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Abstract:  This paper develops enhanced material interface reconstruction techniques using 
genetic programming.  Material interface reconstruction is the attempt to recreate high resolution 
material placement in computational meshes given only the percentages of materials at the coarser 
level of cells in the mesh.  Previous techniques have been designed to create either accurate 
percentages or smooth interfaces, but not both.  This paper suggests evolved modifications to 
known techniques as well as novel methods to combine the two goals of material interface 
reconstruction. 

 
1  Introduction and Overview 
 
Material interface reconstruction is a technique in scientific computation which attempts to recreate the shapes and 
placement of materials and their boundaries in cells of a computational mesh.  This reconstruction is based on only 
the percentages of various materials in a cell of interest and in surrounding cells.  Previous approaches have focused 
on either accurately reconstructing the percentages of materials or on reconstructing smooth, realistic looking 
interfaces, and there has been little success combining the two ideals.  This paper examines modifications to the 
known techniques using genetic programming (GP) to enhance accuracy of the better looking techniques and the 
believability of the accurate techniques. 

Section 2 explains more about material interface reconstruction and describes previous work in this field.  Section 3 
describes the approaches used for solving the problem.  Section 4 describes methods common to all attempted 
solution approaches.  Section 5 details the method, results, and discussion for the first approach, and Section 6 
details the method, results, and discussion for the second approach. Section 7 concludes our study and Section 8 
suggests directions for future work. 
 
2  Background 
 
Scientific simulation codes have been simulating physics on a wide variety of problems for decades.  These types of 
simulations divide the world using a computational mesh with thousands to millions of “cells”, much like the grid on 
a sheet of graph paper.  One thing common to many of these simulations is that every point in space must be 
associated with a certain type of material, be it water, air, or metal.  Finite element (FE) codes, however, in some 
ways have an easier problem than computational fluid dynamics (CFD) codes, because every cell in an FE mesh is 
usually a single material.  CFD problems, on the other hand, often involve hydrodynamic calculations where the 
materials can move faster than a mesh can keep up, for example in fluid instability simulations such as those of 
Rayleigh-Taylor turbulence.  In this case, the mesh could tangle itself into an unsolvable problem without the ability 
to move materials independent of the mesh.  The far extreme of this is a pure rectilinear (Eulerian) mesh, where the 
mesh stays constant and materials move freely through the mesh.  Usually the resolution of the computational mesh 
is not high enough to accurately represent the material structure of the underlying physical world, so instances often 
exist in CFD where a cell is mixed: it contains two or more materials, each in a different region of the cell. 

Since the materials can now necessarily be of greater resolution than the mesh proper, the question of how to keep 
track of this material information becomes a problem.  The typical method of storage has been to store in each cell 
just the material volume fractions (VFs), or the percentage of the cell filled with each material.  However, since the 
shape of the interface is then not stored, the difficult part of visualizing results from these simulations involves 
determining what the materials looked like based purely on what volume fractions are stored for each material in a 
cell.  Methods of reconstruction and tracking of these mixed material interfaces have been researched since the 



1960s.  They are important for visualization, but they are also important for physical simulations themselves since 
an inaccurate reconstruction can give inaccurate results. 

As an example, let us use a simple 3x3 cell mesh where exactly the bottom half of the 
mesh is water and the top half is air.  This means the top three cells are completely 
air, the bottom three cells are completely water, and the middle three cells are half 
water and half air; figure 1 shows the volume fractions of air and water in each cell.  
These three middle cells are mixed, and it is the reconstruction method which must 
determine which portion of these cells is air and which is water.  For this paper all 
fitness cases are 3x3 grids where the algorithm must determine the interface in only 
the center cell, and the eight surrounding cell volume fractions are used only for contextual information.  In this 
simple example, it is clear that the center cell is “correctly” reconstructed by assigning water to the bottom half of 
the cell and air to the top half of the cell.  Other examples are not quite as easy to solve; for example, in this case 
correctness should be defined not only in terms of accurately recreating an interface which covers exactly half the 
cell of interest, but that it put the water in the bottom half. 

One of the first methods for material interface reconstruction (MIR) is a method which uses tracking particles to 
define the interface (Amsden, 1966).  Noh and Woodward (1976) created the simple line interface calculation 
(SLIC) which determines the material interface using these volume fractions.  It is a piecewise constant method 
which aligns the material interface with one of the major coordinate axes.  Also originating at this time were similar 
piecewise constant/stair-stepped methods such as the volume-of-fluid (VOF) method (Nichols and Hirt, 1975). 

An improvement to these methods came with piecewise linear interface calculations (PLIC) such as the one from 
Youngs (1992).  These methods involve two steps for the reconstruction.  First, calculate the slope of the interface 
using a window around the cell of interest, often using the gradient of volume fractions.  Second, calculate the 
intercept of that interface line such that it intersects the exact volume fraction in the cell of interest.  The process is 
repeated for each material.  Using the above example, the PLIC method would first decide that the water-air 
boundary in the cell of interest should be a horizontal line with water below and air above, and it would then decide 
that the boundary should be placed exactly 50% between the bottom and top of the cell. 

However, these methods are all very concerned not just with the interface reconstruction, 
but more so with the interface tracking using this interface.  In other words, these 
algorithms are not designed to look correct, but to perform correctly within a CFD or 
hydrodynamic code.  This makes visualization of material interfaces using these methods 
unappealing. Their primary drawback is that the interface is never designed to be 
continuous across cells; visualization would clearly show the stair stepping and 
discontinuities inherent in these algorithms (see figure 2 for an example).  In fact, it is 
impossible using only a single linear interface to obtain an interface which is both 
accurate and continuous across cell boundaries, because it can only approximate what 
should in many cases be a curved line. 

The MeshTV scientific visualization code of Lawrence Livermore 
National Laboratory uses a different method to reconstruct and visualize 
mixed material meshes.  The basic premise of this algorithm is the 
following.  First, create a linearly interpolated variable over the mesh 
using the volume fractions for each material.  This is done by averaging 
the volume fractions of each material in all four cells surrounding a mesh 
node to that node.  See figure 3 for an example in the central cell from the 
water/air mesh example from above.  Second, 

using an interpolation function such as bilinear interpolation, evaluate the function for 
each material at every point within the cell.  Where the value for water is greater, it is 
determined that the point contains water, and where air is greater, it is determined that the 
point contains air.  For this example, the values for water are greater than 0.5 underneath 
the horizontal center line, and the values for air are below 0.5 underneath that same line.  
Thus the bottom half of the cell becomes water and the top half becomes air. 

This approach has one distinct advantage, which is that it is guaranteed to generate 
continuous interfaces from one mixed cell to the next (see figure 4 for an example); the 
values obtained by averaging the four cell values to the node are the same no matter which 
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cell of the four we are considering.  This means the interpolant generates the same values at any edge no matter 
which of the two cells along the edge we are considering.  In addition, it generates boundaries which look 
subjectively “good” – the water in a mixed cell will be near the water in neighboring cells, and the air in a mixed 
cell will be near the air in neighboring cells.  However, unlike the historical techniques, it makes no guarantees 
about volume fractions.  In the above example it happened to create a boundary which gave exactly half the area to 
water and half to air, and the more water/air that is supposed to be in the cell, the more it will generate.  However, 
this technique makes no effort to be exactly accurate and will in general not be so; as mentioned above, with so few 
degrees of freedom it may be impossible to ensure accuracy if it ensures continuity. 

There is one enhancement to this technique worthy of note: the central cell of interest 
may be subdivided into a 2x2 arrangement, requiring nine values instead of just four for a 
single cell (see the circles in figure 5).  The values at the corners are determined as 
above, the values at the edges are determined by averaging the volume fractions from 
two neighboring cells, and the value at the center of the cell is simply the original cell 
volume fraction.  This subdivision empirically works well to allow extra curvature when 
needed within a cell to improve accuracy, although still no accuracy guarantees are made. 

 
3  Statement of the Problem 
 
This paper describes in detail two different approaches to improving upon existing techniques.  The first takes the 
MeshTV algorithm with subdivision and attempts to change the method where values are assigned to the nodes in an 
attempt to improve the accuracy while maintaining the continuous boundaries and the subjective visual correctness. 

The second approach takes the PLIC algorithm, which creates linear boundaries within a cell that ensure accurate 
volume fractions, and extends it to use conic sections instead of purely linear interfaces.  It is also more general in 
that it attempts to get the accurate volume fractions using the same set of functions as the ones which determine  the 
shape of the interface.   

 
4  Common Methods 
 
This study used the LIL-GP genetic programming software from Michigan State University. 

Both approaches indirectly create a function for each material which is then evaluated at every point in the cell.  
Where the value of this function is greater when given the first material’s volume fractions as input, this determines 
that the first material exists at that point.  Where the value of this function is greater for the second material, it 
determines that the second material exists at that point. 

The difference between the problem setups is that the first approach creates function trees which create values used 
for an interpolation function, while the second approach creates function trees which create constants to a quadric 
function. 

Fitness cases are a set of 3x3 cell volume fraction information for two materials.  Some of these fitness cases are 
used to evaluate only the accuracy of the solution in terms of the generated volume fraction.  Others are used to 
determine not only total amount of each material, but its correct placement within the cell as well. 

To evaluate fitness for accuracy of volume fraction, the total percentage of points within the cell of interest of each 
material determines its experimental volume fraction.  This is compared with the original target volume fraction 
listed for that cell to determine the error. 

To evaluate fitness for correct material placement within the cell, every point in the cell is predetermined to be one 
of the two materials, and error is calculated as the percentage of points which have the wrong experimental material 
compared to the target material for that point. 
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5  Extending the MeshTV Algorithm 
 
5.1  Methods 
 
Table 1 summarizes the preparatory steps for the extended MeshTV algorithm with 2x2 subdivision.  This algorithm 
produces nine values used for control points of an interpolation function. 

There are three trees for each individual.  One is the NODE tree.  This has as terminals functions of all four cells 
surrounding the point at each corner of the cell.  It is evaluated four times, once at each corner, with the four 
appropriate cells used as the input each time.  The second is the CELL tree.  It has as terminals functions of all nine 
cells in the problem, and it is evaluated once for the point in the center of the cell.  The third is the EDGE tree.  It 
has as terminals functions of the two or six cells surrounding each edge of the cell.  It is evaluated four times, once 
at the point in the center of each edge, with the two and six appropriate cells used as the input each time.   

The if0any functions take two input subtrees, and evaluate the first if any of the input cells is 0 and the second 
otherwise.  The if1any functions are similar but check for a 1 in any of the input cells. 

For example, the Nif0any function, when called on the upper-right-hand node evaluates the first input if any of the 
upper-right-hand four cells’ VFs are 0 and the second input otherwise.  The Eminall6 terminal, when called on the 
node at the center of the right-hand edge, returns the minimum value of all 6 cell VFs on the right-hand side of the 9 
cell window. 

Fitness was evaluated as the root-mean-square average of all fitness cases’ error in volume fraction. 

A population of 2000 was used.  With an initial depth limit of three, the search space is roughly 10 million per tree 
initially, and more when individuals may expand their depth.  All structures of the search space are likely initially, 
and all structures of the expanded search space may be created. 

Table 1: Tableau for the Enhanced MeshTV Algorithm 
Objective: Find a set of functions in symbolic form that take a set of volume fractions for a cell of interest 

and the eight surrounding cells and return a set of nine values for the material that, when 
bilinearly interpolated, is greater than the corresponding interpolant for other materials in the cell 
for points covering the exact volume fraction of that material for the cell of interest. 

Terminal set: All trees: ERC (50% are –1.0 to 1.0, 50% are 2^n with n = -2..+2) 
Tree NODE: Nminall, Nmaxall, Nsumall, Navgall, Nmaxdiffall 
Tree CELL: Cminall, Cmaxall, Csumall, Cavgall, Cmaxdiffall, Ccentervf 
Tree EDGE: Eminall2, Emaxall2, Esumall2, Eavgall2, Emaxdiffall2, 
                     Eminall6, Emaxall6, Esumall6, Eavgall6, Emaxdiffall6 

Function set: All trees: +, -, / (safe), *, ^ 
Tree NODE: Nif0any, Nif1any 
Tree CELL: Cif0any, Cif1any 
Tree EDGE: Eif0any2, Eif1any2, Eif0any6, Eif1any6 

Fitness cases: 15 arrangements of a set of 3x3 volume fractions (VFs) for two materials, used to measure 
volume fraction accuracy.  See figure 6 

Fitness: Hits: the number of fitness cases where the reconstructed VF is within 5% of the target 
Standardized and Raw Fitness: the RMS average of the error across all fitness cases 

Wrapper: None 
Parameters: M=2000, G=1000;  Operations: crossover=90% reproduction=10% 
Termination:: The first function set that scores 15 hits is selected as the best-of-run and breeding halts. 
 
5.2  Results 
 
The best-of-generation individual from generation 0 scored 5 hits with a fitness of  0.1001. 

NODETREE: 
  (/ (+ nsumall nmaxall) (+ navgall nmaxdiffall)) 
CELLTREE: 
  ccentervf 
EDGETREE: 
  eminall2



 

                 
 

                 
 

                 
 

                 
 

                 
 

Figure 6: 15 fitness cases and results for best of run individual for the extended MeshTV algorithm 
(given volume fractions are for the dark material) 



The best-of-run individual was from generation 30 scoring 15 hits with a fitness of  0.0258. 
 

NODETREE: 
  navgall 
CELLTREE: 
  (/ (- (+ (cif0any (- 2.00000 ccentervf) 
                    (- (+ ccentervf cminall) cminall)) ccentervf) cminall) 
     (+ (/ cminall 0.25000) cmaxall)) 
EDGETREE: 
  eavgall2 

 
5.3  Discussion 
 
Using the terminals such as Navgall or Eminall2 instead of individual cell volume fractions ensures that the same 
value is used for each interpolation point no matter which cell of interest is being considered.  This by itself 
guarantees continuity of the resulting interface across mixed cells. 

Note the best individual from generation 0.  The CELL tree happened to correspond exactly with the naïve choice 
from the original MeshTV algorithm.  The EDGE tree chose the minimum of the two edge values instead of the 
average.  The NODE tree was something more complex, involving the sum, average, maximum, and maximum 
difference of the four cells around each node. 

Now examine the best individual of the run, from generation 30.  The NODE and EDGE trees both corresponded 
exactly with the naïve choice from the original MeshTV algorithm.  The CELL tree was something more complex 
this time.  Because this modification is so simple, it could be dropped straight in to the production MeshTV code as 
a replacement for the function used to find values for the point at the center of the cell and instantly improve the 
accuracy of an algorithm which already produces visually appealing results.  In addition, since the genetic program 
was prepared in such a way as to maintain continuity, no quality should be lost as a result of this replacement. 

Plots of the best-of-run individual for the 15 fitness cases are seen in figure 6 on the previous page.  In these plots, 
the numbers are the volume fractions of the dark material.  It is apparent in this figure that this individual results in 
an approximately correct volume fraction in the central cell of interest, and that it places the dark material in the cell 
of interest in a realistic placement relative to the larger amounts of dark material in 
surrounding cells. 

Success obtained here left time for further study, so the decision was made to extend the 
project with extra experimentation.  One extension involved an attempt to improve the 
realism of the results further.  For the motivation, take the best of run individual’s result for 
fitness case 8 as seen in figure 7.  Note that although there is a constant value horizontally 
across all volume fractions, the resultant shape will have an undulating interface.  It will be 
continuous across mixed zones, but it will not be a straight line. 

Since one can argue that this should be a straight line interface 
(or two of them, more specifically), it was decided that more 
degrees of freedom were needed.  The next experiments changed 
the subdivision from 2x2 to 3x3, then 4x4. However,  it turns out that this was too much 
freedom with not enough constraints.  See figure 8 for an example – it was free to choose 
so many parameters now that it lost the need for any semblance of realistic looking 
interfaces.  Attempts to evaluate the “smoothness” of the interface and account for it in the 
fitness value proved too difficult to balance the smoothness and accuracy. 

The decision was made to try a different, far more ambitious approach altogether – one 
with even more freedom and at the same time more constraints.  This was the choice to 

attempt to extend the PLIC algorithm to deal with quadric interfaces, and at the same time add fitness cases 
specifically designed to ensure that individuals must “look good” before they can breed. 

 
 
 
 

 

 
Figure 7: best-of-run  

individual’s results on fitness 
case number 8

 
Figure 8: best-of-run result 
from 4x4 subdivision on 

fitness case number 3 



6  Extending the PLIC Algorithm 
 
6.1  Methods 
 
Table 2 summarizes the preparatory steps for the PLIC algorithm extended to quadric instead of linear interfaces – 
PQIC if you will.  This algorithm will construct a function of the form v=Ax^2+By^2+Cx+Dy+Exy+F. 

There are four result producing trees for each individual.  One results in the coefficients A and B of the squared 
terms (x^2 and y^2), with B evaluated by flipping the x/y inputs.  One results in the coefficients C and D of the 
linear terms (x and y), with D evaluated by flipping the x/y inputs.  One results in the coefficient E for the xy term, 
and one results in the constant coefficient F.  There are also five automatically defined function trees, with varying 
amounts of arguments, that can be used in the RPB trees. 

The cellXY terminals are the volume fractions of the nine cells, where X and Y are integers from 0 to 2.  The vd1 
and vd2 terminals are the centered difference approximations to the vertical first and second derivatives.  For 
example, vd1 is (cell21–cell01), and vd2 is (cell21 – 2*cell11 + cell01)/2.  The hd1 and hd2 terminals are similar 
but for horizontal derivatives, and d1d1,d1d2,d2d1,d2d2 are similar but for the two sets of diagonal derivatives.  
These are likely to be useful shortcuts based on domain-specific knowledge. 

The min2/3, max2/3, and avg2/3/4 functions are min, max, and averages of multiple input trees.  The if< and if> 
functions take four inputs and evaluate either the third or fourth argument depending on the comparison between the 
first two.  The if1, if0, if<1 and if>0 take three inputs and evaluate either the second or third depending on the 
comparison of the first input with 0 or 1.  The ifmix function is similar, but the second input is evaluated if the first 
is between 0 and 1 exclusive, and the third input is evaluated otherwise.  These are also likely to be useful. 

Fitness was evaluated as the RMS average of the errors across all 29 cases.  The first 16, however, were weighted to 
contain 90% of the error metric so that individuals were coerced to look good first, then become more accurate later.  
These fitness cases were simple cases with a known accurate solution, just as the air/water example from Section 2. 

For this approach, a much larger population of 50,000 individuals was used because of the immensity of the search 
space.  (Assuming only a few choices of ERC and an initial depth limit of three, this is still a search space of roughly 
3 billion.  With the tree allowed to increase its depth, this number certainly grows.)  All structures of the search 
space are likely initially, and all structures of the expanded search space may be created. 

Table 2: Tableau for the PQIC Algorithm 
Objective: Find a function in symbolic form that take a set of volume fractions for a material in a cell of 

interest and the eight surrounding cells, as well as an x/y pair (x and y in the range –0.5 to +0.5) 
and returns a value that, when evaluated at all x/y points in the cell, is greater than the 
corresponding function for other materials in the cell for points covering either the correct region 
or just the correct volume fraction of that material for the cell of interest.   

Terminal set: All trees and ADFs: ERC (50% are –1.0 to 1.0, 50% are 2^n with n = -2..+2), 
                cell00 through cell22, vd1,vd2, hd1,hd2, d1d1,d1d2, d2d1,d2d2 

Function set: All trees: +,-,/ (safe),*, min2, max2, avg2, avg3, avg4, abs, sqr, if<, if>, if>0, if<1, ifmix, if0, if1 
RPB trees: ADF0 through ADF5 
ADF1: ADF0 
ADF2: ADF0 and ARG0 
ADF3: ADF0, ADF1, ADF2 and ARG0 
ADF4: ADF0, ADF1, ADF2, ADF3 and ARG0, ARG1 
ADF5: ADF0, ADF1, ADF2, ADF3, ADF4 

Fitness cases: 16 arrangements of a set of 3x3 volume fractions (VFs) for two materials used to measure 
physical accuracy, and 13 arrangements of a set of 3x3 volume fractions (VFs) for two materials 
used to measure volume fraction accuracy 

Fitness: Hits: the number of fitness cases where the reconstructed VF is within 5% of the target 
Standardized and Raw Fitness: the RMS average of the error across all fitness cases, with a 90% 
weighting on the first 16 

Wrapper: None 
Parameters: M=50000, G=10000;  Operations: crossover=85% reproduction=10% mutation 5% 
Termination: The first function set that scores 29 hits is selected as the best-of-run and breeding halts. 



6.2  Results 
 
The best-of-run individual was from generation 221, with 23 hits and a fitness of 0.19658. 
 

 
6.3  Discussion 
 
Figure 9 shows progress of the best-of-
generation individual from generations 0 
through 3 on four of the fitness cases.  The 
first two fitness cases are from the “looks 
good” category and were highly pressured to 
match the known placement of materials 
within the cell.  The other two were 
pressured much less, and to match only the 
known volume fraction of the materials in 
the cell.  It is worthwhile to note that the 
need for the looks-good fitness cases was 
derived from previous failed solutions that 
gave accurate volume fractions but 
unphysical placement.  It appears that their 
existence improves the physical realism of 
the solution even on the normal fitness cases. 

The best-of-run individual is fairly complex, 
with a depth of 23.  This run clearly obtained 
only a partial solution, since the best-of-run 
individual scored only 23 out of 29 hits.  
However, it demonstrated good progress 
towards a solution.  The limits on time and 
available compute power let this run use 80 
hours and 850 MB of RAM on a 1GHz 
Pentium III workstation, such that it was 
killed by the experimenter before reaching 
generation 250.  One of the few observations 
that can be made about the best-of-run 
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Figure 9: results from the best-of-generation individual for four fitness cases of the 
PQIC algorithm (given volume fractions are for the dark material) 

[[x^2 || y^2]]: 
 (/ hd2 (max2 (+ (- (- (sqrt (max2 (sqrt (- (- (/ d1d2 (- (sqrt (avg2 (min2 hd2 ADF0) (if>0 d1d2 ADF5 d1d1))) (avg2 (avg2 d1d2 
(avg2 (min2 hd2 ADF0) (min2 cell21 d2d2))) (avg3 (ADF2 cell10) (- (max2 (/ d2d1 ADF5) (sqr ADF5)) d2d2) (- (sqrt (sqrt (if0 (+ (/ 
d2d1 ADF5) (max3 d1d2 hd2 (- cell20 cell00))) cell11 ADF1))) (min2 cell21 d2d2)))))) (min2 cell21 d2d2)) d2d2)) cell12)) (min2 
cell21 d2d2)) (sqrt ADF1)) d2d2) (max2 (/ d2d1 ADF5) (sqr ADF5)))) 
[[xy]]: 
 (if0 (sqrt (avg2 (sqrt ADF1) (- (/ d1d2 hd1) (- (sqrt ADF1) (avg2 d1d2 (avg2 d1d2 (- (/ (+ (avg2 d1d1 cell21) d2d2) hd1) (/ hd2 
(max2 (min2 cell21 d2d2) (sqr ADF5)))))))))) cell11 ADF1) 
[[x || y]]: 
 (max3 (- (if0 cell20 cell22 vd2) (ADF3 (sqrt ADF1))) hd2 (max2 (max3 (- cell20 cell00) hd2 (/ d1d2 hd1)) cell12)) 
[[1]]: 
 (sqrt (- (sqrt (- (sqrt ADF1) (avg2 d1d2 (- (/ d1d2 hd1) (min2 cell21 d2d2))))) (min2 cell21 d2d2))) 
ADF0: 
 (avg3 hd1 (abs cell00) vd1) 
ADF1: 
 (/ cell01 (if< (if1 ADF0 hd1 d2d2) (if> cell11 (/ cell01 (if< (if> cell11 ADF0 d2d2 (/ cell01 (if< (if> cell11 ADF0 d2d2 cell22) 
(avg2 cell22 ADF0) (abs d1d2) (/ cell22 cell12)))) (ifmix d2d1 hd2 cell01) hd1 (avg2 cell12 (if< (/ cell01 (avg2 cell22 ADF0)) 
(avg2 cell22 ADF0) (if1 ADF0 hd1 d2d2) (/ cell22 cell12))))) d2d2 cell22) (/ (/ cell01 (avg2 cell22 ADF0)) (abs cell02)) cell11)) 
ADF2: 
 (avg2 (avg2 (- ARG0 vd2) (avg2 d1d2 cell00)) (sqr d1d2)) 
ADF3: 
 (/ (/ hd2 (/ (/ hd2 (/ (/ hd2 cell11) d2d2)) d2d2)) d2d2) 
ADF4: 
 cell11 
ADF5: 
 (- (sqrt cell21) (min3 (min3 (max2 d2d2 cell12) (- cell02 (min3 d2d2 (- cell22 (avg3 (- (sqrt cell21) (min3 d2d2 (min3 d2d2 (- 
(min3 (max2 d2d2 cell12) (ADF3 vd2) (min3 d2d2 (min3 (min3 (min3 (max2 d2d2 cell12) (ADF3 vd2) (min3 d2d2 (min3 d2d2 (min3 d2d2 
cell10 cell02) (min3 d2d2 (- cell22 (min3 d2d2 (- cell22 (min3 d2d2 cell20 cell02)) cell02)) cell02)) cell02)) cell20 (max2 d2d2 
cell12)) cell20 (min3 (min3 d2d2 (min3 (- cell02 (min3 d2d2 (- cell22 (avg3 vd1 (sqrt cell21) cell21)) cell21)) cell20 cell02) 
cell02) (- cell22 (min3 d2d2 cell20 cell02)) cell02)) cell02)) (min3 (ADF4 (sqrt (- cell22 (min3 d2d2 cell20 cell02))) (min3 
(avg3 hd1 d1d1 cell10) (avg3 cell20 cell11 cell10) (ifmix d1d2 cell21 cell10))) cell20 (min3 d2d2 cell20 cell02))) cell02) 
cell02)) cell20 (min3 d2d2 (min3 d2d2 (sqrt cell21) cell02) cell21))) cell21)) (min3 d2d2 (- cell22 (min3 d2d2 cell20 cell02)) 
cell02)) cell20 (min3 d2d2 (min3 d2d2 (min3 d2d2 cell10 cell02) (min3 d2d2 (- cell22 (min3 d2d2 (- cell22 (min3 d2d2 cell20 
cell02)) cell02)) cell02)) cell02))) 



individual is that it did make use of the ADFs, and there seems to be a lot of repetition of subexpressions.  This 
implies that a better structured problem may have had a better chance of running to completion. 

As such, although promising, it does not yet seem a solution made for practical application.  In addition, although 
the use of higher-order curves than the normal PLIC algorithm in combination with fitness cases designed to make 
physically believable results implies greater connectivity across mixed cells, it needs to be tested on a wider array of 
cases and on more real-world problems to confirm this in a more general sense. 

 
7  Conclusions 
 
We have presented an extension to the MeshTV material interface reconstruction algorithm which is easy to 
implement and replace in the tools which use this algorithm.  It continues to provide believable, continuous 
interfaces but greatly improves the accuracy of the generated volume fractions. 

In addition, we present good progress toward a usable version of a piecewise quadric interface construction (PQIC) 
algorithm which generates very smooth, believable interfaces within a cell, as well as accurate volume fractions. 

 
8  Future Work 
 

The PQIC algorithm would make a good subject of further experimentation and research, as it has a great amount of 
freedom to solve the problem well.  Using different function and terminal sets, a larger population and a parallel 
computer on which to run the evolution would be an excellent start.  In addition, a larger window of cell volume 
fractions, a larger set of fitness cases, and possibly a higher order function than a quadric, would likely lead to a 
more manageable, more easily implemented result with smoother and more physically realistic interfaces than any 
known solution. 
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