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Abstract:

This paper describes the development of Teleo-Reactive (T-R) block-stacking programs using genetic
programming. T-R programs are a class of programs that are also a specific Kedtetision lists, and are useful
for programming tasks for autonomous agents. Using only the predic&asatest to see if one block is atop
another, anélove, moving one block to another's colungenetic programming was able to evolve programs
capable of stacking 4 blocks in a predefined order for as many as 500 different randomly generated fithess cases.
Programs for 5 and 6 block situations were also successfully developed, but attempts to create programs satisfying
the desireable regression property were largely unsuccessful. Rewarding programs based on performing the least
number of moves after perfectly stacking blocks in all fithess cases also had limited success, yielding an individual
likely generated by random chance and not by evolution.

Introduction:

Teleo-Reactive (T-R) programs are a special forteadcision lists, and are an important part of control
theory. In essence, a set of conditions are continuously evaluated, and actions are performed based on these,
eventually leading to the completion of a particular goal. One particular way to view T-R programs is as a highly
structured LISP expression of the following general form:

(if some condition take action 1 else
(if another condition take action 2 else

(if T take action n else do nothing))...)).

When the top action has been executed, the program'’s execution is considered complete, with the expectation that
the desired goal has been reached. The benefit of this control structure is that due to the constant evaluation, a
programmer need not worry about being needing to return from a subroutine in the event that conditions change;
instead, since the entire expression tree is being constantly reevaluated, he or she need only specify associated
conditions and actions and the hierarchy regarding them. One particularly desirable property that T-R programs
may have is that afegression property, or after an action in the tree is performed, the condition of statement

higherin the tree becomes true, essentially allowing execution to climb the tree constantly until the program
terminates. This property has the advantage that the execution of the programs is well defined, and the strategy of
the program is easily understood from examining it (Nilsson 2001).

T-R programs in general have a wide variety of applications, although use of them in practice has been
limited by the general novelty of this type of program. Most automated tasks, such as those performed by agents in
a changing environment, can be encoded in terms of T-R programs. Hence, this class of programs is of interest for
many real-world robotics applications. However, for the purposes of research one particular problem that lends
itself to the application of T-R programs is block-stacking. In a blocks world, there are a certain number of blocks



which can be placed on ainfinitely large table or arbitrarily stacked on each other. The goal is then to stack these
blocksin aparticular order, using an On predicate of whether or not a block is on another block or the table, e.g. if
On(A,B) evaluates to true, then block A ison block B. In order to realize the goal, the program can execute aMove
command, e.g. Move(A,B) would place block A upon block B (or the top of the column B isin if there are blocks
on B).

In order to develop T-R programs, either a programmer must write one or a computer can learn oneviaa
variety of learning methods. Genetic programming (GP) is a particularly interesting and appealing approach due to
its ahility to evaluate alarge and diverse set of candidate programsin an efficient and effective manner. The
learning of a program to stack blocks via GP has been done before, such asin work by Koza, 1992. In his book
Genetic Programming, he describes the evolution of a program to stack blocks using higher-level predicates known
asindexicals, or predicates which indicate which block should be placed next in the column being formed. Also,
the place to stack the blocks was predefined while in the present work the program is free to stack the blocksin
whichever column it finds most appropriate, making the task slightly more difficult. While using GP to learn the
task with indexicals as predicates turns out to be very effective, learning the same task using only the On predicate
and T-R program structure is somewhat more difficult. Although learning with these lower order predicates is
more difficult, the resulting programs operate at alevel that is more similar to what an agentmay perceivein the
environment in a sensory context and hence may transl ate better to real-world applications.

Further complicating the problem isthe large size of the problem search space, which is also another
major reason the use of GP is attractive. For a given depth n (of If statements), we can have at each level one of
approximately (b+1)? (where b is the number of blocks and we add one more for the table) different Move
operations (actions). For each condition for an If-statement, we can have very complex statements, certainly
utilizing all approximately (b+1)? possible On predicates and many combinations of these using the Boolean
functions available, And, Or and Not. Using just one And or Or with On predicates as children squares the number
of possible combinations, since these two Boolean operators require two arguments. With the use of just one And in
each condition for al n If statements, we have n* ((b+1)?)? different possible statements. For n=10 and b=4, the
result is over 156,000 different possible programs. Adding to the conditions for each If and increasing the tree
depth increases the size of the search space greatly, making the number of possible programs easily in the millions.
Certainly, increasing the number of blocks would also greatly increase the search space as well, as the search space
is proportional to the sixth power of the number of blocks just in the limited situation described. The genetic
operators of crossover and point mutation do indeed provide access to the entire space, however, allowing any
desired T-R program to be formed.

Methodol ogy:

Tableau 1 represents the important features of this problem and the approach used to solveit. As
discussed, the goal wasto stack blocks given the functions of Move, On, And, Or, Not and If, with terminals of
blocks, Nulllf (which has no child If statement, hence all programs use this to show the end of their programs),
NullAction, and the Boolean valuestrue (T) and false (F). The fitness cases were randomly generated because
random generation of block configurations is much easier and provides a smaller set of cases than enumerating all
possible worlds, and it provides a reasonable situation that an agent might encounter in the real world. It is unlikely
that such an agent will encounter every single configuration of blocks, but rather a random subset of them. Raw
fitness was chosen as described in Genetic Programming for their similar block-stacking problem (Koza 1992).
Specifically, the raw fitnessis calculated by iterating over the columns and choosing the column with the most
number of blocksin the correct position in the stack in that column. The value of the number of blocksin the
correct position in that column is then added to a running total for all the fitness cases, and the resulting sum after
evaluation represents the raw fitness. Standardized fitness follows from raw fitness, and normalizes raw fitnesson a
scale of 0to 1, where 1 isrepresents an individual which stacks blocks perfectly in the fitness cases, and 0
represents an individual which stacks blocks in such a bad way that non are in the correct order as described in the



fitness function. The parameters 'Hits' is recorded as the number of fithess cases where the individual stacks the
blocks such that the resulting tower is in exactly the desired order. An individual which does this for all fithess
cases will have a raw fithess of 0, which also serves as a termination criteria, along with the upper bound of 2000
generations, chosen simply because it represents a great deal of time in which to evolve a solution. Experience
showed that runs that did not finish after that long or even after 1000 generations were indicative of a bug or other
problem in the program. Finally, the population size was chosen to be 2000 since that size provides good results
and still runs through generations relatively fast, usually at most 5 seconds a generation. Overall, runs tended to
take at most 10 minutes.

The tableau was implemented using a Java-based software package for GP known as ECJ, available
online at <http://www.cs.umd.edu/projects/plus/ec/ecj/>. All the parameters used for the various runs were in the
simple.params and koza.params files provided with ECJ, with the exception of population size (2000), and number
of generations until termination (2000). The population size was chosen as the largest practical size, as larger
populations resulted in very slow evaluation/breeding and had memory usage issues. Blocks were coded as
ephemeral random constants, thereby allowing point mutation of the blocks themselves. The initial population was
generated using the default GrowBuilder class, which randomly chooses a tree depth and then builds a random tree
of that depth, randomly choosing appropriate functions and terminals in the process. Crossing over and mutation
used the default classes of CrossoverPipeline and MutationPipeline, and the probabilities for these are as specified
in the koza.params and simple.params files. Worlds were randomly generated by placing blocks in an two-
dimensional grid, and then “compressing” blocks such that all blocks either rested at the bottom or on other blocks.
One important deviation from traditional methods was tialkf statements were coded slightly differently than
expected. The condition of the statement would be evaluated, and if found to be true, the associated action would
be executed. However, instead of simply returning, the interpreter would also evaluate tHestdtdanent.

Similarly, if the condition evaluated to false in the first place, the ¢thitatement would be evaluated, and after it
returned the associated condition would be reevaluated and the action executed if the result was true, otherwise the
statement would returiiraditional evaluation of thedé statements results in an enforcement of the regression
property, which while highly desirable, was never achieved in the present work, and forcing exed@ition of
statements to be in the traditional manner greatly hampered learning efforts, stunting the best individual at solving
only ~10% of the provided fithess cases and not improving over even hundreds of generations. Therefore this
modified, but still well-defined execution bff statements was used. It is important to note that this constant
reevaluation of conditions is in many ways the “spirit” of T-R programs, and the modified execufion of

statements reflects this.

Results:

Utilizing this tableau and implementation with ECJ, GP was able to develop programs capable of solving
even hundreds of different fithess cases. However, for the purposes of illustration, the following example of the
evolution of a T-R program was done with a set of fitness cases consisting of only 2 cases, since examining the
evolution of a program with hundreds of fithess situations is rather difficult and complex. The following example
given here has one notable deviation from the tableau, however in that the fithess measure also attempts to reward a
program for following the regression property and penalize it for deviating from it. Specifically, whien an
statement executes its actions, execution continues down the tree looking for other true conditions and performs the
associated actions. If after performing the action at one level, no actions are performed at lower levels, then the
program's fitness is incremented by 1. If the reverse is true, the program’s fitness is decremeritaid by 1.
modification to the fitness, although unsuccessful, results in the process taking 3 generations to develop a solution
to the listed test cases. Without rewards and penalties for the regression property, an individual is found in
generation 1, even with as a few as 20 individuals in the population. Because the development of suitable
individuals is so fast with small and easy to understand problems such as this one, adding this constraint and hence
lengthening the process as a side effect also makes it a good example for understanding the evolution of these



block-stacking T-R programs.
Example Result:

In Table 1, the table of fithess cases, each row represents a separate fitness case, specifying the coordinates
of each block in the blocks world. “Inherent fithess” indicates the fitness value of the initial configuration of
blocks. An individual program which does nothing would have fithess 2*4-3-2=3 (2*4 represents 2 cases times a
maximum fitness of 4 blocks when perfectly stacked, and then we subtract the inherent fithess values), as
calculated from the fitness measure in the tableau. In the programs, the block '-1' represents the infinite table, which
can have all the blocks upon it simultaneously if need be.

The evolution of the program is shown in Program Listing 1. In generation 1, the top program is unable to
solve either of the two problems (the “’List of problems solved:” is empty) since it never moves block 3, a step
which is essential for a solution to either problem. Interestingly, the result of the program'’s execution is that both
worlds end up the same as before the program acted upon them. While ordinarily the resulting fithess would be 3,
the program is rewarded for satisfying the regression property in problem 1 since execution of the actidf of the 2
If results in the condition of th&1f becoming trueln generation 2, the program correctly moves block 3 to the
column block 2 is in, which solves problem 0, but does not change the world in problem 1 resulting in a fithess of 2
(it breaks even on the regression property). Finally, in generation 3, the best individual is able to solve both
problems, although somewhat inefficiently, as it moves 2 to the table, then moves to the column block 1 is in, and
finally moves block 3 to the column block 0 is in. Since 1 and 0 remain in the same place, the program correctly
stacks the blocks. Concomitant with the increasing block-stacking ability of the top individual, the fithess also
increases, going from 2 and 0 hits to 2 and 1 hit to 0 and 2 hits. As noted earlier, while GP correctly found a
solution to this problem, in more complex situations the modification to the fithess to encourage development of
the regression property greatly hindered the development of programs. The most fit individual after even hundreds
of generations was only capable of solving approximately 10% of the given fitness cases, and hence this
modification was removed for further testing.

Fortunately, using the modified execution bfunctions as described in the example, T-R programs were
generated that could solve problems containing over 300 randomly generated different situations in 104
generations. Program Listing2the best individual produced by a run with 350 randomly generated fitness cases,
and was able to stack the blocks correctly in all of the given situations. While this program is seemingly complex,
the basic approach used by this program is to move blocks to the table until the O block is free, then pile them back
on. Snippets such as (If (On 3 -1) (Move 0 -1) ...), which is probably used in block configurations when block 3
was on top of block 0 in a stack, and (If (Not F) Move(0 -1) ...), which always moves block O to the table in order
to stack more blocks on top of it, are indicative of this. This approach is quite logical, since the movement of the
blocks to table reduces all problems to a single base case that is easily solved by piling them on into a column in the
correct order. Runs using similarly sized fitness sets for 5 and 6-block worlds also succeeded in producing
individuals capable of stacking blocks in all given configurations, and were of similar form.

More specifically, the clear evolution of the program is evident in Chart 1, which shows the progressive
decrease (and hence improvement) in raw fitness, both of the top individual of each generation and the overall
mean raw fitness, leading to an individual with a raw fitness of 0, or capable of stacking blocks correctly in all the
situations. Interestingly, by G=23 the top individual was capable of solving the vast majority of problems, but the
GP process required another 81 generations to produce an individual with perfect fitness. This falloff in
improvement in fitness was characteristic of almost all runs, and can likely be attributed to individuals finding
solutions to easy problems early on, then having to modify their programs to be able to solve a few more difficult
problems (or problems which simply were not solved early on), while retaining the ability to solve the previous
problems. Therefore, for the sake of efficiency and time programs can be quickly evolved that can stack blocks
correctly in the vast majority of cases, without needing to spend an extended amount of time developing a perfect
solution. This result may make possible the use of GP for online development of T-R programs in response to a
changing environment, particularly if the number of fithess cases is somewhat smaller. Finally, one last result was



that an attempt to optimize the execution of the individuals by rewarding programs for making fewer moves was
marginally successful. In one run, the number of movements was reduced from approximately 530 to 450.
However, the change occurred over just one generation, suggesting that merely random chance, as opposed to
actual evolution, produced the individual.

Conclusions:

GP was able to evolve T-R programs in the form of high structured LISP expressions suitable for solving a
large number of block-stacking situations. As show in the example and visible in all runs, GP consistently
improved both the raw fitness of top individual in each generation and the mean raw fitness until the best individual
was able to stack blocks correctly in all of the test situations. Even given nearly 300 different randomly generated
situations at a time, GP was able to develop a suitable program in approximately 100 generations, and was able to
develop these programs for 4, 5 and 6 block configurations, and likely more with the only limit being
computational power. Individuals evolved quickly (approximately G=20) to solve the vast majority of all the fithess
cases, and spent a significantly longer period (as much as 80 generations longer) evolving into a individual capable
of solving all the problems. Modifying the fitness function to improve performance had a limited effect, as the
number of movements performed by individuals shifted by a large amount from individual to individual, and hence
it is difficult to produce a fitness function which leads to a smooth progression in fithess values based on efficiency.
Also, attempts to develop a T-R program which statisfied the desirable regression property were less sucessful, and
the best results were achieved when using the modffieehction that allowed for the inspection of conditions
further down in the tree.

Further Work:

One clear area where further work is needed is in creating a program which obeys the regression property.
While the programs generated here are still useful as their execution is well-defined (even thdugin¢ktiens
are executed somewhat unconventionally), programs which obey the regression property are still highly desireable
and their structure can be exploited in interesting ways. For example, a method known as SQUISH has been
developed in order to merge T-R programs based on the steps to the goal they share in common (John 1994). This
merging of T-R programs can lead to space reduction and improved evaluation performance, but the process
requires that the programs to be merged satisfy the regression property. Also, programs which satisfy the regression
party are easier to read and make it much easier to understand exactly how the program operates. Another useful
refinement to the current programs would be the institution of a fithess measure which also rewards programs
which not only stack blocks correctly but also do so with the least numiesvefoperations possible.

Extensions to the curremtork might include the use of higher-level predicates, such as perhaps a more
powerfulMove operation which would automatically unpile blocks on top of the source and destination blocks, or
perhaps the introduction of a NextBlock indexical function which would suggest the next block to use, based on a
predetermined heuristic. As in Koza's block-stacking program, an iterative do until procedure combined with these
indexicals may also yield good results. Other interesting extensions may include more complex structures than a
simple tower, such as two towers, or even a goal structure which varied depending on the positions of the initial
blocks, such as if block 1 was on 2 to start with, a tower should be built as normal except that in the tower, 1 should
be on 2 instead of the normal reverse configuration. Multiple agent approaches to stacking blocks are also
appealing, and GP co-evolution techniques are likely to be very effective in this regard. More radical changes may
include doing away with block-stacking altogether and using a problem which is not so discrete in its operation,
such as some sort of movement of items in a 3-dimensional space, or a problem where another agent intervenes in a
opposing manner. Certainly, there are a large number of different problems to pursue in developing T-R programs
with GP, and the results of the present work shows that this approach has great promise in this regard.
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Objective:

Develop a T-R program which given a set of
blocks in a variety of configurations, is able tp
stack them in a fixed, predetermined order.

Terminal Set:

Block (a particular block, e.g. block 1),
NullAction (don't do anything), T, F, Nulllf
(ends a T-R program)

Function set:

On(Block a, Block b), Move(Block a, Block b),
If (conditionl, action, child If), And, Or, Not

Fitness cases:

A set of configurations of blocks, usually
randomly generated and numbering in the
hundreds.

14

Raw fitness: The number of blocks stacked in their correat
final positions throughout all the fitness case

Standardized (raw fitness)/((# of configs.)*(#of blocks))

fitness:

Hits: Number of configurations where the blocks

were perfectly stacked in.

Population size:

2000 (Increasing the population beyond this
increases memory usage too much)

Termination:

Maximum number of generations G=2000. Also
terminates if a program is able to stack block
correctly in all configurations.

n

Tableau 1: Tableau for block-stacking problem.

Problem # Block O

Block 1 | Block 2 | Block 3 Inherent Fitness

0/[0,0]

[0,1] [0,2] [1,0]

1/[0,0]

[0,1] [1,1] [1,0]

Table 1: This table shows the two fitness cases used in a particular run of GP. For
each problem, the coordinates representing the initial locations are shown for each
block, and the inherent fitness is the fitness value of the initial configuration using the

fitness measur e described in the tableau.



Progression of Raw Fitness
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Chart 1: This chart demonstrates the improvement in raw fitness for individual s with respect to the 350
fitness cases from a 4-block world. At generation 104, the fitness reaches O, indicating that an individual
capable of stacking blocks correctly in all fitness cases has been created.

Raw Fitness (lower is better)




Generation 1

Subpopulation 0
Mean fitness raw: 3.4475 adjusted: 0.24028526 hits: 0.0305
Best Individual of Generation:
Evaluated: true
Fitness: Raw=2.0 Adjusted=0.33333334 Hits=0
TreeO:
(If (On21) (Move23) (If (Not (On 2-1))
(Move20) (If (Or FF) (Move2-1) (If T
noAction null))))
List of problems solved:

Generation 2

Subpopulation 0
Mean fitness raw: 3.0945 adjusted: 0.25361463 hits: 0.0545
Best Individual of Generation:
Evaluated: true
Fitness: Raw=2.0 Adjusted=0.33333334 Hits=1
TreeO:
(If (On30) (Move32) (If (Or (On21)
(And F (Or (And (Not F) (And F F)) (Not (Or
TF))))) (Move31) (If (Not T) (Movel1)
(If F noAction null))))
List of problems solved:
0

Generation 3

Subpopulation 0
Mean fitness raw: 2.8745 adjusted: 0.27779275 hits: 0.2345
Best Individual of Generation:
Evaluated: true
Fitness: Raw=0.0 Adjusted=1.0 Hits=2
TreeO:
(If (Not (On 3 2)) (Move2-1) (If (Or (Or
(OrTF) (AndT F)) (On-12)) (Move20)
(If (On21) (Move 30) (If T noAction null))))
List of problems solved:
01

Program Listing 1: Thislisting shows the evolution of a simple program, evaluated on only
two fitness cases. Each generation, the program improvesin fithess and hits until a perfect
individual is reached that is capable of stacking the blocks correctly in both fithess cases.



(If (Or (And T T) (And (On-11) (Not (And
TF)))) (Move 3-1) (If (Not F) (Move2-1)
(If (And (Or T T) (Not F)) (Move0-1) (If
(Not F) (Move1-1) (If (Or (And T T) (And
(On-11) (Not (Not F)))) (Move 3-1) (If
(On3-1) (Move0-1) (If (And (Or T T) (Not
F)) (Move21) (If (Not F) (Move 3-1) (If
(And (And (On-11) (Not (And T (And (Or
(And T T) (Or (Not F) F)) (And (And T F)
(And T T)))))) (Not F)) (Move 3 3) (If (Not
F) (Move 0-1) (If (Not (On-11)) (Move
2-1) (If (On0-1) (Move10) (If (On-1
0) (Move 0 3) (If (Not (Or (Not F) (Not F)))
(Move 32) (If (On3-1) (Move0-1) (If
(And (Or T T) (Not F)) (Move 3-1) (If (Not
F) (Move10) (If (Or (And T T) (And (On
-11) (Not (And T F)))) (Move 2 1) (If (And
(On-11) (And (And T F) (And T T))) (Move
0-1) (If (Or (Not F) (Not F)) (Move 32)

(If (Not F) (Move 3 2) (If F noAction null)))))))))))))N))))
Program Listing 2: Thisisthe individual produced by a run with 350 fitness cases for the 4-block

problem. Thisindividual was produced in 104 generations and can correctly stack the blocksin all
350 cases. See Chart 1 for a chart demonstrating the improvement in fithess throughout the run.



