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Abstract: This paper describes an implementation of a scheduler using Genetic Algorithms. It 
compares the performance of the GA-scheduler with a scheduler based on a conventional 
search based on the SLACK heuristic. Optimal parameters for the GA-scheduler are 
empirically found and discussed for theoretical compatibility. The GA-scheduler gives good 
results but is not competitive with the SLACK based conventional scheduler. 

 
1. Introduction 
 
Genetic Algorithms offer a ‘one size fits all’ solution to problem solving involving search. Unlike other 
conventional search alternatives, GA’s can be applied to most problems out of the box, only needing a good 
function specification to optimize and a good choice of representation and interpretation. This, coupled 
with the exponentially increasing speed/cost ratio of computers, make them a choice to consider for any 
search problem. 
 
Scheduling is a very important field for many practical and theoretical reasons. Most industries have 
logistical or scheduling problems which they would like to optimise. One of the problems that serves as a 
model for the general problem is ‘job-shop scheduling’.  
 
The job shop scheduling problem originates from the manufacturing domain. The basic problem is that of 
scheduling N jobs, given each job has one or more sequencing constraints with other jobs, the (perhaps 
exclusive) use of a resource, a processing time, and associated ready time (the earliest time the job can 
start) and deadline (the latest time the job can finish). The goal is to minimize the total time taken (the time-
span) while meeting all of the above constraints. 
 
In the general case, the scheduling problem is NP-complete. This has lead to considerable research in 
heuristic procedures to solve the problem. Several different approaches have been tried. Most frequently, 
the problem has been formulated as one of finding a consistent assignment of start times for each job. 
Recently, the problem has been formulated as that of assigning sufficient ordering constraints between jobs 
vying for the same resource. This represents a set of feasible solutions (the set of feasible start times for all 
jobs). A heuristic, SLACK, is used in the search (described in Section 2). 
 
The above mentioned strengths of Genetic Algorithms come with a price. GA’s do not exploit domain 
information in the search. They rely on good representation and fast scoring function evaluation.  
 
Section 2 briefly describes the job shop scheduling problems addressed in this paper and the conventional 
SLACK-based scheduler. This will help in the understanding of representation issues later in the paper. 
Section 3 describes the possible representations of a schedule in a GA, and discusses strengths and 
weaknesses of each. Section 4 presents the tableau for the GA used, and the scoring function used. Section 
5 presents the experiment setup, results and discussion of the results. Section 6 concludes and Section 7 
details possible future work. 
  
2. Sadeh job-shop benchmarks and SLACK-based scheduling 
 
2.1 Sadeh job-shop benchmarks 
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Norman Sadeh designed a suite of job-shop problems that have been used as benchmarks. A typical 
problem (shortened) is illustrated below. 
 
length(0) = 14  // job 0 is defined and has length 14 
needs(0,0)  // job 0 needs resource 0 
length(1) = 21  // job 1 is defined and has length 21 
needs(1,0)  // job 1 needs resource 1 
length(2) = 7  // job 2 is defined and has length 7 
needs(2,1)  // job 2 needs resource 1 
before(1,0)  // job 1 must be before job 0 
before(2,0)  // job 2 must be before job 0 
release(0) = 4  // job 0 can be started at time 4 or later 
due(0) = 40  // job 0 must be finished by time 40 
release(1) = 0  // job 1 can be started at time 0 or later 
due(1) = 25  // job 1 must be finished by time 25 
release(2) = 0  // job 2 can be started at time 0 or later 
due(2) = 30  // job 2 must be finished by time 30 
 
Each job needs a single resource exclusively for the full length of the job. 
 
It can be seen that this representation is a generalisation of any job-shop problems. Job-shop problems are 
sometimes represented as jobs having (sequential or non-sequential) tasks which may require different 
resources. These can always be decomposed into the above representation. 
 
The Sadeh benchmark suite contains 60 problems, ranging over all levels of difficulty. An easy problem is 
typically loosely constrained, which means there are many valid schedules, or very tightly constrained, 
which means there are a few (perhaps just 1) valid schedules while the others are easily discarded as 
invalid. Difficult problems lie in between, where there may be many schedules which are ‘almost’ valid, 
and some that are valid, but it is not easy to distinguish between them heuristically during a search. 
 
2.2 SLACK-based scheduling 
 
The algorithm for SLACK-based scheduling is as follows: 
 

1. establish earliest and latest starting times (est & lst) for each job taking into account the release 
and due times of the job, as well as explicit ordering constraints specified in the problem 
(before(1,0)). 

2. Create binary variables consisting of job pairs that share a resource and so must be ordered. 
3. Search through the space of assignments to these binary variables for an assignment that satisfies 

all the constraints. 
 
The search then consists of picking a good variable, making an assignment, and then adjusting the est/lst of 
all jobs affected by the assignment. An invalid assignment is detected if the est/lst of some affected job 
become invalid (i.e. lst < est). 
 
During the search, we would like pick the maximally constrained variable and then assign to it the 
minimally constraining value. The ‘constraint’ for each variable is measured by its slack. Intuitively, this 
measures the room the two jobs that make up the variable have left to adjust to other constraints (i.e how 
large is the time gap between est and lst). 
 
3. Representing the job-shop scheduling problem in a Genetic Algorithm 
 
A good representation for a job-shop problem presents many difficulties. The basic problem is that any 
change in some part of the schedule can totally change the rest of the schedule beyond that point. Also, the 
partial ordering information in the problem specification (before(1,0)) has to be respected and randomly 
generating schedules in most representations produce nonsensical schedules. 
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Any representation that directly encodes start times for jobs runs into immediate difficulties. How do we 
ensure non-overlapping for jobs sharing the same resource? This may be incorporated in the scoring 
function by penalizing for overlap and any deviation from the release and due times. But the search space 
simply has too few valid chromosomes to be effective. Also, there is no good way of penalizing for 
violation of partial ordering constraints. 
 
A representation similar to the one for SLACK was also considered and tried. In this representation, the 
est/lst of all jobs is initially calculated as in SLACK. All job pairs sharing a resource are then represented 
by the chromosome, with each gene representing one particular job pair. Each gene is then binary valued 
and the chromosome is a binary string. 
 
The string is transformed into a schedule by sequentially assigning to each job pair variable represented by 
each gene from left to right. After each assignment, the est/lst of all affected jobs are adjusted. Jobs which 
have an explicit ordering in the problem statement (before(1,0)) are automatically dealt with as they are not 
part of the chromosome and their est/lst will get adjusted appropriately. However, this approach runs into 
difficulties too. 
 
Consider the three job pair variables, ab, bc and ac, where a, b and c are jobs. A particular random 
assignment to these variables may result in a nonsensical assignment such as 
a->b (a before b), b->c, c->a. This problem increases exponentially as there are increasing number of jobs 
that share a resource. Any mutation or crossover can also transform a valid schedule into one containing 
such ‘cycles’ and so a nonsensical schedule. 
 
Another representation used in the GA job shop scheduling literature uses a schedule builder to transform 
the chromosome into an always valid schedule. In this case, the problem is framed as the scheduling of jobs 
with sequential tasks within each job. Each task requires some resource. The representation then consists of 
genes which take on values in the set {0,..,N-1} where there are N jobs. There are a total of M genes where 
M is the total number of tasks in all jobs. 
 
A chromosome abc…means: put the first untackled task of the a’th unfinished job into the earliest place it 
will fit into the schedule. Then put the first untackled task of the b’th unfinished job into the earliest place it 
will fit into the schedule, and so on. The jobs are numbered in a circular way, so if there are 3 unfinished 
jobs and the gene’s value is 4, job 1 (assuming the jobs are numbered 0,1,2) will be selected. This method 
ignores any due times for the tasks. These can be incorporated in the score given for each schedule (i.e. a 
penalty for exceeding the due time for each task or job). 
 
Clearly this approach represents all possible schedules. In addition, it also has the critical property that all 
schedules are valid. So it is stable under mutation and crossover. 
 
However, the problem it addresses is a simpler one then the one addressed in this paper. All the jobs in the 
above problem are made up of a total ordering on the tasks for each job. So converting each gene into a job 
to schedule is easy. The problem addressed in this paper specify a partial ordering on jobs which means that 
certain jobs have to be done before others. 
 
This problem was addressed by modifying the scheduling algorithm. A list of jobs is built, but with 
additional information per job. Each job has a before and after list of jobs that are explicitly specified in the 
problem to be before/after that job. When a gene is translated into a job number, if there is no job on the 
before list, that job is selected to be scheduled. If there are jobs on the before list, the first job on the list is 
picked and the same process repeated again. The job that is eventually picked to be scheduled removes 
itself from the before lists of any remaining jobs. 
 
The diagram below illustrates this process. 
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In the above case, the chromosome ‘402431’ would result in jobs being scheduled in the following order: 2, 
0, 3, 4, 5, 1.  
 
Each schedule has many different possible representations, but all valid schedules can be represented. This 
was the representation used in the GA-scheduler built for this experiment. 
 
4.  Tableau and scoring function 

 
Objective: Find the best possible schedule in terms of meeting the problem 

specifications and the shortest time span 
Representation scheme: Structure = each gene is an integer between 0 and N-1, where there are N 

jobs. A single chromosome consists of N genes 
Variable population size and generations (described in the results). 
Scheduler converts chromosome into schedule as described in section 3. 

Fitness cases:  
Fitness: The timespan of the schedule plus penalties for exceeding due times for any 

job 
Parameters: population size, generations and penalties varied during the experiment 
Termination criteria: run till number of generations specified, run till timespan = best timespan 

from SLACK scheduler (explained in the results) 
 
 
5. Experiment setup, results and discussion 
 
5.1 Experiment Setup 
 
Genesis, an implementation of a GA engine by John Grefenstette, was modified and used as the GA engine. 
GENESIS has the ability to represent chromosomes as binary strings or floating point number arrays. The 
number of generations and population size can also be specified, along with the crossover rate, mutation 
rate and host of other options. The GENESIS engine was modified as required and wrapped with custom 
code to read the Sadeh problem sets and create the required data structures, as well as set GENESIS up 
with the required options (range of each gene’s values, number of generations, population size, termination 
criteria if required). 
 
GENESIS requires an evaluation function which will be called for each chromosome that needs to be 
evaluated. This evaluation function was basically an implementation of the scheduler described above. The 
score returned was the timespan + any penalties. For example, the total timespan (the completion time of 
the chronologically latest job) may be 200 time units. For each time unit that any job went over its due 
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time, a penalty was added to the score. So if the above schedule has a single job that is 5 time units past its 
due time, 5*penalty_per_unit would be added to the score (of 200 in this case). 
 
The Sadeh problem set was also run with the SLACK algorithm for comparison. The SLACK 
implementation was modified from an implementation of SLACK by Deshpande, Lim and Sanchez for the 
CS227 AI course at Stanford. The original implementation simply terminated when it found a satisfactory 
solution. The modification strived for a better and solution until it ran out of allocated time. 
 
All the code was written in C and the experiments were carried out on the Sun Solaris platform on 
machines varying from SPARC20’s to ULTRA’s (in the Sweet Hall computer cluster at Stanford 
University). 
  
5.2 Results 
 
The results will be described in chronological order in order to motivate each stage of the experiment. 
 
The first task was to get some statistics on the running time and performance of the GA with different 
parameters on a subset of the problems in order to get optimal parameters with which to run the rest of the 
problems. 
 
The majority of time in a genetic algorithm run is taken in evaluating each chromosome. So the runtime of 
a GA would be expected to be linear in the number of generations * population size. This is confirmed by 
the tables below. (Note: all runtimes are the actual processor time of the job) 
 
population 

size 
number of 
generations 

time (ms) 

100 10 330 
1000 10 3370 

10000 10 34120 
100000 10 339040 
1000000 10 3397350 

Table1: run time information for a single  Table2: run time information for a single 
 problem with fixed population size and   problem with fixed population size 
varying population size    and varying number of generations 
 
It is also important to find a good combination of parameters to test the problem set with. As each schedule 
must be solved in reasonable time, there is a trade-off between having a large population or a large number 
of generations. Five problems were then selected and the GA-scheduler run with varying combinations of 
parameters. The scores for each combination are given in the table below. 
 

crossover rate  / mutation rate  
 
 

0.1 / 
0.01 

0.2 / 
0.01 

0.4 / 
0.01 

0.1 / 
0.02 

0.2 / 
0.02 

0.4 / 
0.02 

0.1 / 
0.05 

0.2 / 
0.05 

0.4 / 
0.05 

problem 15 
100 / 10000 150 150 146 145 150 143 153 151 149 
1000 / 1000 150 145 154 148 155 154 154 154 156 
10000 / 100 152 153 155 150 156 158 151 155 154 
100000 / 40 147 151 149 153 155 153 154 150 153 

1000000 / 20 150 151 150 149 151 151 148 148 148 
 

problem 28 
100 / 10000 150 150 150 150 150 150 150 150 150 
1000 / 1000 150 150 150 150 150 150 150 150 151 
10000 / 100 150 150 150 150 150 150 150 150 150 

p 
o 
p 
u 
l 
a 
t 
i 
o 
n 
 
s 100000 / 40 150 150 150 150 150 150 150 150 150 

population 
size 

number of 
generations 

time (ms) 

100 10 310 
100 100 3080 
100 1000 30670 
100 10000 307220 
100 100000 3065180 
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1000000 / 20 150 150 150 150 150 150 150 150 150 
 

problem 35 
100 / 10000 155 155 155 161 158 159 155 161 161 
1000 / 1000 159 159 155 156 155 160 162 165 162 
10000 / 100 162 163 161 162 163 162 165 165 165 
100000 / 40 163 159 159 162 161 158 163 163 158 

1000000 / 20 161 161 161 161 160 158 161 161 161 
 

problem 47 
100 / 10000 146 144 143 143 144 144 143 144 144 
1000 / 1000 143 143 145 144 144 145 144 144 144 
10000 / 100 144 144 146 145 144 144 146 144 145 
100000 / 40 145 144 145 144 143 144 144 146 146 

1000000 / 20 143 144 144 143 144 143 143 144 143 
 

problem 53 
100 / 10000 159 159 166 168 166 168 161 167 172 
1000 / 1000 166 161 168 165 167 162 171 173 171 
10000 / 100 168 169 172 176 168 170 168 172 179 
100000 / 40 171 171 172 168 171 166 171 167 170 

i 
z 
e 
 
/ 
 

n 
u 
m 
 

g 
e 
n 
e 
r 
a 
t 
i 
o 
n 
s 

1000000 / 20 169 162 169 167 170 169 170 167 167 
Table 3: scores for 5 selected problems for different parameter values 
 
The data above shows that small populations evolved over a large number of generations do better then the 
other options. Also, the data indicates that having small values for the crossover rate and mutation rate for 
the small population / large generations is a good combination while having larger values for the crossover 
rate and mutation rate for large populations / small generations is a good combination. This makes sense 
theoretically as it is better to evolve slower if there are a lot of generations to evolve, while evolution must 
take place at a faster rate if there are less generations but a larger population. 
 
Another investigation important for choosing the optimal set of parameters is their effect on runtime. The 
table below shows the runtime and the number of chromosomes evaluated for three different values of each 
parameter. 
 

  mutation rate 
  0.01 0.02 0.05 

0.1 419112 / 925625 555734 / 993099 995527 / 999001 
0.2 419316 / 933732 552769 / 993828 1034281 / 998999 

crossover 
rate 

0.4 417920 / 950061 557771 / 995049 1009115 / 999000 
Table 4: [runtime (ms) / number of chromosomes evaluated in total] over different crossover rate and 
mutation rate values for a single problem with population size = 1000 and generations = 1000 
 
The table shows the runtime for high mutation rates to be considerably higher in comparison to low 
mutation rates. The runtime for a mutation rate of 0.05 is almost double that of a mutation rate of 0.02 
which is itself 20% higher then for 0.01. 
 
Initially, the explanation for this was thought to be a higher number of chromosomes being evaluated.  
GENESIS only evaluates chromosomes that have changed from generation to generation. So higher 
crossover and mutation values will increase the number of chromosomes that change and need to be 
evaluated. But it can be seen that even with the crossover rate = 0.1 and mutation rate = 0.01, 92.6% of all 
possible chromosomes are already being evaluated. This number goes up to 99.9% when the crossover rate 
= 0.4 and mutation rate = 0.05. But this increase does not explain the doubling of runtime. 
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Unfortunately GENESIS could not be profiled (using gprof) to analyse why higher mutations were 
increasing runtime so much. Most probably it was the actual generation of mutations which was the cause 
for the performance degrade. At a mutation rate of 0.05 and with 50 jobs per problem, each chromosome 
has 96% chance of undergoing mutation, while at 0.02 the chance is 64% and with 0.01 there is a 40% 
chance. 
 
Note that GENESIS also has an ‘elitist’ mode, in which the best chromosome in each generation is 
guaranteed to be present in the next generation. This mode was used throughout the experiment. 
 
Another interesting statistic is the convergence rate of the GA-scheduler. Ten problems were chosen and 
the best schedule at each generation recorded. Graph 1 below shows the results. It can be seen that a couple 
of problems have converged (indicated by the flat line), while others still have a distinct downward slope at 
100 generations when the runs were terminated. Also interesting is the shape of the curves. All but one of 
the curves show the typical shape. But one of the problems shows the score is minimized in a series of 
steps. 

Performace of problems 40 - 49 by generation
population = 1000, generations = 100, crossover rate = 0.1, mutation rate = 0.01
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Since some problems clearly level off quite quickly, it would be efficient to stop the GA once it was 
detected that the best score had not changed over many generations. However, with a problem that exhibits 
‘step-like’ behaviour as above, this technique may cause the GA to end prematurely. 
 
Another parameter for these problems was the penalty for exceeding the due time on any job, since the GA-
scheduler does not intrinsically respect due times in building the schedule. Various values were tried. As 
expected, having a 0 penalty produced better schedules for some of the problems, since the due times could 
be ignored. However, once a reasonable penalty was imposed (anything from 10 upwards), all the due 
times were respected and the value of the penalty did not make a difference (as long as it was above 10). 
 
Having obtained the best set of parameters for the GA-scheduler, the comparison between the GA-
scheduler and the SLACK based scheduler was carried out. The ideal parameters for the GA-scheduler 
were: population size: 1000,  generations: >1000, crossover rate: 0.2, mutation rate: 0.0, penalty = 50. 
The number of generations should ideally be as high as possible. 
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All 60 problems were run with the above parameters, setting the generations to 10000. The problems were 
split into batches of 10 and run in parallel on different machines. Unfortunately results for 40 problems 
were lost. These 40 problems were re-run with a slightly different setting (detailed later). 
 
All 60 of the problems were run with the SLACK scheduler, each for 35 minutes. The scheduler was 
originally designed to simply find a satisfactory solution (i.e. a solution that satisfied all the constraints). 
This was modified so that after a solution was found, the scheduler internally modified the problem so a 
better solution would need to be found (by changing any due times of any job that were after the solutions 
end time to end time – 1). This was done repeatedly until the 35 minute execution time was reached. Each 
new (and necessarily better) schedule found was marked with the execution time till that point. Once 
execution finished, the last schedule found was taken as the final result along with the time at which it was 
found. 
 
The results for the 20 problems run with GA-scheduler (generations = 10000) and the SLACK scheduler 
are given below. 
 

 GA  SLACK 
problem 
number 

score (timespan 
of best schedule) 

first generation 
score was 
reached 

time when score 
was first 

reached (ms) 

 score time when 
best solution 
was found 

40 143 263 81869  143 420 
41 147 333 103659  147 7530 
42 145 151 47005  149 70 
43 147 76 23658  147 330 
44 144 2932 912699  143 71180 
45 142 42 13074  142 80 
46 130 347 108017  130 250 
47 143 363 112998  143 1700 
48 153 977 304129  153 160 
49 137 417 129808  137 70 
50 167 4705 1464615  161 8820 
51 153 9347 2909618  148 18180 
52 183 2033 632851  170 43540 
53 159 3231 1005775  157 690 
54 155 9127 2841135  148 43870 
55 161 9561 2976234  161 490 
56 168 7222 2248129  169 39070 
57 168 2183 679544  157 4180 
58 171 95 29572  162 90 
59 173 2453 763592  166 1200 

Table5: Comparison of 20 problems run with GA-scheduler and SLACK 
 
Some interesting observations can be made from the results above. First, both GA-scheduler and SLACK 
find the same problems easy or difficult. This is only to be expected but is confirmed by the results. 
SLACK is clearly a much better scheduler for these problems, finding better schedules in much less time. 
The runtime difference is stark; GA-scheduler takes anywhere between 10 to 1000 times more time and 
still does not, in many cases, come up with as good a solution. 
 
The number of generations taken by GA-scheduler to reach its best schedule is also interesting. Remember 
that all of the 20 problems above were run for 10000 generations. So the problems where GA-scheduler 
and SLACK come up with the same solution fairly quickly, it may be a reasonable assumption that it is in 
fact the best solution. For other problems where SLACK does better, GA-scheduler reaches a plateau (in 
terms of the score) at various different times in the search. For instance, in problem 58, GA-scheduler has 
the score of 171 in the 95th generation, but fails to improve in the 9905 generations that follow, even though 
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SLACK has found a much better solution fairly quickly. In problem 54 however, it may be that further 
search may yield a better solution for the GA, having reached its optimal in the 9127th generation. 
 
Due to time limitations, the other 40 problems could not be run again for 10000 generations, but they were 
run with a slightly modified algorithm. The number of generations was set to 10000, but the search was 
terminated if the GA-scheduler matched the SLACK score. This would provide enough data for a 
comparison with the SLACK scheduler. 
 

 GA  SLACK 
problem 
number 

score (timespan 
of best schedule) 

first generation 
score was 
reached 

time when score 
was first 

reached (ms) 

 score time when 
best solution 
was found 

0 140 12 3735  140 640
1 143 1 311  143 19790
2 140 17 5292  140 70
3 149 2 623  could not solve 
4 137 77 23969  137 450
5 138 1 311  138 810
6 127 23 7160  127 249780
7 139 271 84359  139 820
8 144 38 11829  144 570
9 131 10 3113  131 310

10 160 1711 532615  157 760
11 147 1061 330278  141 2420
12 168 346 107706  167 200
13 162 5184 1613722  157 20180
14 143 7760 2415603  141 380
15 150 1717 534483  143 770
16 149 9744 3033200  146 500
17 154 2769 861959  151 180
18 155 2816 876590  145 11200
19 165 2408 749584  163 115590
20 140 89 27705  140 11970
21 145 83 25837  145 390
22 143 206 64126  143 25810
23 146 11 3424  146 98330
24 139 52 16187  139 580
25 140 8 2490  140 240
26 129 252 78445  129 8430
27 141 484 150664  141 310
28 150 66 20545  150 340
29 132 613 190820  132 32770
30 161 8078 2514593  158 730
31 147 2135 664602  147 80
32 176 1417 441097  167 1440
33 166 1628 506778  152 7200
34 155 7365 2292643  143 76770
35 155 889 276736  153 9460
36 155 9251 2879735  155 76270
37 164 6327 1969526  154 230
38 165 4788 1490452  152 45380
39 171 188 58522  169 300010

Table 6: Problems 0 – 39 with population size = 1000, crossover rate = 0.2, mutation rate = 0.01, and 
variable generations. 



 10

 
 
Note that where the scores of the GA-scheduler and SLACK are equal, the GA-scheduler was terminated 
and the so did not proceed beyond the ‘first generation score was reached’. So, all the white rows were 
terminated at the first generation that the score matched SLACK’s score. However, all of the dark rows ran 
for 10000 generations because they could not match the SLACK score. The ‘first generation score was 
reached’ column for them reflects the first generation that the best score was encountered. So, problem 39 
reached a score of 171 at generation 188. It then ran for another 9812 generations but could not find a better 
schedule. 
 
Although the results above lead to the same conclusions as those from the previous set of 20 problems, note 
that GA-scheduler managed to solve a problem that SLACK could not solve. 
 
Many of the problems show GA-scheduler reaches its minimum value quite quickly, but then does not 
improve over many generations. To try and change this, the GA-scheduler algorithm was altered to increase 
the crossover rate and mutation rate (upto some pre-specified maximum) if there was no change in the 
score for many generations. Various experiments were run with this ‘reverse simulated annealing’ type 
approach, but they did not perform well. However, this technique was only explored in a very rudimentary 
way and the results are by no means conclusive. 
 
6. Conclusion 
 
Due to representational difficulties, GA’s are not able to efficiently find schedules. Crossover and mutation 
totally change the whole schedule in any representation, thus not following the ideal of preserving most or 
all of the information contained in the separate pieces of chromosome crossed. Each evaluation of the 
chromosome also involves building a schedule, a time consuming process which makes GA-schedulers 
uncompetitive with solutions customized for the particular type of problem, in this case SLACK. 
 
The flexibility of the GA is illustrated by the use of the penalty. In the GA-scheduler, it is very easy to 
change the scoring function to relax (or somewhat relax) certain requirements to find approximate 
solutions, something that is not as easy to do in customized algorithms. 
 
7. Future Work 
 
The most important work in improving GA-schedulers is to find a better representation that will make 
crossover and mutation more meaningful. Also, it is not clear why the GA-scheduler remained at the same 
score for many generations. This should be investigated further and perhaps solutions like ‘reverse 
simulated annealing’ investigated in greater depth. 
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