
 1

Comparison of a Job-Shop Scheduler using Genetic Algorithms
with a SLACK based Scheduler

Nishant Deshpande

Department of Computer Science
Stanford, CA 94305

nishantd@cs.stanford.edu (650) 248 5159
4 June 2002

Abstract: This paper describes an implementation of a scheduler using Genetic Algorithms. It
compares the performance of the GA-scheduler with a scheduler based on a conventional
search based on the SLACK heuristic. Optimal parameters for the GA-scheduler are
empirically found and discussed for theoretical compatibility. The GA-scheduler gives good
results but is not competitive with the SLACK based conventional scheduler.

1. Introduction

Genetic Algorithms offer a ‘one size fits all’ solution to problem solving involving search. Unlike other
conventional search alternatives, GA’s can be applied to most problems out of the box, only needing a good
function specification to optimize and a good choice of representation and interpretation. This, coupled
with the exponentially increasing speed/cost ratio of computers, make them a choice to consider for any
search problem.

Scheduling is a very important field for many practical and theoretical reasons. Most industries have
logistical or scheduling problems which they would like to optimise. One of the problems that serves as a
model for the general problem is ‘job-shop scheduling’.

The job shop scheduling problem originates from the manufacturing domain. The basic problem is that of
scheduling N jobs, given each job has one or more sequencing constraints with other jobs, the (perhaps
exclusive) use of a resource, a processing time, and associated ready time (the earliest time the job can
start) and deadline (the latest time the job can finish). The goal is to minimize the total time taken (the time-
span) while meeting all of the above constraints.

In the general case, the scheduling problem is NP-complete. This has lead to considerable research in
heuristic procedures to solve the problem. Several different approaches have been tried. Most frequently,
the problem has been formulated as one of finding a consistent assignment of start times for each job.
Recently, the problem has been formulated as that of assigning sufficient ordering constraints between jobs
vying for the same resource. This represents a set of feasible solutions (the set of feasible start times for all
jobs). A heuristic, SLACK, is used in the search (described in Section 2).

The above mentioned strengths of Genetic Algorithms come with a price. GA’s do not exploit domain
information in the search. They rely on good representation and fast scoring function evaluation.

Section 2 briefly describes the job shop scheduling problems addressed in this paper and the conventional
SLACK-based scheduler. This will help in the understanding of representation issues later in the paper.
Section 3 describes the possible representations of a schedule in a GA, and discusses strengths and
weaknesses of each. Section 4 presents the tableau for the GA used, and the scoring function used. Section
5 presents the experiment setup, results and discussion of the results. Section 6 concludes and Section 7
details possible future work.

2. Sadeh job-shop benchmarks and SLACK-based scheduling

2.1 Sadeh job-shop benchmarks

 2

Norman Sadeh designed a suite of job-shop problems that have been used as benchmarks. A typical
problem (shortened) is illustrated below.

length(0) = 14 // job 0 is defined and has length 14
needs(0,0) // job 0 needs resource 0
length(1) = 21 // job 1 is defined and has length 21
needs(1,0) // job 1 needs resource 1
length(2) = 7 // job 2 is defined and has length 7
needs(2,1) // job 2 needs resource 1
before(1,0) // job 1 must be before job 0
before(2,0) // job 2 must be before job 0
release(0) = 4 // job 0 can be started at time 4 or later
due(0) = 40 // job 0 must be finished by time 40
release(1) = 0 // job 1 can be started at time 0 or later
due(1) = 25 // job 1 must be finished by time 25
release(2) = 0 // job 2 can be started at time 0 or later
due(2) = 30 // job 2 must be finished by time 30

Each job needs a single resource exclusively for the full length of the job.

It can be seen that this representation is a generalisation of any job-shop problems. Job-shop problems are
sometimes represented as jobs having (sequential or non-sequential) tasks which may require different
resources. These can always be decomposed into the above representation.

The Sadeh benchmark suite contains 60 problems, ranging over all levels of difficulty. An easy problem is
typically loosely constrained, which means there are many valid schedules, or very tightly constrained,
which means there are a few (perhaps just 1) valid schedules while the others are easily discarded as
invalid. Difficult problems lie in between, where there may be many schedules which are ‘almost’ valid,
and some that are valid, but it is not easy to distinguish between them heuristically during a search.

2.2 SLACK-based scheduling

The algorithm for SLACK-based scheduling is as follows:

1. establish earliest and latest starting times (est & lst) for each job taking into account the release
and due times of the job, as well as explicit ordering constraints specified in the problem
(before(1,0)).

2. Create binary variables consisting of job pairs that share a resource and so must be ordered.
3. Search through the space of assignments to these binary variables for an assignment that satisfies

all the constraints.

The search then consists of picking a good variable, making an assignment, and then adjusting the est/lst of
all jobs affected by the assignment. An invalid assignment is detected if the est/lst of some affected job
become invalid (i.e. lst < est).

During the search, we would like pick the maximally constrained variable and then assign to it the
minimally constraining value. The ‘constraint’ for each variable is measured by its slack. Intuitively, this
measures the room the two jobs that make up the variable have left to adjust to other constraints (i.e how
large is the time gap between est and lst).

3. Representing the job-shop scheduling problem in a Genetic Algorithm

A good representation for a job-shop problem presents many difficulties. The basic problem is that any
change in some part of the schedule can totally change the rest of the schedule beyond that point. Also, the
partial ordering information in the problem specification (before(1,0)) has to be respected and randomly
generating schedules in most representations produce nonsensical schedules.

 3

Any representation that directly encodes start times for jobs runs into immediate difficulties. How do we
ensure non-overlapping for jobs sharing the same resource? This may be incorporated in the scoring
function by penalizing for overlap and any deviation from the release and due times. But the search space
simply has too few valid chromosomes to be effective. Also, there is no good way of penalizing for
violation of partial ordering constraints.

A representation similar to the one for SLACK was also considered and tried. In this representation, the
est/lst of all jobs is initially calculated as in SLACK. All job pairs sharing a resource are then represented
by the chromosome, with each gene representing one particular job pair. Each gene is then binary valued
and the chromosome is a binary string.

The string is transformed into a schedule by sequentially assigning to each job pair variable represented by
each gene from left to right. After each assignment, the est/lst of all affected jobs are adjusted. Jobs which
have an explicit ordering in the problem statement (before(1,0)) are automatically dealt with as they are not
part of the chromosome and their est/lst will get adjusted appropriately. However, this approach runs into
difficulties too.

Consider the three job pair variables, ab, bc and ac, where a, b and c are jobs. A particular random
assignment to these variables may result in a nonsensical assignment such as
a->b (a before b), b->c, c->a. This problem increases exponentially as there are increasing number of jobs
that share a resource. Any mutation or crossover can also transform a valid schedule into one containing
such ‘cycles’ and so a nonsensical schedule.

Another representation used in the GA job shop scheduling literature uses a schedule builder to transform
the chromosome into an always valid schedule. In this case, the problem is framed as the scheduling of jobs
with sequential tasks within each job. Each task requires some resource. The representation then consists of
genes which take on values in the set {0,..,N-1} where there are N jobs. There are a total of M genes where
M is the total number of tasks in all jobs.

A chromosome abc…means: put the first untackled task of the a’th unfinished job into the earliest place it
will fit into the schedule. Then put the first untackled task of the b’th unfinished job into the earliest place it
will fit into the schedule, and so on. The jobs are numbered in a circular way, so if there are 3 unfinished
jobs and the gene’s value is 4, job 1 (assuming the jobs are numbered 0,1,2) will be selected. This method
ignores any due times for the tasks. These can be incorporated in the score given for each schedule (i.e. a
penalty for exceeding the due time for each task or job).

Clearly this approach represents all possible schedules. In addition, it also has the critical property that all
schedules are valid. So it is stable under mutation and crossover.

However, the problem it addresses is a simpler one then the one addressed in this paper. All the jobs in the
above problem are made up of a total ordering on the tasks for each job. So converting each gene into a job
to schedule is easy. The problem addressed in this paper specify a partial ordering on jobs which means that
certain jobs have to be done before others.

This problem was addressed by modifying the scheduling algorithm. A list of jobs is built, but with
additional information per job. Each job has a before and after list of jobs that are explicitly specified in the
problem to be before/after that job. When a gene is translated into a job number, if there is no job on the
before list, that job is selected to be scheduled. If there are jobs on the before list, the first job on the list is
picked and the same process repeated again. The job that is eventually picked to be scheduled removes
itself from the before lists of any remaining jobs.

The diagram below illustrates this process.

 4

In the above case, the chromosome ‘402431’ would result in jobs being scheduled in the following order: 2,
0, 3, 4, 5, 1.

Each schedule has many different possible representations, but all valid schedules can be represented. This
was the representation used in the GA-scheduler built for this experiment.

4. Tableau and scoring function

Objective: Find the best possible schedule in terms of meeting the problem

specifications and the shortest time span
Representation scheme: Structure = each gene is an integer between 0 and N-1, where there are N

jobs. A single chromosome consists of N genes
Variable population size and generations (described in the results).
Scheduler converts chromosome into schedule as described in section 3.

Fitness cases:
Fitness: The timespan of the schedule plus penalties for exceeding due times for any

job
Parameters: population size, generations and penalties varied during the experiment
Termination criteria: run till number of generations specified, run till timespan = best timespan

from SLACK scheduler (explained in the results)

5. Experiment setup, results and discussion

5.1 Experiment Setup

Genesis, an implementation of a GA engine by John Grefenstette, was modified and used as the GA engine.
GENESIS has the ability to represent chromosomes as binary strings or floating point number arrays. The
number of generations and population size can also be specified, along with the crossover rate, mutation
rate and host of other options. The GENESIS engine was modified as required and wrapped with custom
code to read the Sadeh problem sets and create the required data structures, as well as set GENESIS up
with the required options (range of each gene’s values, number of generations, population size, termination
criteria if required).

GENESIS requires an evaluation function which will be called for each chromosome that needs to be
evaluated. This evaluation function was basically an implementation of the scheduler described above. The
score returned was the timespan + any penalties. For example, the total timespan (the completion time of
the chronologically latest job) may be 200 time units. For each time unit that any job went over its due

0

1

2

3

4

5 2, 4

3

2

4

5, 1

4

5, 3

before after

first gene value = 4

job 2 will be scheduled

job

0

1

3

4

54

3

2

4

5, 1

4

before after
job

index

jobs list data structure before the first
job is scheduled

jobs list data structure after the first
job is scheduled

 5

time, a penalty was added to the score. So if the above schedule has a single job that is 5 time units past its
due time, 5*penalty_per_unit would be added to the score (of 200 in this case).

The Sadeh problem set was also run with the SLACK algorithm for comparison. The SLACK
implementation was modified from an implementation of SLACK by Deshpande, Lim and Sanchez for the
CS227 AI course at Stanford. The original implementation simply terminated when it found a satisfactory
solution. The modification strived for a better and solution until it ran out of allocated time.

All the code was written in C and the experiments were carried out on the Sun Solaris platform on
machines varying from SPARC20’s to ULTRA’s (in the Sweet Hall computer cluster at Stanford
University).

5.2 Results

The results will be described in chronological order in order to motivate each stage of the experiment.

The first task was to get some statistics on the running time and performance of the GA with different
parameters on a subset of the problems in order to get optimal parameters with which to run the rest of the
problems.

The majority of time in a genetic algorithm run is taken in evaluating each chromosome. So the runtime of
a GA would be expected to be linear in the number of generations * population size. This is confirmed by
the tables below. (Note: all runtimes are the actual processor time of the job)

population

size
number of
generations

time (ms)

100 10 330
1000 10 3370

10000 10 34120
100000 10 339040
1000000 10 3397350

Table1: run time information for a single Table2: run time information for a single
 problem with fixed population size and problem with fixed population size
varying population size and varying number of generations

It is also important to find a good combination of parameters to test the problem set with. As each schedule
must be solved in reasonable time, there is a trade-off between having a large population or a large number
of generations. Five problems were then selected and the GA-scheduler run with varying combinations of
parameters. The scores for each combination are given in the table below.

crossover rate / mutation rate

0.1 /
0.01

0.2 /
0.01

0.4 /
0.01

0.1 /
0.02

0.2 /
0.02

0.4 /
0.02

0.1 /
0.05

0.2 /
0.05

0.4 /
0.05

problem 15
100 / 10000 150 150 146 145 150 143 153 151 149
1000 / 1000 150 145 154 148 155 154 154 154 156
10000 / 100 152 153 155 150 156 158 151 155 154
100000 / 40 147 151 149 153 155 153 154 150 153

1000000 / 20 150 151 150 149 151 151 148 148 148

problem 28
100 / 10000 150 150 150 150 150 150 150 150 150
1000 / 1000 150 150 150 150 150 150 150 150 151
10000 / 100 150 150 150 150 150 150 150 150 150

p
o
p
u
l
a
t
i
o
n

s 100000 / 40 150 150 150 150 150 150 150 150 150

population
size

number of
generations

time (ms)

100 10 310
100 100 3080
100 1000 30670
100 10000 307220
100 100000 3065180

 6

1000000 / 20 150 150 150 150 150 150 150 150 150

problem 35
100 / 10000 155 155 155 161 158 159 155 161 161
1000 / 1000 159 159 155 156 155 160 162 165 162
10000 / 100 162 163 161 162 163 162 165 165 165
100000 / 40 163 159 159 162 161 158 163 163 158

1000000 / 20 161 161 161 161 160 158 161 161 161

problem 47
100 / 10000 146 144 143 143 144 144 143 144 144
1000 / 1000 143 143 145 144 144 145 144 144 144
10000 / 100 144 144 146 145 144 144 146 144 145
100000 / 40 145 144 145 144 143 144 144 146 146

1000000 / 20 143 144 144 143 144 143 143 144 143

problem 53
100 / 10000 159 159 166 168 166 168 161 167 172
1000 / 1000 166 161 168 165 167 162 171 173 171
10000 / 100 168 169 172 176 168 170 168 172 179
100000 / 40 171 171 172 168 171 166 171 167 170

i
z
e

/

n
u
m

g
e
n
e
r
a
t
i
o
n
s

1000000 / 20 169 162 169 167 170 169 170 167 167
Table 3: scores for 5 selected problems for different parameter values

The data above shows that small populations evolved over a large number of generations do better then the
other options. Also, the data indicates that having small values for the crossover rate and mutation rate for
the small population / large generations is a good combination while having larger values for the crossover
rate and mutation rate for large populations / small generations is a good combination. This makes sense
theoretically as it is better to evolve slower if there are a lot of generations to evolve, while evolution must
take place at a faster rate if there are less generations but a larger population.

Another investigation important for choosing the optimal set of parameters is their effect on runtime. The
table below shows the runtime and the number of chromosomes evaluated for three different values of each
parameter.

 mutation rate
 0.01 0.02 0.05

0.1 419112 / 925625 555734 / 993099 995527 / 999001
0.2 419316 / 933732 552769 / 993828 1034281 / 998999

crossover
rate

0.4 417920 / 950061 557771 / 995049 1009115 / 999000
Table 4: [runtime (ms) / number of chromosomes evaluated in total] over different crossover rate and
mutation rate values for a single problem with population size = 1000 and generations = 1000

The table shows the runtime for high mutation rates to be considerably higher in comparison to low
mutation rates. The runtime for a mutation rate of 0.05 is almost double that of a mutation rate of 0.02
which is itself 20% higher then for 0.01.

Initially, the explanation for this was thought to be a higher number of chromosomes being evaluated.
GENESIS only evaluates chromosomes that have changed from generation to generation. So higher
crossover and mutation values will increase the number of chromosomes that change and need to be
evaluated. But it can be seen that even with the crossover rate = 0.1 and mutation rate = 0.01, 92.6% of all
possible chromosomes are already being evaluated. This number goes up to 99.9% when the crossover rate
= 0.4 and mutation rate = 0.05. But this increase does not explain the doubling of runtime.

 7

Unfortunately GENESIS could not be profiled (using gprof) to analyse why higher mutations were
increasing runtime so much. Most probably it was the actual generation of mutations which was the cause
for the performance degrade. At a mutation rate of 0.05 and with 50 jobs per problem, each chromosome
has 96% chance of undergoing mutation, while at 0.02 the chance is 64% and with 0.01 there is a 40%
chance.

Note that GENESIS also has an ‘elitist’ mode, in which the best chromosome in each generation is
guaranteed to be present in the next generation. This mode was used throughout the experiment.

Another interesting statistic is the convergence rate of the GA-scheduler. Ten problems were chosen and
the best schedule at each generation recorded. Graph 1 below shows the results. It can be seen that a couple
of problems have converged (indicated by the flat line), while others still have a distinct downward slope at
100 generations when the runs were terminated. Also interesting is the shape of the curves. All but one of
the curves show the typical shape. But one of the problems shows the score is minimized in a series of
steps.

Performace of problems 40 - 49 by generation
population = 1000, generations = 100, crossover rate = 0.1, mutation rate = 0.01

1.30E+02

1.35E+02

1.40E+02

1.45E+02

1.50E+02

1.55E+02

1.60E+02

1.65E+02

1.70E+02

1.75E+02

0 20 40 60 80 100 120

generation

sc
or

e

40_1
41_1
42_1
43_1
44_1
45_1
46_1
47_1
48_1
49_1

Since some problems clearly level off quite quickly, it would be efficient to stop the GA once it was
detected that the best score had not changed over many generations. However, with a problem that exhibits
‘step-like’ behaviour as above, this technique may cause the GA to end prematurely.

Another parameter for these problems was the penalty for exceeding the due time on any job, since the GA-
scheduler does not intrinsically respect due times in building the schedule. Various values were tried. As
expected, having a 0 penalty produced better schedules for some of the problems, since the due times could
be ignored. However, once a reasonable penalty was imposed (anything from 10 upwards), all the due
times were respected and the value of the penalty did not make a difference (as long as it was above 10).

Having obtained the best set of parameters for the GA-scheduler, the comparison between the GA-
scheduler and the SLACK based scheduler was carried out. The ideal parameters for the GA-scheduler
were: population size: 1000, generations: >1000, crossover rate: 0.2, mutation rate: 0.0, penalty = 50.
The number of generations should ideally be as high as possible.

 8

All 60 problems were run with the above parameters, setting the generations to 10000. The problems were
split into batches of 10 and run in parallel on different machines. Unfortunately results for 40 problems
were lost. These 40 problems were re-run with a slightly different setting (detailed later).

All 60 of the problems were run with the SLACK scheduler, each for 35 minutes. The scheduler was
originally designed to simply find a satisfactory solution (i.e. a solution that satisfied all the constraints).
This was modified so that after a solution was found, the scheduler internally modified the problem so a
better solution would need to be found (by changing any due times of any job that were after the solutions
end time to end time – 1). This was done repeatedly until the 35 minute execution time was reached. Each
new (and necessarily better) schedule found was marked with the execution time till that point. Once
execution finished, the last schedule found was taken as the final result along with the time at which it was
found.

The results for the 20 problems run with GA-scheduler (generations = 10000) and the SLACK scheduler
are given below.

 GA SLACK
problem
number

score (timespan
of best schedule)

first generation
score was
reached

time when score
was first

reached (ms)

 score time when
best solution
was found

40 143 263 81869 143 420
41 147 333 103659 147 7530
42 145 151 47005 149 70
43 147 76 23658 147 330
44 144 2932 912699 143 71180
45 142 42 13074 142 80
46 130 347 108017 130 250
47 143 363 112998 143 1700
48 153 977 304129 153 160
49 137 417 129808 137 70
50 167 4705 1464615 161 8820
51 153 9347 2909618 148 18180
52 183 2033 632851 170 43540
53 159 3231 1005775 157 690
54 155 9127 2841135 148 43870
55 161 9561 2976234 161 490
56 168 7222 2248129 169 39070
57 168 2183 679544 157 4180
58 171 95 29572 162 90
59 173 2453 763592 166 1200

Table5: Comparison of 20 problems run with GA-scheduler and SLACK

Some interesting observations can be made from the results above. First, both GA-scheduler and SLACK
find the same problems easy or difficult. This is only to be expected but is confirmed by the results.
SLACK is clearly a much better scheduler for these problems, finding better schedules in much less time.
The runtime difference is stark; GA-scheduler takes anywhere between 10 to 1000 times more time and
still does not, in many cases, come up with as good a solution.

The number of generations taken by GA-scheduler to reach its best schedule is also interesting. Remember
that all of the 20 problems above were run for 10000 generations. So the problems where GA-scheduler
and SLACK come up with the same solution fairly quickly, it may be a reasonable assumption that it is in
fact the best solution. For other problems where SLACK does better, GA-scheduler reaches a plateau (in
terms of the score) at various different times in the search. For instance, in problem 58, GA-scheduler has
the score of 171 in the 95th generation, but fails to improve in the 9905 generations that follow, even though

 9

SLACK has found a much better solution fairly quickly. In problem 54 however, it may be that further
search may yield a better solution for the GA, having reached its optimal in the 9127th generation.

Due to time limitations, the other 40 problems could not be run again for 10000 generations, but they were
run with a slightly modified algorithm. The number of generations was set to 10000, but the search was
terminated if the GA-scheduler matched the SLACK score. This would provide enough data for a
comparison with the SLACK scheduler.

 GA SLACK
problem
number

score (timespan
of best schedule)

first generation
score was
reached

time when score
was first

reached (ms)

 score time when
best solution
was found

0 140 12 3735 140 640
1 143 1 311 143 19790
2 140 17 5292 140 70
3 149 2 623 could not solve
4 137 77 23969 137 450
5 138 1 311 138 810
6 127 23 7160 127 249780
7 139 271 84359 139 820
8 144 38 11829 144 570
9 131 10 3113 131 310

10 160 1711 532615 157 760
11 147 1061 330278 141 2420
12 168 346 107706 167 200
13 162 5184 1613722 157 20180
14 143 7760 2415603 141 380
15 150 1717 534483 143 770
16 149 9744 3033200 146 500
17 154 2769 861959 151 180
18 155 2816 876590 145 11200
19 165 2408 749584 163 115590
20 140 89 27705 140 11970
21 145 83 25837 145 390
22 143 206 64126 143 25810
23 146 11 3424 146 98330
24 139 52 16187 139 580
25 140 8 2490 140 240
26 129 252 78445 129 8430
27 141 484 150664 141 310
28 150 66 20545 150 340
29 132 613 190820 132 32770
30 161 8078 2514593 158 730
31 147 2135 664602 147 80
32 176 1417 441097 167 1440
33 166 1628 506778 152 7200
34 155 7365 2292643 143 76770
35 155 889 276736 153 9460
36 155 9251 2879735 155 76270
37 164 6327 1969526 154 230
38 165 4788 1490452 152 45380
39 171 188 58522 169 300010

Table 6: Problems 0 – 39 with population size = 1000, crossover rate = 0.2, mutation rate = 0.01, and
variable generations.

 10

Note that where the scores of the GA-scheduler and SLACK are equal, the GA-scheduler was terminated
and the so did not proceed beyond the ‘first generation score was reached’. So, all the white rows were
terminated at the first generation that the score matched SLACK’s score. However, all of the dark rows ran
for 10000 generations because they could not match the SLACK score. The ‘first generation score was
reached’ column for them reflects the first generation that the best score was encountered. So, problem 39
reached a score of 171 at generation 188. It then ran for another 9812 generations but could not find a better
schedule.

Although the results above lead to the same conclusions as those from the previous set of 20 problems, note
that GA-scheduler managed to solve a problem that SLACK could not solve.

Many of the problems show GA-scheduler reaches its minimum value quite quickly, but then does not
improve over many generations. To try and change this, the GA-scheduler algorithm was altered to increase
the crossover rate and mutation rate (upto some pre-specified maximum) if there was no change in the
score for many generations. Various experiments were run with this ‘reverse simulated annealing’ type
approach, but they did not perform well. However, this technique was only explored in a very rudimentary
way and the results are by no means conclusive.

6. Conclusion

Due to representational difficulties, GA’s are not able to efficiently find schedules. Crossover and mutation
totally change the whole schedule in any representation, thus not following the ideal of preserving most or
all of the information contained in the separate pieces of chromosome crossed. Each evaluation of the
chromosome also involves building a schedule, a time consuming process which makes GA-schedulers
uncompetitive with solutions customized for the particular type of problem, in this case SLACK.

The flexibility of the GA is illustrated by the use of the penalty. In the GA-scheduler, it is very easy to
change the scoring function to relax (or somewhat relax) certain requirements to find approximate
solutions, something that is not as easy to do in customized algorithms.

7. Future Work

The most important work in improving GA-schedulers is to find a better representation that will make
crossover and mutation more meaningful. Also, it is not clear why the GA-scheduler remained at the same
score for many generations. This should be investigated further and perhaps solutions like ‘reverse
simulated annealing’ investigated in greater depth.

References:

David E Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine Learning. Addison

Wesley
Bierwirth, C, Mattfeld D. 1999. Production Scheduling and Rescheduling with Genetic Algorithms.
 Evolutionary Computation 7(1): 1-17, MIT.
Fang, Ross, Corne. 1993. A Promising genetic Algorithm Approach to Job-Shop Scheduling, Rescheduling

and Open-Shop Scheduling Problems. Fifth International Conference on Genetic Algorithms.
Morgan Kaufmann, pages 375-382

Yamada T, Nakano R. 1997. Genetic Algorithms for Job-Shop Scheduling Problems
 Proceedings of Modern Heuristic for Decision Support, pp. 67-81, UNICOM
Jain A, Meeran S. 1998. A State-Of-The-Art Review of Job-Shop Scheduling Techniques
 Department of Electronic and Mechanical Engineering, University of Dundee, Scotland, UK

