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Abstract: 
 
This paper describes a genetic algorithm for finding low-cost paths through connectivity graphs. 

The map search problem does not lend itself to implementation with genetic algorithms because it is 
difficult to define a physically meaningful crossover operator: combining half of one set of driving 
directions with half of another set will rarely result in meaningful instructions. A selective crossover 
operator is used that will cross two fit solutions only if their paths intersect or come within one link of 
intersecting. The algorithm is demonstrated on a map of the bay area. 

The connectivity graph is automatically extracted from snapshots of the Yahoo! Maps database. 
Thousands of side-by-side snapshots are combined into a single 24000 x 37000 pixel image and 
automatically converted to a connectivity graph through various image processing techniques. 
 
1. Introduction and Overview 
 
 Finding a minimum cost path through a general connectivity graph is a very difficult problem 
when the graph is large. Its solution is useful in many applications, such as finding driving directions and 
routing packets through networks. Current algorithms either rely on heuristics to simplify the problem 
(such as finding a path through the simpler freeway graph first and only then searching on secondary 
roads), use an exhaustive search, or use a heuristically guided search. An exhaustive search is impractical 
on large graphs and heuristically guided algorithms will not necessarily find the best solution. The 
deterministic algorithms repeat the same mistakes time and time again. Although genetic algorithms are 
computationally very expensive, it is an appealing solution when the graph is large and simple heuristics 
are either too time consuming or impractical to implement. 
 Genetic algorithms do not lend themselves to solving graph search problems because most 
potential crossover and mutation operators are not physically meaningful. Suppose we define the genome to 
consist of a series right and left turns from the start point. One member of our solution population is a series 
of turns starting from 4th and King in San Francisco and another is a series of turns starting from downtown 
Palo Alto. Crossing over the two solutions will not yield a useful result since the graph topology in San 
Francisco is completely different than that in Palo Alto. This naive approach to applying a genetic 
algorithm degenerates to random search. 
 A more physically meaningful approach is to represent solutions as a list of nodes where a link 
exists between each member. When we attempt to combine two relatively fit solutions, we first check to see 
if they intersect. If they intersect, we cross them over at the point of intersection. The resulting solution is 
then a valid path through the graph. There is also the potential to quickly construct valid solutions with this 
method: if we have one solution that is fit because it comes close to the start point and another that is fit 
because it comes close to the end point and we cross them over the resulting solution will come close to 
both points. One interesting point with this approach is that it requires the population size be large and 
proportional to the complexity of the graph since it may be impossible to find two solutions that intersect in 
a small population. 
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Solution #1: 1, 2, 5, 6, 9 (dashed) 
Solution #2: 1, 4, 5, 7, 8, 3 (boldface) 
Problem: Start = 1, End = 9 
 
Figure 1: Two example solution structures displayed on a graph 
and their corresponding numerical representations 
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2. Previous Work 
 
2.1 Dijkstra’s Algorithm 
 
 Dijkstra’s shortest path algorithm is essentially an exhaustive search. We choose a start node S 
and our objective is to label every other node on the graph with the length of the minimum cost path to S. 
We write on each node the current estimated distance from S. Initially the estimate xS for node S is 0 and 
xN for each node N is infinity. Then a worklist algorithm is used to touch each node on the graph and for 
each node J the estimate written on neighboring node K is set to the minimum of xK and xJ + c where c is 
the cost assigned to the arc from J to K. The advantage of this approach is that it can be easily implemented 
in parallel, making it perfect for finding paths for packets through routers. 
 
2.2 A* Algorithm 
 
 The A* algorithm is a heuristically guided exhaustive search. It uses a worklist that is initialized to 
the start node. Nodes are selected from the worklist based on a heuristically assigned score and expanded. 
The node is marked as closed and the nodes it links to are added to the worklist.  
 The heuristic assigns a score to each node on the worklist to determine which nodes are expanded 
first. One example criteria is the nearness to the destination which would make A* a greedy algorithm. 
Another heuristic might be nearness to the freeway system. 
 
2.3 Hierarchical Search 
 
 Road maps can be searched in a hierarchical manner. A path can be found from a starting point on 
a small residential street starting point to the secondary road system. Once on the secondary road system, 
we need not consider the small streets anymore and thus have a much simpler graph to search. Then a path 
can be found to the nearest freeway. Once on the freeway system, the search graph is even simpler and the 
path to the freeway exit nearest the destination could probably even be found with a simple exhaustive 
search. 
 
2.4 Comparison 
 
 For a path search on a road map, the A* algorithm and hierarchical search are both viable 
possibilities. With the right hand crafted heuristics these algorithms can be successful in such an 
environment. However, they will become too expensive when applied to a general graph or a graph where 
the heuristics are not valid. The genetic 
algorithm approach has the potential to perform 
well on more general graph search problems and 
without the effort of hand coding a different set 
of heuristics for each problem. 
 Another disadvantage with A* and 
hierarchical search is that both algorithms are 
typically deterministic, depending on the exact 
heuristics used. Thus, for a given problem they 
will always return the same answer. This may 
not be desirable for some applications because 
the algorithms will make the same mistakes 
over and over again. Even a good set of 
heuristics will occasionally make a mistake. 
Since the genetic algorithm approach is not 
based on any specific heuristic and is 
randomized, it will not be as vulnerable to this 
problem, although a flawed fitness function can 
sometimes cause similar effects. 
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3. Description of the Algorithm 
 
3.1 Data Structures 
 
 The connectivity graph consists of a numbered array of nodes. Each node contains a list of the 
nodes it links to (referenced to by position in the array) and the cost associated with each link. Each node is 
uniquely identified by its position in the connectivity graph array. Longitude and latitude coordinates are 
included in each node to permit rendering of the graph and a graphical display of the solution. 
 A solution consists of a list of nodes where each node is connected to its neighbors (figure 1). 
 The problem statement simply consists of a start node and an end node. 
 
3.2 Creating the Initial Population 
 
 The population is initialized to a set of random solutions generated by picking a start node and 
randomly choosing links. The distribution of the lengths of these solutions is heuristically based on a 
function of the square root of the size of the graph. It is important to use longer solutions for larger graphs 
because the average number of nodes between the start node and end node will typically be larger. 
 One third of the solutions start at the start node, another third start at the end node, and the last 
third start at random points. This heuristic priming is preferable to using totally random solutions because a 
larger portion of the initial population will have the potential to be part of a final solution. Using totally 
random solutions will still result in a good solution, but convergence will take longer. 
  
3.3 Fitness Function 
 
 The fitness function works on a pseudo-point system where points are awarded for the solution 
ending near the target end point, starting near the start point, and being low-cost. The score in the first two 
areas can be negative if the solution is exceptionally bad. 
 
 The fitness is computed with the following algorithm: 
 

1. Compute the distance “as the crow flys” from the start point to the end point: 

( )( )22 ..).. latendNodelatstartNodelonendNodelonstartNoded −+−=  
 
2. Compute the distance from the end point to the last point of the solution and normalize 

( )( ) dlatendNodelatlastNodesollonendNodelonlastNodesold e /...)... 22 −+−=
 

3. Compute the distance from the start point to the first point of the solution and normalize 

( )( ) dlatstartNodelatfirstNodesollonstartNodelonfirstNodesold s /...)... 22 −+−=
 

4. Compute the cost of the solution, totalCost, by summing the cost of the traversed links 
 

5. If the solution is close to the goal points, consider the cost of the solution: 
 

If ds < 0.3 and de < 0.3 then, 
Fitness = 1 + (1 – de) + (1 – ds) + 10 / totalCost 

 Otherwise, 
Fitness = 1 + (1 – de) + (1 – ds)  

 
6. Make sure the fitness value is never negative. If it is, set it to zero: 

 
If Fitness < 0 then, 

Fitness = 0 
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Solution #1a: 1, 2, 5, 7, 8, 3 (dashed) 
Solution #2a: 1, 4, 5, 6, 9 (boldface) 
 
Figure 2: The two solutions that result from crossover of the 
solutions in Figure 1.
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 More fit solutions thus have higher scores. We do not consider the cost of the solution until the 
solution gets near both the start and end points to avoid premature convergence. When cost is considered 
during the entire process, trivially short solutions take over the population and the algorithm never 
converges on an acceptable solution. However, if cost is not considered at all we will have solutions that 
reach both the given start and end points but have strange detours in the middle of the solution or take 
ridiculously inefficient paths. For example, an infeasible structure might be one that veers in the opposite 
direction from the start point. It would get a negative 1 – de term reducing the fitness appropriately. 
Although occasionally it might be necessary for a solution to take a roundabout path to the goal, these 
solutions would not dominate the population. 
 The constant 1 term in the fitness equation is to permit the poorest solutions (those for which the 1 
– de and 1 – ds terms are negative) to have fitness values greater than zero. Negative values complicate the 
probabilistic selection of fit solutions. 
  
3.4 Crossover 
 
 Two solutions are selected randomly based on their fitness. If it is determined that they intersect, 
the solutions are crossed over at the intersection point to form the new solution. This insures that the result 
is a valid and allowable structure: since the lists of nodes are crossed over at an intersection it is guaranteed 
that each node in the resulting list is connected to its neighbor by a link in the graph. Finding a pair that 
intersects is a very time consuming operation, 
especially when the graph is large reducing the 
chance that two solutions intersect.  
 Crossing over solutions that come 
within one link of intersecting (by adding the 
required link) dramatically increases the chances 
of finding a viable pair. The probability is 
multiplied by the average number of links from 
each node. In a representative run of the 
program, the probability increased from 1.3% to 
4.5%. 
 
3.5 Mutation 
 
 Mutations typically consist of one or 
two very small changes to a solution. However, 
the physical meaningfulness requirement 
requires us to use another approach. A small 
change, such as simply changing one of the node IDs in the path will not result in a valid path because the 
nodes will no longer represent a connected path. Moving a node one or two links away from its current 
position is difficult because it involves a graph search (which is a smaller scale version of the very problem 
we’re trying to solve) to find a path back to the next node in the solution. 
 When mutating a solution, we randomly choose one of five options:  
 
 • Appending additional randomly generated nodes to the end of the solution 

• Prepending additional randomly generated nodes to the start of the solution 
• Removing nodes from the end of the solution 
• Removing nodes from the beginning of the solution 
• Replacing the solution with an entirely new one generated in the same way as the population is 
initialized 
 

 These mutations, especially the last, insure that new genetic material will be introduced into the 
population. This is especially important given our selective crossover operator. If we ever encounter a 
situation where it is difficult or impossible to find two intersecting solutions that can be crossed over, 
mutation will eventually create a solution that intersects, allowing the algorithm to continue. 
 Mutation makes the search space fully accessible.  Because the crossover operator can only 
combine existing solutions, it cannot cause new links on the graph to be explored – solutions can only be 
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constructed from fragments of solutions present in the initial population. However, mutation guarantees 
that every link on the graph can be touched eventually, although in a much more random and haphazard 
way than crossover. This also reminds us why it is important to have a large initial population that will 
represent many possible paths through the search graph. 
 
4. Results and Analysis 
 
4.1 Sample Run 
 
 An example demonstrates the effectiveness of this algorithm and illustrates the effects of the 
various parameters. The parameters used for our first run, a trip from San Francisco to Fremont, are given 
in Table 1. 
 
Table 1. Tableau for the Graph Search Problem 
 

Objective: Find the lowest cost path between two given points in a weighted graph 
Representation 
Scheme: 

Structure: List of node indices for a set of adjacent nodes in the graph 
 
K = number of nodes in the graph, N 
 
L = number of nodes in each solution can vary: minimum is 1, maximum is N 
 
A connectivity graph maps the node numbers onto the topology for a specific 
problem 

Fitness: Low path cost, nearness of path endpoints to goal points 
Parameters: Population Size M = 10000 

Weight on Cost = 3.0 Make sure matches equations 
Crossover = 30% 
Mutation = 1% 

Termination Criteria: Manual intervention 
Result Designation: Best individual is solution 

 
 
Graphs of the average fitness and best solution fitness for 100 generations are shown in Chart 1. 

Chart 1: Best and Average Fitness
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Figure 6: Result of placing excessive weight on cost. 
Boldface dots represent the goal points. 

The program is instrumented with code that permits us to follow the history of a particular 
solution. The solution of figure 5 began from humble origins as a route from near the endpoint, Fremont, to 
well south of San Francisco (figure 3). It only underwent small, incremental improvements (such as 
mutations and crossovers moving it slightly closer to San Francisco) until generation 38, when it was 
eclipsed by an alternate route that nearly touches the start and end points and uses the bay bridge (figure 4). 
However, our original solution evolves and prevails against its East Bay adversary when it crosses over 
with a fragment that goes towards San Francisco (figure 5). This solution undergoes a few almost 
unnoticeable refinements and eventually stabilizes at generation 65. In both figures 4 and 5, the solution 
exactly reaches both goal points. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
4.2 Effect of Parameters 
 
4.2.1 Population Size and Intersection Method 
 
 Due to the selective nature of the crossover 
operator, a large population size is necessary. Recall that 
our crossover operator will only combine two solutions if 
they intersect. If it is called on two nonintersecting 
solutions, it will do nothing. In the example of section 
4.1, 4.5% to 3% of crossovers succeed depending on 
population diversity. Initially, 4.5% of crossovers 
succeed, but as population diversity declines only 3% of 
crossover attempts succeed. It is essential to have a large 
population to insure that enough crossovers will be 
successful to evolve a successful solution. With a 
population of size 1000, the solution quality declines and 
with a population of 100 or less the algorithm will not 
converge on a meaningful solution. 
 
4.2.2 Cost Weight 
 
 The consideration of cost in the fitness function 
must be done with care to converge on a good solution. If 
too much emphasis is placed on cost, the fitness function 
will favor short and inexpensive solutions that do not 
reach the goal points (figure 6). If too little emphasis is 

Figure 3: Generation 0 Figure 4: Generation 38 Figure 5: Generation 65 
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placed on cost, we will obtain a solution that will get us where we’re going, but will do so by a very 
roundabout path. In either case, population diversity can be harmed, prematurely eliminating solutions that 
could eventually evolve into a good answer.  
 The constant 3.0 given in Table 1 was picked by trial and error on several different problems. It 
will work without modification on most other connectivity graphs because each graph’s link costs are 
normalized to values between zero and one. Additionally, most reasonable choices will result in valid 
solutions because cost is not weighed in the fitness function unless the solution is near both goal points. As 
long as the population size is large enough to maintain diversity, the most cost effective solution will be 
chosen from among those that reach the goal points. 
 
4.2.3 Crossover and Mutation Rate         
 
 There is a direct correlation between crossover rate and speed of convergence. In the example of 
section 4.1, a crossover rate of 1% fails to converge on a remotely attractive solution within 100 
generations. Increasing crossover causes faster convergence up to about 30% when the computational 
expense of performing the hundreds of thousands of intersection checks required finding candidate pairs 
becomes impractical. 
 
5. False Starts 
 
5.1 Image-Based Search 
 
 The algorithm we have been discussing involves searches on a traditional connectivity graph 
structure consisting of nodes with lists of neighbors. As discussed in the appendix, this graph was extracted 
from a 25000 by 37000 pixel composite map image of the bay area.  
 Initially, the algorithm attempted to search this image directly without using a connectivity graph. 
Solutions would consist of a set of (x, y) points in the image connected by straight lines. The starting and 
ending points would also be described by their pixel location in the image and the initial population would 
be constructed by randomly “exploring” the map by walking pixel by pixel, identifying which roads are 
freeways and secondary roads by their color.  
 Although this approach is unique and interesting, it is impractical because of the large amount of 
memory and processor power required. Since genetic algorithms generally require large solution 
populations, it is important that the various operators be inexpensive. Repeatedly walking a 1GB image 
pixel by pixel is too slow and inefficient to be practical in a genetic algorithm. 
 The final solution does the image processing once to extract a compact connectivity graph on 
which to execute the genetic algorithm. 
  
5.2 Waypoints 
 
 Another method previously considered was to select a set of waypoints between the start and end 
points. These waypoints can be placed anywhere on the map and do not have to be connected directly. A 
conventional graph search algorithm would find paths between the waypoints which would then be 
concatenated to form the final solution. Since the individual subproblems solved by the conventional graph 
search algorithm are simple, the complexity and scalability associated with a naive graph search will not be 
an issue. The genetic algorithm will choose waypoints that guide the conventional algorithm to the most 
efficient path.  
 This approach is appealing because the crossover operator can be much simpler since the physical 
validity requirement is not an issue with waypoint placement. The waypoints need not be directly 
connected to each other by a single link as with the implemented algorithm. However, picking waypoints to 
insure that the subproblems are simple requires detailed analysis of the connectivity graph and is more 
effort than solving the problem directly.  

Additionally, generating an initial population that will not dismally fail (even beyond the point 
where it could potentially evolve into something useful) would be difficult and require either knowledge of 
or assumptions about the graph topology. For example, suppose we base our initial population on 
permutations from a straight line between the start and end points that lie on different sides of a mountain. 
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Figure 7: Four map snapshots of the Stanford area 

It may be that the only path is a roundabout path that is radically different than any of the initial guesses 
would suggest. 

Randomly choosing the waypoints to lie anywhere on the map would also make nearly every 
member of the initial population useless as the subproblems would likely be bigger than the given problem. 
For example, consider the a case where the first waypoint is the starting point, San Francisco, the second in 
San Jose, the third back in San Francisco, and the last in Fremont, our destination. Solving the problem 
directly is easier than solving the first subproblem. 

 
6. Conclusion 
 

A genetic algorithm approach offers a useful alternative to traditional graph search methods. 
Unlike deterministic heuristic based search algorithms, it is unlikely a genetic algorithm will repeatedly 
make the same kinds of mistakes. Additionally, this approach is effective even in the absence of 
simplifying heuristics used by most map search programs making it effective on general graphs. For 
extremely large graphs, it can find a close to optimal solution where an exhaustive search seeking a perfect 
solution would fail.  

Heuristic search algorithms can be more effective in restricted domains. For example, a genetic 
algorithm doing address to address routing on a website would be impractical because of the computational 
expense. A set of heuristics hand coded for road map searches can obtain an answer in a fraction of a 
second as compared to the several minutes required by the genetic algorithm approach. However, the 
genetic algorithm approach is an appealing alternative to traditional search methods in problem spaces for 
which it is difficult to construct effective heuristics.  
 
Appendix 1: Automatic Extraction of Connectivity Graph from Yahoo! Maps 
 
 A connectivity graph of real-world data was extracted from about 4300 images automatically 
downloaded from the Yahoo! Maps website. These images were stitched together to make a single 24000 x 
37000 image which was then converted into a connectivity graph by way of various image processing 
techniques described below. 
 
Step #1: Downloading the Map Images 
 
 A distributed perl script downloads many side-by-side map snapshots from the website. The 
desired longitude and latitude of the snapshot is encoded into the image URL. The conversion ratio 
between longitude/latitude and image pixels was 
calculated manually and then used to direct the perl 
script to systematically download side-by-side 
snapshots of the entire bay area. 
 
Step #2: Making a Single Virtual Image 
 
 Knowing the conversion ratio between 
longitude/latitude and image pixels permits us to 
treat the many snapshots as a single virtual image. 
When a composite image is requested that spans 
multiple snapshots, each snapshot is loaded and the 
appropriate portion copied into a bitmap for 
manipulation by the image processing steps below. 
To generate the connectivity graph, a huge 
composite image is extracted that encompasses all 
the snapshots and is about 840 MB in size.  
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Figure 8: Composite map image of bay area after road 
extraction 

 
 
 
 
 
 
 
 
 
 
Figure 9: Numbering of 
pixels in a 3x3 filter matrix
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Step #3: Extracting Freeways and Secondary Roads 
 
 Dealing with such a large image can be cumbersome since it cannot fit entirely within main 
memory. To speed up future processing, we construct 
a lower resolution image that contains only freeways 
and secondary roads. Freeways and secondary roads 
can be identified by their color. The 24000 x 37000 
pixel composite image is broken into 20x20 blocks. If 
a block contains part of a freeway, the corresponding 
pixel in a smaller 1200 by 1850 bitmap is set. The 
presence of a secondary road will set a different bit in 
the corresponding image. Since the pixels in the 
resulting image are treated as bit masks, we can 
identify where freeways and secondary roads intersect 
by looking for pixels where both bits are set.  
 
Step #4: Make Roads One Pixel Thick 
 
 To simplify extraction of the connectivity 
graph, it is desirable for all the roads in the image to 
be only a single pixel wide. A flood fill algorithm is 
used later on to trace out paths between intersections 
through the image and could potentially be confused 
by roads that are wider than one pixel.  
 A traditional erosion filter is inadequate 
because it will disrupt the connectivity of the graph. It 
will destroy features that are already only a single 
pixel wide. We therefore implement a filter that 
considers a 3x3 block of pixels and is used to 
determine whether the center pixel should be erased. 
The filter asks the following question: if the center 
pixel were to be removed, would connectivity 
between the remaining (outer) pixels be disrupted? If 
not, the pixel will be removed.  
 We scan the outer pixels as numbered in figure 9 and count the number of state changes. For 
example, if pixel 5 is set and pixel 6 is not then we have a state change. If there are only two state changes, 
connectivity will not be disrupted. If there are more than two or no state changes, connectivity will be 
disrupted and the pixel should be left alone.  
 
Step #5: Scan for and Mark Intersections 
 
 We begin constructing the connectivity graph by locating all the street 
intersections and creating a node for each. This is done with a filter that scans a 
3x3 matrix in a manner similar to above, except that it requires more than 4 
state changes. Imagine that the filter is centered on the intersection of two 
roads. In this case the center pixel would be lit, as would #2 and #4, causing 4 
state changes. This will highlight all pixels that are near intersections. One 
problem with using a finite resolution image is that when many roads come 
close together they will be treated as a single large intersection. 
 After highlighting pixels that are near intersections, we scan the 
image from top to bottom making a list of all nodes. When an intersection 
pixel is found we flood fill the region to make a list of all connected pixels. 
The x and y coordinates of these pixels are averaged to determine the node’s location.  
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Step #6: Flood Fill From Intersections to Form Connectivity Graph 
 
 To obtain the arcs in the graph we walk the pixels starting from each intersection. Each pixel on 
the edge of the intersection is used as a seed point for a flood fill algorithm that will trace out the road and 
stop on the next intersection. Once we hit an intersection we enter the arc and the cost determined by 
summing the number of pixels walked. Red (freeway) pixels are weighted less than yellow (secondary 
road) pixels to reflect the lower cost of travel by freeway. 
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