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Abstract: This paper describes the application of the principles of genetic programming 
to the field of prime factorization.  Any prime factorization algorithm is given one integer 
and must generate a complete list of primes such that, when multiplied together in 
varying degrees, produces the original integer. Constructing even a limited factoring 
algorithm in GP turns out to be extremely challenging and potentially impossible. 

 

Introduction and Overview 
Deriving an algorithm which scales better than O(n) to numerically factor integers into its 
constituent prime factors has been a crucial problem in recent times.  Most encryption schemes, 
including RSA, depend on the fact that it is compute-intensive to factor large numbers in order to 
obscure sensitive data.  Solutions to this problem include resorting to highly parallelized 
compute environments such as quantum computing, DNA-based computations, or massively-
parallelized computing farms.   
 
On the surface, attempting to derive an algorithm to factor integers into prime constituents seems 
to be a problem well suited for genetic programming.  The goal is well defined: the genetic 
programming process must evolve an algorithm which takes an integer i and outputs n prime 
integer factors, such that when the ∏ product of these factors is calculated, it returns the original 
integer i.  The fitness cases are similarly well defined: an individual is considered to be fit when 
its outputs are all prime integers that, when multiplied together, produces the original integer i.  
Traditional primality tests, such as the Rabin-Miller Strong Pseudoprime Test, are well 
understood and can be efficiently calculated for numbers up to 3.4 x 1014 (Rabin 1980).  Additional 
fitness cases to evaluate compute-expense may be added in order to evolve higher performance 
algorithms; however, first, it is important to determine whether GP is capable of evolving a 
simple factoring algorithm. 

 
Prime Factorization 
The Fundamental Theorem of Arithmetic (unique factorization theorem) states that any positive 
integer can be represented in exactly one way as a product of primes.  Mathematicians such as 
Euler and Fermat used to factor primes without computers at an astounding rate.  Ever since 
these feats, there has been speculation that there was once a secret method of factoring primes 
that has since been lost.  
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There are many algorithms to factor 
numbers into their primes, ranging 
in complexity and speed.  The 
simplest algorithm is the direct 
search factorization algorithm. All 
possible factors (up to the floor of 
the square root of n) are tested to 
see if they divide n properly. 
Variations exist where multiples of 
smaller primes are excluded from 
the test list to eliminate obvious 
non-primes. Obviously, this method is only practical for relatively small numbers. It achieves 
approximately O(n) performance if the primality test is constant test or is dominated by O(n). 
These algorithms range in sophistication and efficiency all the way up to the Pollard-Strassen 
method, which is regarded as the fastest-known, fully proven, deterministi

Figure 1:  Potentially Evolvable Direct Search Factorization 
Algorithm 

(eval 
  (for (sqrt x)  

  (if (and (and (> i (/ x x)) (== (% i x) v0))  
       (is_prime i))   
    (set_v1 i)  
    x 
  ) 

  )  
  v1 
) 

c algorithm. It has the 
omplexity O{exp[c(log n )⅓ (log log n)⅔]}. 

, which eliminate factoring possibilities, thus leaving a 
maller number of elements to process.  

se genetic programming to construct an algorithm to 
ctor integers into its constituent primes.  

 on Dual 1GHz UltraSPARC™ III 
rocessors in the Stanford University computing environment.  

T for the Prime Fa

Objective erforms a simple direct 
of fitness cases. 

c
 
It is widely considered in the mathematics world that this problem is “computationally hard” 
and that building a general-purpose algorithm to solve it is extremely difficult. In fact, it is 
considered so hard, several incredibly innovative and spectacular methods have been developed 
throughout the 20th century in order to improve the performance of solving this problem. These 
range from the Elliptic Curve Factorization Method, which uses random points on elliptical curves 
to factor, to using various uses of sieves
s
 
Despite its difficulty, we will attempt to u
fa
 

Methods 
The runs reported in this paper were designed around the standard genetic programming 
paradigm as defined in Koza (1992). The problem was coded in Java™ using Sean Luke’s ECJ 8 
Java™-based Evolutionary Computation and Genetic Programming Research System. The runs 
were executed on several Sun™ Blade 2000 machines, operating
p
 

able 1: Table ctorization Problem 

Find a mixed-typed function that p
factorization over a range 

Terminal Set X, I, V0, V1, RandPrime 
/, %, Sqrt
IfPrime 
25 num
(1,100) 
100 multiplied by the number of hits, plus bonus points for a
greater than 1, different from the fitness test case, and prime.  
10,000 divided by Raw Fitness. If no points are given, standardized 

Function Set , SetV0, SetV1, Eval, For, IfGreaterThan, IfEquals, IfLessThan, 

Fitness cases: bers, which are the products of randomly selected primes from 

Raw Fitness: n output 

Standardized Fitness: 
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fitness is 10,000. If all hits are made, the individual has a perfect fitness: 
0.0. 

Hits: ness cases that the individual returns either prime The number of fit
factor of the case. 

Parameters: 

-  reproductions, and 1% mutations were used 

- yped Probabilistic Tree Creation 2 

- Population size, M = 1024, 
- Maximum number of generations, G = 101, 

89% crossovers, 10%
on each generation.  
Tree builder is the Strongly-t
(PTC2) was used (Luke 2000). 

- All other parameters are standard, per Koza (1992). 
Success Predicate the number of hits for an individual equals the number of test 

cases. 
When 

 
Objective 
Because of the difficulty of constructing a full-blown, general purpose factoring algorithm, for the 
purposes of this paper, we will be attempting to evolve an individual that is able to take in a 
number that is the product of two primes and will return either one of those primes. This avoids 
the complication of maintaining a unique array with values that may or may not correspond 
properly to an answer. Our simplified approach allows us to gain some knowledge about GP’s 

mits and abilities. 

- 

cution when the main return value might be changing—

- 
out deleterious effects. These can be strung 

- 

ams, the value of the iterative 

- 

ity tests to 
a certainty (13) that guarantees accurate primality tests for numbers up to 100,000. 

li
 
Terminals and Functions 

V0, V1, SetV0, SetV1 are terminals and function that act as variables and internal state for each 
individual. SetV* takes in one argument, stores the value given into V*, and returns that 
argument. V* returns the value stored in its state. This set of functions allows the individual 
to save a value somewhere in its exe
for example, during a For iteration.  

- RandPrime is a random prime generator terminal. 
Eval is a function that takes in two arguments, evaluates both trees, but only returns the value 
of the latter. It is a way for SetV* to be run with
together to get a more linear style of branching. 
For takes in two arguments, the limit up to which it should iterate, and the branch of 
functions to execute each time through. For each iteration, For updates a terminal I with the 
current iteration number (i). Thus, like traditional progr
element is available for use in the functional branch. 
IfPrime takes in three arguments: the number being tested, and two conditional branches. If 
the first argument is prime, then the second branch is evaluated, else, the third branch is 
evaluated. IfPrime uses a custom-written, speed-optimized port of the primality testing found 
in Java™’s BigInteger class. It uses both the Rabin-Miller and Lucas-Lehmer primal

 
Fitness and Hits 
Our fitness cases are designed in a slightly unorthodox way.  During a setup phase, a “prime-
pool” of 100 times our training set is randomly generated, full of primes from [2, 100].  For each 
evaluation, our fitness cases are filled up by randomly selecting two primes from the prime-pool, 
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multiplying them together, and inserting the product into the individual to run. We define a 

hance to redeem itself: if the return value is greater than 1, if the return value 
n’t equal to the test case value, and if the return value is prime, the individual is granted 

rmalizing functions to achieve 
e range [0, +∞], where 0 is the best and +∞ is the worst.  From there, we use ECJ 8’s built-in 

lation functions to achieve the adjusted fitness, etc. 

 
a 

very quick, 
ery interesting initial

erations is 
ached or we have found a 

ual. 

ed a random prime, 
hich worked 7 times out of 25: 

rogressed to the maximum of 17 from there. The best individual across the next 70 or so 

successful fitness case (or hit) as when the individual returns either one of the original primes. 
 
Due to the nature of the problem itself, it turns out to be difficult to be creative about designing 
fitness rewards that provide a gradual ramp up to a perfect individual. Each successful fitness 
case will reward the individual with a certain raw fitness amount (100), but each unsuccessful 
fitness case has a c
is
another 20 points. 
 
After the raw fitness is determined, we perform some simple no
th
fitness manipu
 
Population 
The population (1024) and genera
influenced by the default values i
(1992), except for Sean Luke’s 
PTC2 tree building algorithm, 
which provided 

tion sizes (101) were picked through trial and error and were
n andard, per Koz

 (if_== x (set_v0 i) (sqrt x) rand_prime) 

_prime (/ x (eval v0 rand_prime)) 
     (for (sqrt (/ i v1)) rand_prime) rand_prime)) 
     (for (for x (/ x rand_prime)) rand_prime) 
     rand_prime) 

 
and_prime)) (set_v0 (if_< x i v1 x))) 

_< 
f_> (if_== v0 (sqrt rand_prime) 

rime 
and_prime 

         rand_prime x)))) x) rand_prime v1))) (/ i 

 ECJ 8’s package. Everything else was st

Figure 4: Best Individual of Generation 0 of Run 24 

v
generations (RRR). 
 
Termination Criteria  
We end when the maximum 
number of gen (if_prime (/ x (if

Figure 4: Best Individual of Generation 22 of Run 24 

re
perfect individ
 

Results 
The best individual of 
generation 0 had an adjusted 
fitness value of 0.0654 (on a 
scale of [0, 1], where 1 is perfect). 
This individual essentially 
return
w
28% 
 
In generation 22, the best 
individual had an adjusted 
fitness value of 0.115. This 
individual was the first to score 
13 hits, and it quickly 

     rand_prime)) (set_v1 i) rand_prime) 

(if_prime (/ x (if_prime (/ x (if_prime (/ 
     x (if_prime (if_< x (/ x rand_prime) (/ i
     (/ x r
     v0 rand_prime)) (for (sqrt (if_prime v0 v0 
     x)) rand_prime) rand_prime)) (for (sqrt 
(if_prime 
     (/ x rand_prime) (for (eval (set_v0 (if
     (for x (i
         x rand_prime) v0 (if_prime rand_prime (if_< 
         x i v0 i) (if_prime v1 (sqrt (/ x 
rand_prime)) 
         rand_prime)) v1)) (sqrt (sqrt (set_v1 (eval 
     (if_prime (% rand_prime x) v0 rand_prime) 
     rand_prime)))) i (if_> rand_prime (/ (set_v1 
     (if_< v1 rand_prime (/ x rand_prime) (if_p
         rand_prime rand_prime (if_prime r

Figure 4: Best Individual of Run 24 

     x)) rand_prime) rand_prime)) rand_prime) 

p
generations stagnated at about 17 hits.  
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Our best individual of run 24 had 17 hits and an adjusted fitness value of 0.1453.  
 
With the current function set and terminal set, this was the best individual. With a success rate of 

8%, this individual was fairly robust compared to previous attempts and given the strenous 

s not found. The GP system managed to converge to a maximum fitness value 
uickly, only after 65 generations, however, did not experience any improvement over the next 

erhaps what’s interesting, is not the exact results achieved on this last run, but the behavior that 

 Java™’s memory limits were tested. 
hecks and limits were placed in an increasing amount of places, until the complexity of the 

as introduced into 
e system. Almost immediately, results started showing up, but it was stagnating at around 4 or 

+, or Java™. We attempted to bring over concepts such as mixing Boolean and numerical 
perators such as And, Or, Nor, Nand, GreaterThan, LessThan, Equals into functions such as If and 

nce the complexity of the typing was removed and Boolean statements were reduced to 
nctions such as IfGreaterThan and IfPrime, the speed to convergence increased significantly. 
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testing given to each individual.  
 

Discussion of Results 
The stagnation of the individuals in this run demonstrates the limited fitness gradation present, 
both inherent in the problem and in the system in general. One can see in Figure 1 that it is 
certainly possible to write the ideal individual out with less than 20 nodes, but after 101 
generations, it wa
q
126 generations. 
 
P
GP has towards previous approaches to this problem.  
 
The first iteration of this project involved sending the individual through fitness cases where it 
was given non-primes and expected to fill an array (through a function called Insert) with the 
prime factors of each case, such that, when multiplied together, would return the original fitness 
case. This endeavor turned out to be difficult to control. Individuals would evolve to merely 
insert the test case itself into the first element of the array and quit. This, of course, would yield a 
significant fitness measurement due to the fact that x * 1 = x. In other cases, individuals would 
insert into the array unchecked, and after a few generations,
C
project grew disproportionately to the hits coming in: zero.  
 
The lack of results merited a re-consideration of the focus of the project. We simplified the project 
heavily, eliminating the array altogether, and limiting the testing range to numbers that are the 
products of two primes. This allowed simplification of the return value, as only one was now 
needed. (The other could be found by dividing the test case by the return value.) The overall 
complexity of the project and evaluation times dropped dramatically. However, true results did 
not start to show up until a random prime generator terminal (rand_prime) w
th
5 hits. Once we added a floored square root function, the hits shot up to 17. 
 
The project also started out with taking advantage of ECJ 8’s strongly-typed tree constraint 
system by bringing over logical concepts from such traditional programming environments such 
as C, C+
o
While.  
 
O
fu
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s way is probably “GP-hard” since its complexity 
 similar to a needle-in-the-haystack problem. 

 nontrivial problem as it reaches the limits of what Genetic Programming 
 capable of handling.  

and commitment to supporting his incredibly 
flexible and powerful framework is commendable. 

 

Conclusion 
Through innovative, but simple function sets, we were able to get significant progress towards 
evolving an algorithm to do limited factoring in the manner described in the paper. It is 
important, though, to note that factoring in thi
is
 

Future Work 
It is likely unwise that future work be done on this line in GP. Genetic Programming does not 
seem to be suited to this
is
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