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Abstract

This paper outlines the outstanding problem of performance extraction from an audio signal of violin
performance. It describes some preliminary programming runs that solve components of the larger prob-
lem and suggest that genetic programming is a viable aproach to solving the larger problem. Techniques
for dealing with fitness cases and evaluation of time based signals using GP are presented.

1 Introduction and Overview

Ongoing work in the field of music acoustics has been focused on creating computation physical models of
traditional musical instruments. The two primary uses of these models are in simulation and sound synthesis.
As a simulation tool the models provide a base for further exploration and understanding of the dynamics of
the musical instrument systems in question. As a synthesis tool a model’s output may be and often is used
as sound source material by composers and musicians in hardware and software music systems.

The missing piece between those two areas remains the problem of performance extraction. The problem
of extracting control parameters for such a physical model from a real performance remains largely unsolved.
Having the ability to intuit these parameters from a performance has been often persued goal in the field
of computer music for decades. For pedagogical resasons the preformance transcription possibilities are
enticing, but the application we are more focused on is obtaining a source of more true to reality parameter
inputs for the physical models. These realistic inputs would be of great assistance in refining and validating
the models as well as expanding the quality of sound synthesis achieved using them.

This paper presents the results of some first attempts at using genetic programming to evlolve programs
that analyze audio signals and provide as outputs the necessary parameters to drive the digital waveguide
model of a bowed violin.

Section 2 provides some background on other approaches to solving the problem performance extraction
problem, other published uses of GP in processing time domain signal, and a brief overview of the function
of the violin model in use in this study.

2 Background

2.1 Performance Extraction / Music Transcription

The problem of transcribing music from an acoustic signal into human readable musical scores has been
extensively studied but remains largely unsolved except in very simple cases. In this project the goal is not
to transcribe to human readable form which requires higher level music knowledge, but rather to find the



control parameters for a physical simulation of the instrument. When discovered these parameters can be
considered a form of extreme data compression as the entropy in these control signals will be significantly
lower than that of the original. The MPEG-4[SAOL] standard provides facility for this type of representation,
but not yet the means to translate signals into this form.

Past efforts at musical transcription have made use of fourier transform representations, sinusiodal model
representations, and/or statistical representations. Many are formulated as pitch detection problems in
the presence of noise or competing signals. More recent work tends to draw from many of these domains
concurrently and are starting to exploit the kinds of mathematical / computational models for the sources
as we are using in this project.[Martin, 1996, Scheirer, 1995, Chafe]

2.2 Time domain signal processing using GP

Esparcia-Alcazar and Sharman|[Esparcia-Alcazar|report some of the most promising results using GP for
digital signal processing problems. In their work they have solved several channel equalization and interfer-
ence removal problems using a combination of GP and simulated annealing. Another insteresting approach
to time based signal processing using GP is the R-STROGANOFF [Iba] system which also uses GP to
evolve a structure and a neural network style error propagation method to adjust weights at the nodes.
These nodes are then used as the coefficients of polynomial functions to create the output. The drawback
of this system over the above the Esparcia-Alcazar method seems to be in inplementation complexity, as
the R-STROGANOFF requires that the state of the last output of any node in the tree be accessible as an
argument to any other node in the tree.

Garcia|Garcialreports success in using a genetic algorithm based pitch detection method to detect multiple
simultaneous sounding pitches. No indication is given as to his treatment in time of the material.

2.3 The Violin Model

The digital waveguide bowed violin model uses a combination of three basic elements. Digital delay lines
model wave propagation (velocity waves in this case) from the wave equation. Digital filters are used to
model absorbtion and transmission at the bridge as well as the radiation and resonance properties of the
body of the instrument. A nonlinear friction function is used to model the friction in the interaction between
the bow and the string. The inputs to the nonlinear function are the bow force, differential velocity (between
the string and the bow) and string slope.

Violinists apply rosin to the horsehair bow to give it some stickiness. When the player bows the instrument
the string sticks to the bow for most of one period of the signal and then suddenly slips and initiates a flyback
motion to return towards its resting position (where the potential energy and string tension are minimized)
before sticking to the bow again and repeating the process. This stick slip process sets up a Helmholtz
motion on the string as a velocity corner travels from the bow up to the rigid termination at the nut end of
the string, reflects, and returns past the bow again to reflect at the bridge end before returning to the point
of origin.

This ideal helmholtz motion only occurs in a certain region of the parameter space characterized by bow
velocity accross the string, bow force down onto the string, bow position along the string, and the pitch of
the sounding note. Figure 1 shows examples of the string displacement in the model under several different
conditions. Waveform a) shows good stable helmholtz motion with one slip per period, waveform b) shows
a multiple slip which can be indicative of insufficient bow force, and waveform c) shows the chaotic motion
that can result for instance when the bow force is too strong.

We have implemented detectors inside the model to report whether it is operating inside this region or
not and to estimate the sounding pitch based on the number of samples between successive flyback events
for use as feedback to the GP program.
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Figure 1: Helmholtz String Displacement. a) Ideal motion. b) multiple slips. c¢) chaotic motion

3 Methods

The study was implemented using the lilGP[liiGP] software for the genetic programming support and using

a C++ violin model[Serafin] implemented in the Synthesis ToolKit[STK] and based on theory published

sumarized in [Smith] which encapsulates a great deal of knowledge from the musical acoustics field. The

simulations were run on single processor 1.5GHz athlon linux workstation and on an apple G4 powerbook

under Macintosh OS X. A typical run of the evolution took between eight and twelve hours to converge.
Table 1 outlines the parameters fore a typical GP run on the violin problem.

3.1 Wrapper, Environment, and Pre-Processing of Fitness Cases

One of the biggest challenges in the work was coming up with a wrapper environment to present the time
domain signal to the GP program in a useful but computationaly efficient way. A major design goal was to
present both time domain and frequency domain representations of then signal to the program. As a result a
block oriented approach was adopted for the sake of simplicity in generating and maintaining the frequency
domain representations of the signal. Alternatives to the block scheme considered were a sample by sample
approach on the one hand and a complete random access approach on the other.

The sample by sample approach would be preferable because a single time sample and the corresponding
FFT of the signal centered at that sample could be presented at the input of the GP program for every
iteration. Due to computational constraints this approach is not feasible. The computational load in this
case is greater than the block method by the block size (1024 times greater in this case).

At the other end of the spectrum of design choices would be one that provides the GP program random
access to the time and frequency data for the input and lets the program use it freely. The first problem with
this approach is that of correlating the time and frequency inputs in a meaningful way. A second problem
with such an approach is how to deal with input signals of varying lengnths. The third problem is again one
of computational limitations as the size of the search space for this case is enormous. The population size
and fitness evaluation costs would both be extremely large to solve this problem.

The block method used in this study takes a logical middle ground between these two extremes by
presenting a full block of the time domain signal (1024 samples in this case) and the lower half of the
frequency magnitude block. Only half of the FFT output is required as the FFT magnitude of any real
signal is even symmetric and the phase component is odd symmetric. A variant of the block approach is
uses blocks with an overlap factor of 50% in an effort to improve time resolution. In practice in a limited
number of runs this approach did not seem to help, but rather complicated the task of the program.

In addition to the block by block FFT analyses, several other signal metrics are computed at the outset
of a run for each of the .wAv file fitness cases. These metrics included a pitch estimate, the autocorrelation
of the block, the energy and the bias of the signal. In this case the pitch detection algorithm used was the



Table 1: Tableau for a typical run of the gpviolin.

Objective:

Output FREQ, BOWVEL, BOWFORCE parameters for the digital
waveguide violin physical model such that the error between the
model output and the fitness case audio signal is minimized.

Terminal Set:

ADF0: ARGO ARG1

RPB: TWO_PI, ERC_F, ERC_ I, (wrapper inputs:) SAMPLE _IDX,
PEAK1, PEAK2, PEAK3, FC_PITCH _EST, (model feedback termi-
nals:) LAST _OUT, HELM _STAT, HELM _FREQ_EST

Function Set:

ADFO: *, /, +, -, SIN, COS, RLOG, REXP

RPB: * /, +, -, SIN, COS, RLOG, REXP, INPUT TIME GET,
INPUT _FREQ_MAG_GET, INPUT_FREQ_PHASE GET, DE-
LAY INTERNAL, DELAY _GET, DELAY _SET, ADF(O

Fitness cases:

A combination of of short (1-2 second) audio clips of bach solo
violin partitas, and violin notes generated by the physical model.

Raw fitness:

The total sum of weighted sums of several fitness measures for each
frame analyzed. The fitness measures are MSE between model out-
put and reference fitness case for magnitude frequency spectrum,
autocorrelation function and time domain signal, plus 1.0 - mean
output of the helmholtz motion detector.

Standardized fitness:

Raw fitness / number of fitness cases

Hits:

Number of frames who’s individual raw fitness is < 0.01

Wrapper: Preprocessing of fitness cases and application of generated param-
eters to a run of the violin model. (See 3.1 for details)

Parameters: M = 500, G = 200, NUM_FITNESS CASES = 4,
FRAMES TO EVALUATE = 10, RANDOM FRAME START =
1, SAMPLE_ RATE = 44100, DSP_BUFFER_SIZE = 1024,
DSP_ANALYSIS SIZE = 4096, FITNESS VALUE CUTOFF =
1024.0

Success predicate:

Hits = NUM__FITNESS_ CASES * FRAMES_TO_EVALUATE




Harmonic Product Spectrum (HPS)[de la Cuadra].

3.2 Delay functions

Digital delay elements are a crucial aspect of this type of physical simulation. The structure of this GP setup
is such that in the course of evaluating the program’s fitness on a given sample the GP program is executed
once for each sample. Given that the model we are deriving parameters for contains delay elements and has
a response over time and that we are trying to model a highly correlated signal, giving the GP program
mechanisms to maintain internal state over the course of these per sample runs is essential. This need for
state is addressed in two ways, first the delay element functions that were developed for this purpose will be
described, and next the feedback terminals from the model which solve the state problem in a complementary
way will be discussed.

Three types of delay functions were created, DELAY INTERNAL holds its value only until the next time
it is read, DELAY always serves up the value that was stored in it on the previous run of the tree, and DLINE
allows values to be get and set at any point with it, these values are shifted over one index in the array
after each execution of the tree. The internal delay serves a slighly different purpose than the other two,
its value was also carried over from one run to the next, but was more often used as a method of passing
state between the three result producing branches of the tree. DELAY INTERNAL does not have separate
get and set functions as the other two delay types do, but simply always takes an argument and returns the
value that it was last called with. This internal delay was also effective in other configurations which allowed
iteration. In conventional signal processing terms DLINE is a single delay line of a fixed length with possible
taps at every sample while the DELAY element was like a bank of single sample delay elements.

The author was able to evolve a digital waveguide resonator program in GP using only two DELAY
elements, ephemeral random floating point constants and the +,-,* functions. This is as expected as the
digital waveguide resonator can be simply modeled as two single sample delay elements recursively connected
which cross feed each other through summing connections and two gain multipliers.

This set of elements is very simple implement but seems to serve the same function as much more complex
schemes that keep track of node outputs throughout the program tree and permit arbitrary access to their
last ouputs as described in [Iba]. The function set described is believed to allow access to the entire search
space of parameter estimation for sample iterative processing as in this study. Iteration and conditional
execution were tried on some runs but did not yield significant improvement on those runs.

3.3 Feedback Terminals

A very important set of terminals provided to the program were the feedback outputs from within the violin
model. In addition to providing the model’s previous output LAST _OUT as a terminal, values of the two
detectors internal to the model, HELM STATUS and HELM FREQ_EST were provided.

4 Results

Graphical representations are presented for two individuals selected out of different GP runs. The output of
the individual in Figure 2 is from the best of run individual at generation 15 in a population of 300 given
three fitness cases. Two of these fitness cases were single note excerpts of a real violin recording, and the
third was the output of a note generated by the same violin model. The experimental output (top pair)
and the fitness case (bottom pair) can be seen to be very similar. The waveforms exhibit very similar shape
except for the corner on the waveform which appears more in phase with the fundamental frequency in the
recording than in the model output. The spectrogram excerpt at the right which shows frequency versus
time with frequency bands of higher amplitude shaded darker than bands with less amplitude. The patterns
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Figure 2: Waveform and Spectrogram of fit individual. Top: Model output, Bottom: Fitness case in question.

are very similar, showing that the experimental output matched the pitch and spectral content very closely.
The spectral energy in the model output extends up much higher than in the case of the recording but
this is due to the reverberation in the room and recording, as well as probable differences in the body of
the recorded instrument versus that modeled in the simulation. This individual had a raw fitness of 0.258,
standardized fitness of 0.086, and had scored 9 of a possible 63 hits (21 frames per fitness case were evaluate
in this case).

Figure 3 show the three parameter outputs over time for the same individual and fitness case. In this
case the program used the pitch detector input terminal directly as its frequency output parameter, it used
derived the force from a combination of the pitch detector output and the phase response array, and the
velocity was a large complicated function including all of the feedback and fitness case data terminals.

Figure 4shows the time and frequency domain outputs for a very unfit individual with maximum raw
fitness and standardized fitness of 0.993. As can be seen there is much more spectral energy where there
should not be. There are also abrupt discontinuities in the force and velocity outputs which as causing
audible noise and contributing to this spread spectrum energy. In this case the frequency output was one of
the interger ephemeral random constants (220) which is totally meaningless as the the expected values are
in radians from 0.0 to 7 corresponsing to physical frequencies of 0Hz to 22050Hz. In practice the model only
produces any meaningful output in the range of 50Hz to ~“2kHz so values outside this range are cut off at
those boundaries. This cutoff was helpful in avoiding numerically problematic situations as when operated
with extreme parameters it tended to produce Inf and NaN outputs and complicate the fitness evaluation.

The code that follows is the output of another unrelated best of run individual from a population of 800



Parameter output of GP run for best of run on real signal 510Hz
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Figure 3: Parameters ouput for fit individual
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Figure 4: Waveform and spectrogram of highly unfit individual. Top: Model output, Bottom: Fitness case
in question.



Parameter output of GP run for highly unfit individual on real signal 510Hz
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Figure 5: Parameter outputs for highly unfit individual.

where 8 fitness cases were provided, two of which were the real violin recordings. 8 frames per fitness case
were evaluated in the fitness evaluation in this case:

FREQ: FC_PITCH_EST

FORCE: (input_time_get (/ (input_freq_mag_get FC_PITCH_EST) (* (/
(sin (% FC_PITCH_EST LAST_0UT)) (- HELM_STAT FC_PITCH_EST)) (sin
(sin (sin (sin (sin (sin (sin (sin (sin (sin HELM_STAT)))))))))))))
VEL: (sin (sin (sin (sin (sin (sin (sin (sin (sin
FC_PITCH_EST)))))))))

ADFO: (rlog (/ (- (+ 967 ARG1) (sin ARG1)) (sin (+ (exp (rlog (sin
(exp (cos (/ (¥ (* 0.74095 (cos ARG1)) ARGO) (sin ARG1))))))) (cos
(sin (rlog (/ (exp ARGO) (* ARGO (sin (- (+ 967 ARG1) (sin (exp (sin
(cos (¥ (* ARGl TWO_PI) (rlog 0.55129)))))))))))))))))

This individual was chosen for it’s small code size, but is interesting because the force branch is looking up
the spectral peak corresponding to the the fitness case pitch estimate and using it in a calculation. The ADF
goes unused in this case.

Discussion of Results

These results demonstrate the ability of GP runs to accurately set frequency, bow velocity and bow force
parameters of the violin in response to audio signals generated both from the model itself and from real world
performance of a violin. Clearly the setting of frequency is insignificant given that a reasonably accurate pitch
detection of the signal is provided as an input. Significant effort was put into trying to evolve programs that
would correctly set pitch without being given this input, but it became clear that, while certainly possible,
the range of fitness cases, complexity of programs, and sheer volume of computation required to achieve this
result to a satisfactory level (ie. more accurate than the HPS pitch detector I had at my disposal) would
have been impossible given the time constraints of the project. In fact on some of the runs made with a
larger number of fitness cases and changes in pitch the frequency branch was not always simply the pitch
detector output, but contained some more subtle calculation.



Having chosen to give the output of the pitch detector directly as a terminal seems reasonable given that
this would almost certainly be an input to a practically used performance extraction system. The choice was
made instead to focus on the setting of the combination of bow velocity and bow force within the correct
playability region. This is more useful because the combionations of these parameters are not a known
quantity with known algorithms. The two dimensional playability space of the model has a generally known
shape[Serafin et al, 1999] which has been calculated by exhaustive simulation, but the region changes for
every pitch on the instrument. This is due to many factors including the coupling of the strings through
the bridge to the body resonator who’s resonant peaks remain fixed despite playing different fundamental
frequencies on the instrument.

One significant problem that is not resolved yet in that the human ear is extremely sensitive to the
smallest perturbations or discontinuities in an audio signal. As a result the fitness cases must somehow take
this into account which they don’t at this time. This can be seen in the output in Figure 2 which contains
some periodic modulation at a rate many times lower than the sounding pitch of the note and which hardly
shows up in the fitness measures, but is not there in the fitness case sample. It is not surpising that the
amplitude modulation distortion is not identified by the current fitness measures in part due to the blocking
chose. That is less than single period of the low frequency modulation might occur over the course of a block
of samples, but that distortion is clearly audible to the listener.

There is a visible artifact in the parameter output of Figure 3in the second half of the sample which is
due the the limited number of frames that can be processed for each fitness case on each individual. On
that run the frames computed for fitness all came at the beginning after one frame of warmup to let the
model stabilize, so the region of the sample where the anomaly is was never tested during evolution. Some
late runs used a randomized starting frame within the fitness case sample, but no conclusive results were
available at the time of writing. Ideally we could randomly sample within the fitness case to test fitness, but
this is impossible due to the nature of the model which (like the real instrument) stores energy over a short
period of time and takes in the area of ten to twenty periods to stabilize its output.

5 Conclusion

This paper has demonstrated some successful small first steps towards building a performance extraction
system for the digital waveguide violin model. The variety and number of fitness cases as well as well the
population sizes used in this study are clealy far too small to be able to solve the performance extraction
problem fully, indeed most of the runs in the study failed to ever converge completely. This is in part due
to the inherent nature of the problem whereby we don’t know if the model at hand is capable of exactly
reproducing the real world inputs. However for the very focused subset of the larger parameter space, the
velocity and force parameter pair for single note samples in a restricted frequency range, the model was
successful. Best of generation individuals were always playing the model in the desired playability region
and seemed to a certain degree to be exploiting the more subtle choice of these parameters within that
playability region to closely approximate the timbral characteristics of the reference samples.

6 Future Work

There are many future directions this work will need to take on the road to a complete solution. More fitness
cases which are both more widely varied and carefully tuned will be needed. To succeed on longer examples
a scheme to provide feedback on several timescales at once is necessary. This would address problems such
as the low frequency amplitude modulation mentioned above. The model will have to be complemented
with an adjustable room model to compensate for the reverberation and recording style used in the input
signal. The computational cost of performing thorough fitness testing for very large populations in this type



of problem is still prohibitive, but becoming less so rapidly.
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