packing is then penalized for any part of a piece that 
stretched beyond the boundaries of the enclosing square of the optimal packing, 
with penalty:  

p = m * ( (∆x)2 + (∆y)2 ) 
 
where m is the number of piece overlaps at a particular location outside the 
optimal enclosing square, ∆x is the different in x-coordinates of that particular 
location from the closest edge of the optimal enclosing square, and ∆y is defined 
similarly. 
 
Note that the fitness function will not lie strictly in the interval [0, 1], as is 
sometimes the case for genetic algorithms.  However, this restriction is 
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unnecessary since the software used does not rely on the fitness function lying in 
the unit interval. 

 
PROGRAM OVERVIEW AND OUTCOME IN THE TWO DIMENSIONAL CASE 
 

The genetic algorithm tableau for this reduced problem is shown in Figure 04. 
 
Objective: To find an optimal packing for the reduced two dimensional puzzle 

case. 
Representation 
Scheme: 

Structure:  9 variables 
K = {0, 1} (binary)  L = 22 

Fitness Cases: The packing of the three triomino pieces with respect to the optimal 
enclosing square. 

Fitness: Function as described previously. 
Parameters: M = 500  G = 5000 

pc = .6  pm = .001 
Termination 
Criteria: 

When fitness equals 0 or when all generations have been calculated. 

Result 
Designation: 

Structure with fitness equal to 0. 

 
FIGURE 04:  Tableau for the Two Dimensional Packing Problem 

 
There was no specific reason to choose these values for parameters M, G, pc, and 
pm, other than the fact that they were used as default values before. 
 
With this setup, the algorithm was able to produce an optimal packing by 
Generation 48.  The success of this program leads us to believe that applying 
genetic algorithms to the three dimensional case seems plausible. 

 
REPRESENTATION IN THE THREE DIMENSIONAL CASE 
 

As mentioned before, a key cube in each of the polycube pieces will be defined, 
resulting in a total of 24 different orientations for the puzzle piece with respect to 
its key cube.  We map these orientations to an integer from 0 to 23 inclusive. 
 
Using a cube with coordinates in {0, 1, 2} in all three dimensions, the first puzzle 
piece can now be placed with absolute coordinates obtained from the set {0, 1, 2}.  
Subsequent pieces are placed relative to the previous piece’s key cube, resulting 
in every subsequent piece’s coordinate ranging from { -2, -1, 0, 1, 2}, as before.  
The table in Figure 05 summarizes the binary string used in the three dimensional 
case. 
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 First Piece Second Piece 

 Abs X-Coord Abs Y-Coord Abs Z-Coord Orientation Rel X-Coord Rel Y-Coord Rel Z-Coord Orientation 
Range 0 to 2 0 to 2 0 to 2 0 to 23 -2 to 2 -2 to 2 -2 to 2 0 to 23 

Number of Bits 2 2 2 5 3 3 3 5 

         
 Third Piece Fourth Piece 

 Rel X-Coord Rel Y-Coord Rel Z-Coord Orientation Rel X-Coord Rel Y-Coord Rel Z-Coord Orientation 

Range -2 to 2 -2 to 2 -2 to 2 0 to 23 -2 to 2 -2 to 2 -2 to 2 0 to 23 
Number of Bits 3 3 3 5 3 3 3 5 

         

 Fifth Piece Sixth Piece 
 Rel X-Coord Rel Y-Coord Rel Z-Coord Orientation Rel X-Coord Rel Y-Coord Rel Z-Coord Orientation 

Range -2 to 2 -2 to 2 -2 to 2 0 to 23 -2 to 2 -2 to 2 -2 to 2 0 to 23 

Number of Bits 3 3 3 5 3 3 3 5 

 
FIGURE 05:  Representation as Binary String in Three Dimensional Case 

 
This time, the binary representation string is 81 bits long, giving a huge search 
space of 281.  Obviously, an exhaustive search of this space using current 
computing facilities would not be able to complete such a search in a reasonable 
amount of time.  This is why genetic algorithms will be used to attempt to solve 
this problem. 

 
FITNESS IN THE THREE DIMENSIONAL CASE 
 

The fitness function used for this algorithm parallels that of the two dimensional 
case.  Again, bit strings that do not represent a packing of any kind due to range 
discrepancies will be docked with a huge penalty.  Strings that represent packings 
are then penalized for pieces that protrude outside the boundaries of the enclosing 
cube of the optimal packing, with penalty: 
 

p = m * ( (∆x)2 + (∆y)2+ (∆z)2 ) 
 
where m is the number of piece overlaps at a particular location outside the 
optimal enclosing cube, ∆x is the different in x-coordinates of that particular 
location from the closest edge of the optimal enclosing square, and ∆y and ∆z are 
defined similarly. 
 
Again, the fitness function will not lie strictly on the interval [0, 1], but as 
mentioned before, this is not a necessary restriction. 

 
PROGRAM OVERVIEW AND OUTCOME IN THE THREE DIMENSIONAL CASE 
 

The genetic algorithm tableau for the three dimensional packing problem is 
shown in Figure 06. 
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Objective: To find an optimal packing for the three dimensional packing 

problem. 
Representation 
Scheme: 

Structure:  24 variables 
K = {0, 1} (binary)  L = 81 

Fitness Cases: The packing of the six polycube pieces with respect to the optimal 
enclosing cube. 

Fitness: Function as described previously. 
Parameters: M = 500  G = 25000 

pc = .6  pm = .001 
Termination 
Criteria: 

When fitness equals 0 or when all generations have been calculated. 

Result 
Designation: 

Structure with fitness equal to 0. 

 
FIGURE 06:  Tableau for the Two Dimensional Packing Problem 

 
Although the parameter values for M, pc, and pm, shown in the tableau above, 
were chosen simply because they worked in the two dimensional case, other 
parameter values were also tried, with pc ranging from .6 to .95, pm from .0001 to 
.1, and M ranging up to 5000.  G was increased to 25000 since no optimal 
packing solution presented itself within the first 5000 generations, as before. 
 
However, using this structure and binary representation, I was unable to obtain an 
optimal solution, ie. a string with fitness value 0.  The output of one program was 
able to produce a packing with fitness value 4, in which Piece I and Piece W both 
had one cube projecting out of the enclosing cube of the optimal packing. 
 

 
 

FIGURE 07:  A Non-Optimal Valid Packing with Fitness 4 
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SPECULATIONS FOR REASONS OF FAILURE 
 

It seems as if the main problem with solving this three dimensional packing 
problem with genetic algorithms is that there are too many local minima in the 
fitness function, while the global minimum may be nowhere near a local 
minimum.  For example, in the optimal packings shown in the solutions of Figure 
02, the relationship between Piece W and Piece U are the same.  This relationship 
is shown in Figure 08.  Although this relationship may not be necessary, since it 
has not been proven that no other optimal packing exist aside from those of Figure 
02 and trivially similar ones, we may conjecture that this relationship is necessary 
due to the lack of evidence otherwise. 
 

 
 

FIGURE 08:  The Relationship Between Piece W and Piece U 
 

When observing the fitness values of the best solution per generation obtained by 
the algorithm, one notices that during the first few generations, the best fitness 
value jumps down drastically.  This shows how the invalid representations are 
first weeded out.  Eventually, the valid representations get stuck in local minima, 
such as the one shown in Figure 07, and small values of pm do not give the 
population enough variability to jump out of the rut.  Of course, with large values 
of pm, the population never hits a satisfactorily low fitness value in the first place, 
so there is a tradeoff in benefits and deficits when choosing a value of pm. 
 
However, once the population gets stuck at a local minimum, most of the 
population starts adopting the traits of the string with the best fitness value, due to 
crossover.  Eventually, the relationships between pieces determined by the string 
with the best fitness value dominate the population, and if that local minimum did 
not have a relationship between Pieces W and U as seen in Figure 08, the 
algorithm may never terminate with a fitness value of 0. 
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REVISIONS TO THE ALGORITHM 
 

Numerous other revisions to the genetic algorithm were eventually tried.  For 
instance, a different representation that used absolute coordinates for the key 
cubes of each of the pieces was implemented, which resulted in a reduced search 
space of 266.  The relationships between pieces were also not as rigid as before, 
since the piece locations were not defined relatively anymore. 
 
Another revision, in which a large penalty was given to large pieces that 
protruded from the optimal enclosing cube, was also implemented.  The idea 
behind this revision was that if a large piece would not fit in the optimum 
enclosing cube at first, it was highly unlikely that it would ever fit into the optimal 
enclosing cube. 
 
A revision in which Piece I was fixed in the center of the cube was also tried, in 
order to attempt to reduce the size of the search space.  Optimal packings obtained 
with this revision would, of course, be trivially similar to the Piece I in Center 
solution as shown in Figure 02. 
 
Finally, a revision that simply fixed Pieces I, W, and S into part of an optimal 
packing was tried, and, when run with all the other revisions, the genetic 
algorithm was able to find an optimal packing in this reduced search space. 
 

 
 

FIGURE 09:  Fixing Pieces I, S, and W Into Position 
 
FUTURE WORK 
 

Although this paper specifically focused on the six polycube puzzle piece 
example and its optimal packings into a 3x3x3 cube, there are many other 
different examples of three dimensional packing problems in which similar 
genetic algorithms may be applied.  For example, the luggage packing problem, in 
which small rectangular parallelepipeds, representing travel items, are packed into 
a larger rectangular parallelepiped, representing the luggage itself.  Specific 
versions of the luggage packing problem are well-known in the literature, such as 
the Slothouber-Graatsma Puzzle, a partition of the 3x3x3 cube into nine 
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rectangular parallelepipeds, and the Conway Puzzle, which partitions the 5x5x5 
cube into eighteen rectangular parallelepipeds. 
 
It is also noted that although genetic algorithms may not be able to find the 
optimal solution to a hard three dimensional packing problem, such a program 
may be able to find packings that are near optimal.  It may be interesting to see 
how such algorithms can be used efficiently in real-life packing problems in 
which an optimal solution is not required. 
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