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Abstract

Previous work has established that it is possible to distinguish between multiple users based solely on
keystroke timing data. This can be trivially extended to authenticating a single user based on how well a
particular set of keystroke timing data matches a previously collected set. The challenge lies in deciding
exactly which parts of the timing graph are most important in identifying a user. This is in contrast
to the portion of the data which varies from session to session or the data which is roughly equivalent
among a set of users. In this paper, we apply the techniques established in the Genetic Algorithms field
to dynamically select, on a per-user basis, the weights applied to each piece of the key-hold and inter-
keystroke times to obtain a close-to-optimal template which can then be used to make an authentication
decision. We then show that the distinguishing capabilities of these dynamically generated templates
exceed the abilities of previously established static methods.

keywords: keystroke analysis, genetic algorithms, authentication, identification, machine learning, pattern
recognition, classification, interkey times, key hold times, multi-factor.

1 Introduction and Overview

1.1 Authentication Mechanisms

Verifying a person’s identity, also known as authentication, is a necessity for many environments. In the
financial world, authentication has traditionally taken the form of a handwritten signature. Through a
combination of learned behaviors and physiological development, it is extremely difficult to forge a signature
without artificial assistance (in the form of a copier, for example). In recent times, there has been an
increased emphasis on the use of passwords for identity verification. The problem of assuming an identity
has moved from performing some physical act to learning some bit of knowledge. More generally, there are
four major categories of authentication mechanisms [JG90]:

tokens or objects: Any identification scheme which requires the possession of a physical object falls into
this category. Keys, smart-cards, and ATM cards are all examples of tokens that have been used for
identification.

knowledge: This encompasses authentication protocols which rely on a whether or not the target user
knows some piece of information. Commonly, this information takes the form of a password, but it
might also be the combination to a padlock, the pin to access an account, etc.

actions: Some mechanisms require the user to perform an action and possibly examine some particular
behavior or facet of that action. As indicated above, signatures fall within this category.



physiology: A whole field of identification solutions fall within the realm of verifying some physiological
aspect. Also known as biometrics, mechanisms such as fingerprint scanning, retinal scanning, face
recognition, voice recognition and DNA testing all fall within this category.

A given mechanism might fall into any subset of the above categories, and in practice, many identification
schemes do require multi-factor authentication. A common example is withdrawing money from an Auto-
mated Teller Machine (ATM): one is required to provide a physical object in the form of the ATM card as
well demonstrating a knowledge of the appropriate PIN.

One of the disadvantages of multi-factor authentication as it applies to computer systems is that it
typically requires additional, possibly specialized, hardware, along with the associated costs that extra
hardware brings. In comparison, the use of a password for authentication is relatively cheap as most systems
already have a method for data input. The downside of using passwords alone is that users tend to choose
passwords which are easily guessed. In a study of passwords chosen by users where there were no constraints
put on the choice of password, Robert Morris and Ken Thompson found that of the 3289 passwords gathered,
86% could either be found in a dictionary or were sufficiently short such that they could be discovered in a
minimal amount of time [MT79].

1.2 Keystroke Analysis

A possible mechanism for increasing the security of passwords while maintaining the advantage in cost
afforded by the lack of need for additional hardware was proposed by Gaines et al. in 1980. They found
that the timing patterns which occur in the normal course of typing can be used for identification [GLPS80).
By recording the precise time between each consecutive keystroke (digraph latency times), and comparing
against previously collected data for the target user, they were able to determine, with a high degree of
confidence, whether the typist was actually the target user. It was further determined that certain digraph
times were more reliable than other and more efficient in determining identity. Gaines et al. labeled these
core digraph times.

The challenge faced by Gaines and later researchers in determining identity based on keystroke dynamics
lies in reducing the amount of typing that the user must do while at the same time maintaining the ” certainty”
of the authentication. There are multiple approaches to accomplishing this. The mechanism proposed in
this paper is to dynamically create, when a user is first added to the system, a keystroke template for the
user. This differs from previous approaches in that the weighting of each digraph is customized on a per-user
basis rather than on a system-wide basis.

1.3 Genetic Algorithms

The approach we propose for generating this template is based on a technique first established by John
Holland [Hol75]. Genetic algorithms are a form of machine learning and adaptation based on the ideas
of evolution in nature. The basic idea goes as follows: The solution to a given problem can generally be
encoded in some string representation. Certain of these strings are better than others in the context of the
problem. If we start out with a population of random strings and we apply certain genetic operations such
as reproduction, crossover, and mutation according to some fitness criteria, the hope is that the strings will
improve over time.

The fitness function is of critical importance to the success of the genetic algorithm. Since the algorithm
itself has no knowledge of the actual meaning of the strings that it is operating on, ! the fitness function gen-
erally dictates which strings are selected for reproduction and therefore will continue on to a later generation.
Conversely, the fitness function also dictates which strings are somehow bad and will die off.

The actual mathematics behind the success of genetic algorithms is beyond the scope of this paper, but
intuitively, they take advantage of all of the information present in a population of strings (or genes), to
implicitly create a set of weights. These weights are not explicitly used in any of the operations, but they
determine which building blocks (schemata) are most likely to be present in later generations [Gol89]. It is
this building block approach which allows genetic algorithms to emulate human thought and synthesis.

IThere are occasionally exceptions to this for situations where it is necessary or desirable to have problem-specific crossover
and/or mutation operations. This is commonly the case when only a small subset of total possible strings are valid.



Despite the large domain over which genetic algorithms may be applied, there are certain types of
problems where they are especially successful when compared to other methods. In particular, evolutionary
algorithms are best suited to problems where the solution is heavily interdependent in a non-linear way. An
example provided by Koza is the design of a giraffe [K0z92]. If one were to optimize the features individually,
then the giraffe would probably not have survived as it has. After all, the long neck is only optimal in the
context of the herbivorous nature of the giraffe, the leafy food environment with little competition, and the
long agile tongue. If any of these other features is missing, then the long neck becomes a detriment in that
it is more fragile than a short neck. If we were to try to optimize these features individually, we would end
up with a less fit individual.

In the rest of this paper, we will further explore this last idea as it applies to the keystroke latency
pattern recognition problem. Section 2 details the exact form of the problem that we are analyzing along
with the methodology used in collecting the keystroke timing information. Section 3 provides the tableau
for the genetic algorithm and discusses the fitness function along the operational parameters used in our
solution. In section 4 we give the results of our research along with a comparison to statically generated
results. We provide a more detailed analysis of the results in section 5. Finally, in section 6, we close and
discuss possible areas of future research.

2 Data Collection

2.1 General Strategy

The general keystroke input characteristics, as well as the program that we instrumented to gather the user
data is based on a particular use model for authentication. While the suitability of genetic algorithms for
analysis of keystroke timing data should not be limited to this particular scenario, ? we will use it as a
starting point for the rest of our analysis. We assume the following:

e There exists some application or operating system with a requirement of user identification.

e This application either resides locally on the client machine or it has direct access to the client termi-
nal/keyboard.

e There exists some setup phase for a particular user where baseline data can be gathered. During this
time, the user is prompted to type some amount of text. This phase is synonymous with choosing an
initial password on a timeshare system.

e The data gathered in the setup phase is processed, producing an identification template which explicitly
defines the authentication criteria. This processing need not occur in real-time, and would likely take
place at some point after the setup phase, when the system is idle.

e At any point after the processing phase, the user identifies himself/herself by typing some text in
response to a prompt. This template established in the previous step is applied to this response, and
the authentication is either accepted or rejected.

e Optionally, the incremental user authentication data can be used to further refine the identification
template.

2.2 Input Characteristics

There are a number of possible scenarios under which keystroke latency data may be collected and analyzed.
For the purposes of this project, we chose to obtain multiple samples of a short, fixed string from each test
subject. While shorter strings provide less data and are therefore more difficult to reliably use for authenti-
cation, they are also much more practical, in the sense that most users are unwilling to type paragraphs of
text just to log in to their application.

2In fact, genetic algorithms are even better suited to the analysis of free-form text, due to the inherent difficulty of applying
a rigorous mathematical or statistical model to a larger body of text.



Key Intervals (Click for Hold Times)

Please enter the string "'dynamic keystroke via genetics” followed by <enter>..
If you make a mistake, just hit <backspace> followed by <enter>.

Good entry. Please enter the string again. [9 more entries needed)]

Good entry. Please enter the string again. [8 more entries needed]

The string you just entered doesn't match the target string. Please try again...
The string you just entered doesn't match the target string. Please try again...
The string you just entered doesn't match the target string. Please try again...
Good entry. Please enter the string again. [7 more entries needed]

dynamic keystroke via genel

Figure 1: a sample input session

In addition to requiring relatively short authentication tokens, we also used the same four words for each
user: “dynamic keystroke via genetics”. This differs from authentication schemes where the users type words
familiar to them, in that the input timing characteristics are not quite as consistent. While our scheme
presents additional difficulty in this respect, it also multiplies the amount of data that is available to be
analyzed. Even though we had a limited number of test subjects available (14), we were able to gather
sufficient data for analysis.

2.3 Baseline Data Collection

There is little keystroke timing data publicly available, so for the purposes of this experiment it was necessary
to instrument a program which prompted the user to type the keywords previously specified and record the
results. The program we created took the form of a java applet (figure 1) to allow for remote distribution
of the test program while at the same time satisfying the requirement that the actual program is running
locally on the target machine. This is necessary to ensure that the keystroke latencies can be recorded with
sufficient precision. > The actual data collection itself took place on a variety of client machines and web
browsers.

Each user was asked to enter the target string ten times. Any entries which did not match the target
string or which contained extra keystrokes were discarded and requested again. For each input string, the
duration for which each key was held (key hold times) and the time between consecutive key-presses (inter-
keystroke latencies) was recorded and displayed back to the user in the form of a timing graph. Additionally,
the data was transmitted back over the network to a central collection server. For analysis, every other input
from a given user was considered to be the baseline data for that user. The other five entries were used to
validate the resulting template.

2.4 Limitations

While we attempted to make the baseline data collection as unbiased as possible, there are still a few
limitations. Most notably, since the data was all collected from a given user in a single session, there is no
additional variance in the data due to the user’s mental state (i.e. tired, excited, hurried, etc.,) nor do we
capture the effects of slight variations due to different hardware (keyboard.) Finally, we applied no effort to
ensure a sufficient diversity in test subject, so it is unclear what effect it would have on the results to apply
the tests to a wider range of ages and/or ethnic groups.

3The Java timer APIs specify millisecond resolution. Looking at the actual data, it appears the most Java Virtual Machines
provide timing data at a 10ms. resolution.



3 Genetic Analysis Methodology

For the actual genetic algorithm analysis of the keystroke data, we used a slightly modified version of the
GENESIS 5.0 software [Gre90]. These modifications primarily took the form of additional hooks added to the
driver code to allow the enhanced reporting necessary for the figures in this paper. The other modification
was to use the ”Experiments” parameter to control which target user we are generating the template data
for. This differs slightly from the default behavior, which was to run multiple, independent experiments
on the same data. Other than these modifications, the software was used in a normal fashion with the
parameters and fitness function described below.

3.1 Tableau

Objective: To find an optimal set of weights and intervals for a
particular user’s baseline key hold times and interkey
latencies.

Representation Scheme: Structure: Fixed length string

Alphabet Size: K = 2 (binary)

String Length: L =120

Mapping: Each 10-bit group represents a floating
point value between 0.0 and 5.0. Each group of four
values represents the intervals and weights for a par-
ticular character’s hold time and interkey time.
Fitness Cases: Each set of template values is measured against the
five baseline inputs for the actual user (gain points for
accept, lose points for reject), as well as the baseline
inputs for each of the other users (lose points for ac-
cept, gain points for reject).

Raw Fitness: 5 points for each correct match

—5 points for each false negative

1 point for each correct rejection

—1 point for each false positive

Parameters: Population Size: M = 50

Generations: G = 2000
Termination Criteria: The algorithm terminates after G’ generations.
Result Designation: The individual with the greatest fitness value at the

end of the run is designated the result template.

3.2 Genetic Parameters and Operations

The major parameters to the genetic algorithm used in generating the keystroke templates were determined
primarily though trial and error. We began with the parameters first suggested by De Jong after a study of
the performance of genetic algorithms in optimizing a representative set of functions [De 75]. In particular,
his results indicated that a relatively low mutation rate (.001), a moderate crossover probability (.6), and
population size of 50 were optimal in many cases. We started with these values and varied them slightly,
plotting the results. Figure 2 shows a sample plot examining the effects of varying population size. It is
interesting to note that while doubling the population size suggested by De Jong has little effect, if we double
this again to 200, the performance drops off significantly. Other experiments validated De Jong’s suggestions
for crossover and mutation rates, so the final results were generated with the values indicated above.

Also discussed by De Jong is the generation gap parameter, which determines how many individuals are
carried over from generation to generation without being subject to the genetic operations. The primary
advantage in this strategy is that the best performing individuals are preserved as the run progresses. For
situations where this on-line performance is important,* a value of G < 1 may offer some advantage. Since
we are focusing on the case where our analysis runs off-line, we have set G = 1 for our experiments.

4the One-Armed Bandit problem being the classical example
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Figure 2: fitness evolution

The initial population was chosen at random and not primed in any fashion.

3.3 Representation

There are four sets of parameters that we chose to optimize in creating an authentication temple: hold-time
interval, hold-time weight, interkey-time internal, and interkey-time weight. The weights allow a greater
emphasis to be placed on those keystrokes and digraphs that more reliably identify a user. The greater
variance in the weight values, the more useful they are. Since these weights have no intrinsic meaning, and
only have an effect relative to the other weights, the actual interval of possible weights is unimportant. We
arbitrarily choose the interval as 0.0 to 5.0, with 1024 possible values in this range. (A 10 bit representation
per weight).

The interval values, on the other hand, do have intrinsic meaning. They represent a multiplier on the
standard deviation for a given time. An interval value of .5 would indicate that a test value is valid if it falls
within half a standard deviation (computed from the baseline data) of the baseline mean. Experiments with
the test data showed that this value almost always falls below 5, so we chose our interval for this set as 0.0
to 5.0 as well, with 1024 possible values in between.

Each of the four values per character, then, is represented in ten bits. The string ”dynamic keystroke via
genetics” contains 30 characters for a total gene size of 1200 bits. It should be noted that the total search
space for this problem is then 21200, which makes a blind random search quite unlikely to be effective.

These four values per character are arranged in the gene such that the related weights and intervals are
mostly likely to survive the crossover operation.® For the given input string, the gene was arranged as follows
(h=hold-time, i=interkey-time, d=deviation, w=weight):

Ardhwdy ;gAY ;0 YhdY hwYRigY iy - - - ShdShwS id 8 iw

3.4 Fitness Function

By far the most crucial part of the experiment is the determination of the genetic algorithm fitness function.
As discussed in section 1, the fitness function determines the selections that the genetic algorithm makes
and therefore directly controls the success or failure of the experiment.

For this problem, we evolved the fitness function over a number of iterations. In all cases, we first analyzed
the half of the test data that we are using for analysis to determine the mean and standard deviation over
the five inputs for every user. Since this is calculated for every character in the target string, this yields four

5i.e., the characteristic length is shortest for the weights and intervals of two consecutive characters



arrays of times for each user. This data is then used to evaluate the success of each proposed template as
follows:

1. We test a particular instance of timing data against the template by iterating over each character. For
each hold time, we find the distance from the mean hold time of the target user. If this distance is less
than the deviation allowed by the template (gene), then we consider the character a match. We apply
a similar test for interkey times.

2. If the entry that we are looking at actually belongs to the target user, then we would expect the entry
to "match” and therefore we increase the score for every character that matches. The amount that we
increase the score is determined by the weight specified for the particular character in the gene.

3. If the entry that we are looking at belongs to another user, then we increase the score for each character
of the entry that does not match.

4. We iterate through all the entries of the target user in this fashions, as well as all the entries of all of
the other users.

5. The final score is returned as the fitness value.®

While the above strategy had limited success, we made some modifications in successive runs to address
issues that arose. As stated, the fitness function has a very conservative affinity. Since we have 14 impostors
but only a single legitimate user, the impostor increases tended to overwhelm the results, leading us to add
a fixed weight to the legitimate user increases to even out the results. There was also an issue with the
weights specified by the genes tending toward the maximum value, since there was no disincentive to this
behavior. We first remedied this by dividing the resulting score by the sum of the weights, hoping to gain a
better distribution of weights. This, unfortunately, led to the opposite effect, where all but one weight was
zero, with the remaining weight at .1, giving inflated results. The final modification, then was to divide by
8UMyeights + C, where C' was experimentally determined.

This particular application of genetic algorithms is slightly unusual in that the fitness function evaluated
against every individual differs from the function used in the final evaluation of the success of the experiment.
Part of the motivation for this was the additional knowledge at fitness evaluation of whether the entry we
were applying the template to was legitimate. In addition, as we discuss further in the next section, the
actual results are best represented as a continuum of error probabilities.

4 Results

The effectiveness of an authentication solution can generally be summed up in two values: false acceptance
rate and false rejection rate. The false acceptance rate (false positive) indicates the percentage of impostors
that were incorrectly identified as legitimate. Conversely, the false rejection rate (false negative) identifies
the percentage of legitimate identification attempts that are rejected. Since these parameters tend to be
inversely proportional, an ideal keystroke timing authentication solution should provide a parameter which
controls the relative emphasis on these two values. Figure 3 shows a sample plot of these two values as
they vary between an emphasis on decreasing false negatives and an emphasis on decreasing false positives.
This particular figure shows a static analysis as suggested by Umphress and Williams of the keystroke data
collected for this experiment[UW85]. The x-axis indicates varying values of a deviation interval applied to
all users. The entry was accepted if 60% of the values fell within the interval. Notice the steep rise of false
negatives as the false acceptance rate approaches 0.

Figure 4 shows the error rates obtained by a randomly generated template at generation 0. The relative
symmetry in the error rates is caused by our choice of weight applied to legitimate entries as discussed in
section 3.4 above. The parameter that is varied across the x-axis is the threshold score that an entry must
achieve to be accepted. The minimum and maximum values of this threshold are directly determined by the
weights in the generated template.

6Note that GENESIS was configured to maximize the fitness function, which is not the default
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Figure 5 shows the aggregate error rate achieved at the finish of the genetic algorithm analysis. A
significant result that is not apparent in this figure is that each individual had multiple values of the threshold
parameter for which both the false acceptance rate as well as the false rejection rate was zero. The actual
threshold at which this occurred varied slightly depending on the template, so the aggregate plot does not
show this.

The average template deviation for all interkey-times, all users was .62, whereas the average hold-time
deviation was .76, indicating a greater consistency in digraph times. Despite this, the average weight for
digraph and hold times were roughly the same at 4.68 and 4.66, respectively.

The actual genetic algorithm analysis and template generation took just over 2 minutes per user on an
Intel Pentium IT 400MHz system. Consequently, all 14 identification templates were generated in under half
an hour. Since all user information is analyzed in the generation of each template, it is expected that this
analysis time would scale in a quadratic fashion.

5 Discussion

The results of the analysis were positive in multiple respects. The flexibility that the ”score” threshold
allows is significant in terms of the security options that it offers. For most situations, it is expected that



this threshold would be placed above the point where the false acceptance rate goes to 0, since forcing a user
to retry authentication is merely an inconvenience, whereas allowing an impostor to login is unacceptable.
Consequently, the initial slow increase of the false rejection rate is especially desirable in that it allows the
threshold to be set at a point where the probability of a false acceptance is extremely low. Conversely,
for those situations where the keystroke dynamics are used in addition to other methods to provide extra
security, the threshold can be gracefully decreased to minimize the invasiveness of the keystroke timing. In
total, the inverted bell curve shape is desirable for providing nice configurability characteristics.

There were a number of interesting trends in the individual templates generated that were hidden when
looking at the data as a whole. A key result of this is that if we were to come up with a set of static criteria to
apply to all authentication attempts, we would miss a number of potentially useful features. This validates
the observations in [0S97], where neural nets were used to obtain a similar effect.

One such feature that is apparent in approximately half the user templates is the inconsistency of the
inter-keystroke times before and after the space that separates words. This was manifested in either extremely
low weights (approaching 0) for these values or extremely low deviations. In both cases, this leads to little
differentiation between invalid attempts. The net result is that the derived template makes use of the ”space-
bar” transitions only for those users where it provides differentiation. Previous work has disagreed on the
usefulness of these transitions, probably for the very reason that certain users are quite consistent in this
respect, while others deviate greatly between words.

Another interesting result of the analysis was that the weights on the hold times and the digraph times
were roughly the same. Our expectation, viewing the timing graphs displayed while the entries were being
typed, was that the interkey times would be more distinctive and therefore more heavily weighted. In reality,
the templates indicated that both sets of times provide roughly equal value.

In terms of the genetic algorithm analysis itself, the rapidity with which the algorithm converged on
a reasonable template was slightly surprising. Despite the rather large representation, the algorithm was
able to arrive at a "good” template in less than 20,000 trials. An unfortunate consequence of this rapid
convergence is that the diversity in the population also quickly died away, with a typical population bias
reaching 90% by 12,000 generations. In spite of this, the algorithm made progress up through approximately
120,000 trials before leveling off. (Figure 2)

6 Conclusion and Future Directions

We have demonstrated the use of genetic algorithms in creating templates useful for user identification and
authentication. The false acceptance rate as well as the false rejection rate for each user template was
0% for some range of threshold values when applied to the set of 14 sample users. In addition, we have
shown that the resulting error curves demonstrate that the identification templates are conducive to use in
differing security evironments. This compares favorably to static analysis, which generally does not produce
as favorable results with respect to configurability. Finally, we have shown that the analysis via genetic
algorithms is practical for most timeshare environments, with each template generated in just over two
minutes on a low end Intel Pentium II system.

One area of future work which requires a much larger sample set lies in the analysis of free-form sample
text. Unlike the analysis of a fixed string, where the same characters appear in the same order, free-form text
presents a number interesting problems in determining what set of characters are significant for identification
purposes. Previous work has focused solely on character pairs, but larger chunks likely provide additional
data. As discussed earlier in the paper, this type of problem is a perfect match for analysis via genetic
algorithms in that the most significant chunks are identified and promoted via the inherent schema.
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