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Abstract:  This paper describes a technique for finding paths through a two dimensional continuous space using a 
genetic algorithm. While A* currently dominates the field of pathfinding, it requires that the space be discretized. 
For spaces which are not easily discretized, or in which a fixed grid size is not permissible, a pathfinding algorithm 
which does not require discretization is necessary. In addition to not requiring the discretization of the search space, 
a genetic algorithm employs a depth-first strategy which may yield suitable paths early in the search. This algorithm 
dynamically morphs the search space from an easy space into a difficult space to reduce the number of generations 
required to find a solution to the original space. The algorithm is demonstrated on a small set of sample 
environments consisting of polygonal obstacles.  
 
I. Introduction 
 Pathfinding is a central problem in many endeavors. Current pathfinding is dominated by discretization of 
a space, if needed, followed by application of the A* algorithm. This is augmented by a variety of abstraction 
techniques which reduce the size of the search space to speed the pathfinding process. However, pathfinding in 
continuous spaces remains a difficult problem. While genetic algorithms may not seem appropriate for pathfinding, 
with sufficient refinement, they are useful. In particular, a genetic algorithm can quickly find a path through a 
continuous space without requiring discretization.  
 Since genetic algorithms are not complete, the pathfinding algorithm may be best used in combination with 
an A* search. If the genetic algorithm fails to find a path quickly, the A* algorithm may be used to exhaustively 
search the space. The faster the genetic algorithm can find a path, the lower the average pathfinding time becomes. 
The genetic pathfinder should also be useful in any cases in which the space cannot be discretized. While 
mathematical approaches exist for such spaces, it is much simpler, and, with sufficient research likely faster, to use 
a genetic algorithm.  
 Section II describes the problem which the genetic algorithm solves. Section III describes the problem 
specification in depth. Section IV discusses the operators used. Section V discusses the changing environment 
solution. Section VI reports results. Section VII concludes.  
 
II. Statement of the Problem 
 The problem is to find a path through a continuous, two dimensional space filled with polygonal obstacles 
which does not intersect any of those obstacles. Since this algorithm is designed to be applicable to arbitrary 
obstacles, the specifics of the polygons cannot be used to speed the search. The path does not need to be optimal, as 
in A*. 
 
III. Specification 
 The successful application of genetic algorithms to any problem relies heavily on the representation of the 
problem and the implementation of the genetic operators. The following is a tableau which summarizes the specifics 
of the algorithm: 
 
 Tableau: 
 
 Objective: To find a path through a series of polygonal obstacles using a genetic algorithm. 
 Representation Scheme:  
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  Structure = Each element of the representation is a pair of floating point values defining an (x, y) 
point in the space. 
  K = infinite   (alphabet of representation, all pairs of floating point numbers in bounds) 
  L = 2-10         (length of representation, anywhere from 2 to 10 points.) 
 Mapping from points in the search space of the problem to structures in the population: The representation 
of each member of the population identically maps to a point in the search space, that is, a path.  
 
 Fitness cases: Whether the path intersects a line segment of an obstacle. 
 Fitness: a linear combination of the number of intersections and the Manhattan distance of each line 
segment. 
 Parameters:  
  Population size M = 50 
  Intersection divisor = 0.1 
  Path length divisor = 100.0 
  Morph divisor = 50 default, variable otherwise 
  Crossover probability = variable 
  Mutation probability = variable 
  Insertion mutation probability = variable 
  Knowledge mutation probability = variable 
  Knowledge mutation maximum = 10 
  Knowledge mutation maximum add = 5 
  Mutation distance = 30.0 
  Maximum number of generations = 1000 
 Termination Criteria: a complete path with no intersections is found or the maximum number of 
generations is exceeded. 
 Result Designation: the best path.   
 
Representation Scheme 
 A natural representation of a path is a set of pairs of real numbers, each denoting a point along the path. 
The path consists of line segments connecting those points. Therefore, the first and last points must be the starting 
position and the destination. The remaining points, hereafter referred to as active points, can be changed while still 
providing a working path. Since the space may be filled with an arbitrary number of obstacles, a variable length 
genetic algorithm must be used to allow the path to grow in complexity as needed to avoid the obstacles. For 
simplicity, the path length is limited to ten, an ample amount for the sample space. Since each point is a pair of real 
numbers, disregarding the precision of double values, the number of such points is infinite. Each path is represented 
by the points which compose it, such that each path corresponds directly to a path in the set of all possible paths, the 
search space.  
 
Fitness 
 There are a variety of options for determining the fitness of a path. Two obvious variables are the length of 
the path and the number of intersections of the path with obstacles. The length of the path may be represented using 
the Manhattan distance rather than the true distances, since minimizing the Manhattan distance is equivalent to 
minimizing the real distance. This carries the advantage that computing the Manhattan distance is much faster than 
computing the real distance using the Pythagorean Theorem. The number of intersections of the path with obstacles 
is a more complex fitness measure. The measure must contain enough information about the intersections to allow 
the genetic algorithm to distinguish the better paths from the poorer paths, and yet be sufficiently simple to be 
applicable to arbitrary obstacles and efficient to compute. One good measure, and the measure used in the 
algorithm, is the number of intersections with each obstacle. Using efficient algorithms to compute the intersection 
of each line segment of the path with the line segments comprising the obstacles yields a fast measure. A better 
measure would be based on the length of the path inside of obstacles, but this is expensive and could require 
complex calculations even for relatively simple obstacles. Dynamic programming may make such a measure fast 
enough for practical use. A discussion of possible advantages of such a measure appears in the future research 
section.  The fitness value is computed by dividing the number of intersections by the intersection divisor parameter 
and adding that value to the result of dividing the Manhattan distance path length by the path length divisor. The 
fitness value determined is normalized to a range defined using the highest fitness value of any member of the 
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population and the lowest such value, such that one half of that range is used. This encourages survival of unfit 
genes, which helps encourage diversity in the population--an important factor for pathfinding.  
 
Parameters 
 The population size is the most important parameter. It should be sufficiently large to allow the genetic 
algorithm breadth to search the areas in the search space most likely to yield a path. However, too large a population 
simply wastes computational time with redundant paths. The population size will depend on the problem at hand, 
and is difficult to guess. The algorithm uses a population size of fifty, which is large enough for the sample problem 
space. A technique for dynamically changing the population size as the algorithm runs is discussed in the future 
research section.  
 The intersection divisor determines how much weight the critic gives to paths which avoid intersections. 
The lower the value, the greater the weight. The path length divisor serves the same purpose, except for path length. 
The combination of values presented makes avoiding intersections paramount, with reducing path length a 
comparatively minor concern.  
 The morph divisor controls the operation of the adaptation approach, described in Section V. The higher 
the divisor, the faster the obstacles are morphed.  
 The Mutation distance parameter controls the maximum x or y distance of a mutated point from an initial 
point position. This parameter is the same for the uniform probability distribution used to generate points in the 
kMutation operator, discussed in Section IV. 
 The remaining parameters regard the probability of the genetic operators being applied to a given member 
of the population. The probabilities are handled using a Roulette wheel algorithm similar to that discussed regarding 
reproduction. The operators named are described in Section IV.  
 
Termination Criteria 
 The algorithm terminates when a path which intersects none of the obstacles is found, or after the 
maximum number of generations has been exceeded. The maximum number of generations is an application-
dependent variable. The algorithm uses a value large enough to allow most searches to finish successfully. 
However, there are applications, such as the combination of the A* search with a preliminary genetic pathfinder, 
which would benefit from a lower maximum number of generations. The algorithm terminates as soon as a path has 
been found since specialized smoothing techniques can be used to refine the path more rapidly than the genetic 
algorithm.  
 
Result Designation 
 The result is the first path which connects the starting point to the destination point without intersecting 
any obstacles. 
 
IV. Methods 
 
 This section describes the operators used to solve the problem described above.  
Crossover 
 A naive crossover operation would choose some number of active points at the end of a path to cross with 
another path. However, this would only allow the crossover operation to benefit the later portion of the path. This 
algorithm uses an implementation which allows the crossover operation to take any contiguous subset of the active 
points defining a path for crossover.  
 
Mutation 
 The mutation operator, in simplest form, could replace any active point with a random point within the 
space. While this conceivably allows the genetic algorithm to construct any path, and to recover any lost path, it 
may not be optimal.  
 In particular, the mutation operation can be extended to use some knowledge about the domain to aid in 
performing knowledge based mutation. The knowledge based mutation operator, hereafter referred to as the 
kMutation operator, examines each line segment in the path, up to the maximum bound specified by the 
“knowledge mutation maximum” parameter. For each, if that line segment intersects at least one obstacle, it 
computes a representative midpoint of the intersections along that line segment. This point is constructed by 
summing each intersection points x or y component and then dividing by the number of intersections. A new point 
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for insertion into the path is then generated according to a uniform distribution within a bounding box around that 
representative midpoint. This point may be inserted into the path or replace a nearby point in the path, depending on 
whether the “knowledge mutation maximum add” parameter has been exceeded by the current path length.  
 The kMutation operator allows the path to mutate in small steps, such that a good path may be altered in 
the hopes of avoiding an obstacle. If the offspring does not avoid the obstacle, little harm is done. If the offspring 
successfully avoids the obstacle, the reproduction operator will favor it in later generations. Thus, repeated 
application of this knowledge based mutation operator can generate a complete path from start to finish. In fact, 
applying this operator to every gene in a size ten gene pool is sufficient to greatly outperform a standard genetic 
algorithm consisting of a naive mutation operator and the crossover operator described above.  
 A variant of the kMutation operator which changes only the first line segment containing an intersection is 
used in some experiments involving the adaptation process. When this version is used, it will be noted explicitly.  
 
Reproduction 
 Reproduction is implemented in a Roulette wheel style algorithm. Each population member's fitness is used 
to determine a portion of the wheel. Then, a random point on the wheel is chosen. If that point falls within a 
population member's portion of the wheel, that member of the population is reproduced. Hence, a good member of 
the population may have several offspring in the next generation. Also, there is no safe guard to protect the fittest 
individual of the population. 
 
V. Adaptation 
 
 This section describes an unusual approach to solving the problem. Conceptually, the problem of finding a 
path is converted from a problem in which all obstacles are static into one in which all obstacles are dynamic 
through the generations. The first generation has no obstacles to avoid. From that point forward, the obstacles grow 
slowly over time until they reach their full extent by a generation chosen as some fraction of the maximum number 
of allowed generations. For polygons, the polygon present at generation i is represented by a polygon whose 
vertices are a linear interpolation between a point in the center of the polygon and the final vertex positions.  
 This approach allows members of the population to more naturally adapt over time. Rather than requiring 
the genetic algorithm to find a perfect solution from scratch, it can find a reasonable solution and incrementally 
improve that solution over time. This process is evident in nature. When creatures first made the transition from sea-
based life to land-based life, they did not form a perfectly adapted land-based individual in the sea to send forth. 
Rather, hybrids of sea and land based life evolved over time. As these hybrids became increasingly adapted to life 
on land, they spent less time in the sea. Finally, they began to dwell solely on land.  
 The following series of figures illustrate the process of polygons growing from points to their full extent. 
Figure 1a shows the polygon at generation zero. The gray lines denote line segments from the center of the polygon 
to the final vertex positions. The point chosen as the center of the polygon may be the centroid or any point 
generally in the center of the polygon. Arbitrary points could be used and the genetic algorithm would still search 
successfully given enough time, but points in the center of the polygon make the most sense, as will be clear later. 
Currently, the polygon is a point. Figure 1b shows the polygon at an intermediate generation. It has grown to 
become a small image of the final polygon. Figure 1c shows the polygon in its final form: it is completely extended. 
Any solutions found at this point are solutions to the original problem.  

 
Figure 1. The figures are a, b, and c from left to right.  
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 Recreating the pathfinding problem in a dynamic environment raises several questions. First, is there any 
benefit to be derived? Second, what operators are appropriate for this new problem?  
 Several factors suggest that this approach may help find solutions to a wide variety of problems more 
quickly. Any problem which can be decomposed into a spectrum of problems of increasing difficulty is a candidate 
for this technique. By slowly increasing the difficultly of the problem, the dynamic environment allows the genetic 
algorithm to solve a series of easy problems rather than one large problem. Furthermore, the dynamic environment 
can allow the use of techniques which would not be possible in a static environment, or, by reducing the difficulty 
of the problem, allow otherwise less effective techniques to achieve greater performance. In particular, the 
kMutation operator can be more effective, because it incrementally changes paths by relatively small amounts. The 
amount by which the kMutation operator is allowed to change the path can be smaller than in the static case because 
the static case requires guessing an improved path which may have to detour by an arbitrary amount. In contrast, the 
dynamic environment makes it more likely that the path once worked and now does not, such that the maximum 
change in the path required is directly related to the speed at which the polygons increase in size. The dynamic 
environment may also make it easier to solve problems involving closely spaced obstacles.  
 The series of figures 2a, 2b, and 2c show a hypothetical expansion of a polygon combined with the 
alterations made by the kMutation operator to a single path, to illustrate the process and the potential benefit of the 
dynamic environment.  
 

 
Figure 2a, left: The polygon is a single point, and the path does not intersect it. 
Figure 2b, middle: The polygon has expanded to about one third of its full size, and now intersects the path. 
Figure 2c, right: The kMutation operator has adjusted the path to avoid the small obstacle.  
 
 The kMutation operator serves as an example of an operator which may be appropriate for this dynamic 
space. Another obvious candidate is the dominance operator used with diploidy to allow abeyance. However, while 
the space is now changing over time, the polygons never contract. As such, no solution which worked in the past 
and then ceased to work will work in the future. Since this is likely the primary advantage of using these techniques, 
they are unlikely to be applicable to this type of search. (Goldberg 148-161) Other possible operators are discussed 
in the future research section. 
 
Results 
 This section presents data regarding the performance of a number of variations of the genetic algorithm for 
the three samples spaces shown below for a variety of implementations. The spaces are referred to as 1, 2, and 3, 
respectively. The dots at the left and right of each figure indicate the points between which a path needs to be found. 
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Figure 3: the sample spaces used. 
 
 The kMutation operator, not surprisingly, surpassed both the standard mutation operator and the insertion 
mutation operator. In fact, the kMutation operator performs better than crossover: the first problem is solved by 
generation 32 when the kMutation operator is applied 50% of the time and the crossover operation is never applied. 
In contrast, when each is applied 25% of the time, the average generation of success is only 74. The kMutation 
operator provides diminishing returns in terms of reducing the average generation of success as it is applied more 
frequently, representing the relatively reduced operation of reproduction. This performance is vastly greater than a 
benchmark genetic search algorithm using a mutation operator which chooses a point at random in the space to 
insert or replace an existing point in a path.  
 Using the adaptation approach described in Section V the time required for the search is greatly reduced. 
When using adaptation, experiments which tested the effectiveness of different probabilities of the crossover and 
kMutation operations showed (the sum of both probabilities being fixed at 50%) that assigning a probability of 
between 0 and 5% for crossover and between 45 and 50% for kMutation are best. Under these conditions the 
performance of the adaptation approach on the first problem is disappointing: the average generation at which a 
solution was found was 59. This is almost twice the value for the static environment case. This adaptation test used 
a morphing constant of 50, which means that by generation 20 the polygons would have reached their final form. 
Furthermore, this implies that approximately forty generations were used with the static obstacles to find a solution, 
so that the first 20 generations actually hurt the performance of the standard kMutation algorithm!  
 There are several techniques which improve the performance of the adaptive algorithm. First, preventing 
the smoothing portion of the kMutation operator helps avoid collapsing the space of paths down to the straight line 
path at the beginning of mutation. However, smoothing is still desirable once the polygons have once again become 
static. As a result, the adaptation algorithm prevents smoothing until the polygons have reached their full extent, 
after which smoothing is applied. This only makes the adaptation algorithm slightly more effective: it finds the 
solution, on average, at generation 53.08 with a 50% chance of kMutation and a 0% chance of crossover, which was 
the combination which provided the best results. (Letting crossover reach 10% slowed the search down to about 
60.) Also, allowing no smoothing makes the algorithm much slower, but it does make the crossover operation 
useful. The optimal probabilities were 20% crossover and 30% kMutation, with an average generation of 152.3. 
Further experiments will use the smoothing once the obstacles have reached their full extent.  
  Figure 4 shows the performance of the same algorithm as above, except that the kMutation operator only 
changes one line segment instead of all of them. The crossover probability is the value on the x-axis divided by 100. 
So 500 is 5%. The kMutation probability is 50% minus that value. Each data point represents 100 trials. It is 
surprising that the algorithm performs better! This results in a great reduction in computational cost, since the full 
kMutation operator is very costly. Furthermore, the average generation of success of 47 is approaching the same 
performance as the static algorithm with the more costly kMutation operator. Subsequent experiments will use the 
simplified kMutation operator.  
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Avg. Generation of Success vs. Crossover Constant
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Figure 4 
 
 For comparison, the simplified kMutation search without adaptation requires an average of 124.6 
generations to find a solution. This suggests that the adaptive approach is already more efficient than the static 
approach.  
 A factor in the efficiency of the adaptation approach which we have not yet discussed is the rate of 
morphing. Figure 5 shows the performance of the adaptive algorithm on the third and hardest map with smoothing 
after the morphing of obstacles is complete for varying morphing constants.  
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Avg. Generation of Success vs. Morphing Divisor
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Figure 5 
 
 The results show that the algorithm performs best with a morphing divisor of 550. To compute the actual 
morphing rate of the polygons with respect to the number of generations, we divide 1000, the maximum number of 
generations allowed, by the morphing divisor. Then, at generation 0, the polygons are points. By generation 1, they 
are somewhat under half extended. By generation 1, they are nearly fully extended. Finally, by generation 3, they 
are fully extended and smoothing begins to be used. Since the average number of generations was 6.78 for that data 
point, approximately half of the search time was spent while the polygons were expanding, and approximately half 
was spent with the polygons in a static state. The average number of generations required to find a solution to the 
third map for the static algorithm using the simple kMutation operator was 918.19. Therefore, the speed of the 
algorithm increased by over two orders of magnitude with an optimal morphing rate. The average generation of 
success was similarly improved for the first two problems, save that it was usually only by one order of magnitude. 
This suggests that the benefits derived from using an adaptive technique increase with the difficulty of the problem. 
These experiments suggested a morphing constant of eleven, as well. Perhaps the most interesting feature of Figure 
5 is that the morphing constant produces very good results with any value between 7 and 14 EXCEPT for values 9 
and 10. The phase transitions are apparently extreme. Since each data point represents 500 trials, this effect is 
unlikely to be due to chance. More investigation is needed to determine the reasons for this anomaly.  
 
 
 
 
 
Conclusion 
 This paper has demonstrated the effectiveness of using of a changing environment designed to make the 
pathfinding problem increasingly difficult with each successive generation. This allows the population to adapt to 
the changing environment gradually, which effectively focuses the genetic search and greatly increases its speed. 
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Developing heuristics to choose appropriate values for the genetic search algorithm’s parameters may be the hardest 
problem expanding the usefulness of this pathfinding algorithm to arbitrary maps. While this paper is only a 
tentative first step in researching the applications of this potentially widely applicable strategy, the preliminary 
results are very promising.  
 
Future Research 
 The most important future potential is determining a good heuristic for the morphing constant’s initial 
value, perhaps based on the number and clustering of obstacles, and experimenting with functions other than linear 
interpolation in the hopes of achieving better results. 
 Perhaps the second most important potential for future research involves modifications to the simplified 
kMutation operator. It uses no information about the relative location of the obstacle which the line segment 
intersects. If the operator were extended so that it could compute a line through the midpoint of the intersections and 
the centroid of the obstacle, a new point could be chosen along that line beyond the midpoint. That point would be 
much more likely to make the new path avoid the obstacle than a point generated from a uniform distribution at 
sufficiently low cost that it should improve the performance of the algorithm. Most importantly, it ensures that a 
path is “bumped” in the correct direction by an expanding polygon, which could immensely improve the 
performance of the adaptation algorithm.  
 The knowledge based mutation operator could also be extended to use information about the portion of the 
line segment inside of an obstacle, perhaps as computed when determining the fitness, to avoid the obstacle. If only 
a part of the path is in the obstacle, while its endpoints are not, a new point should be added to avoid the obstacle. If 
an endpoint is inside an obstacle, the endpoint must be moved. The length of the line segment inside of the obstacle 
could also be used as a heuristic measure of how far any mutated endpoint should be allowed to range from its 
original position, or of how large the area of the uniform distribution should be for a new point which is inserted 
into the path.  
 An operator which may be useful when combined with the changing obstacles would use the previous 
intersections of a line segment combined with information about the new intersections to determine how the length 
of the line segment inside of obstacles had changed once the polygons had changed size. This could allow the 
mutation operation to determine a probability distribution for the location of a new point that would maximize the 
chances of avoiding the obstacle. That is, knowing the rate of change of the length of the line segment in the 
obstacle combined with the position of that length provides information to guess at the direction of growth of the 
polygon and its rate of growth. Choosing a point along that line of growth (perhaps in both directions) at a distance 
determined heuristically by the rate of growth could prove useful.  
 
 Determining the size of the population appropriate for an arbitrary search space is impossible. However, 
the size of the population could be optimized as the algorithm runs. If the number of paths falling into certain 
schema exceed a maximum value, the extra paths could be deleted and the size of the population decreased. If the 
number of paths is too low, new paths could be added and the population size increased. This requires applying a 
concept of schema to the algorithm. One simple approach would involve discretizing the space into a rough grid. 
Then each path fits a schema consisting of a finite number of integer pairs describing a grid coordinate, allowing 
similar paths to be identified. This, however, would be computationally expensive.  
 Another possibility would generate a set of initial population members deterministically. Supposing that 
the centers of each obstacle are known, perhaps choosing to create some number of paths for each  possible 
combination of passing above or below the polygons (ordered left to right) would produce good results. Of course, 
for polygons as opposed to arbitrary obstacles, these paths could be constricted around the polygons very rapidly 
and no genetic search would be necessary.  
 
 The crossover operation, at relatively high computational expense, could be extended to choose only sites 
at which two paths are relatively close to one another. By performing the crossover on that point, the resultant paths 
would be more continuous, which would make them less likely to strike obstacles along a potentially long line 
segment joining the two pieces. This may make the crossover operation once again useful in the adaptive algorithm.  
 Application of restricted mating can also improve the performance of the algorithm by encouraging the 
pursuit of multiple possible paths to the goal.  
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