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Abstract: We develop a novel protein structure prediction technique using genetic algorithms.  
This implementation improves upon past work by Unger and Moult1, wherein amino acid residues 
were modeled with a single characteristic, hydrophobicity, and protein structures were assumed to 
be two-dimensional.  We model proteins as three-dimensional chains of residues with 
hydrophobicity, side-chain size, and charge characteristics.  Employing this model, we use the 
Genesis Genetic Algorithm to optimize protein structure.  This protein structure prediction 
technique is tested with two short proteins and demonstrated to yield optimized structure. 

 
Introduction: 
Chemists, physicists, biologists, and computer scientists have attempted to develop a realistic framework 
for predicting protein topology for nearly four decades2.  Many protein structure prediction frameworks, 
from quantum physical principle-based analyses3 to environmental variable-based approaches4, have been 
proposed.  However, none of these has successfully predicted the structure of a wide variety of types and 
sizes of proteins accurately.  We have developed a simple approach to short-protein structure prediction, 
employing Genetic Algorithms (GAs) for optimization, that improves upon the method proposed by Unger 
and Moult in 19931.  While Unger and Moult rely upon a two-dimensional protein model in which residues 
have only a single binary characteristic, we model proteins in three-dimensional integer space, and residues 
with characteristics of hydrophobicity, charge, and side-chain size.  As a result, the model we present 
predicts protein structure more realistically and accurately than Unger and Moult’s model, while 
maintaining computational simplicity and speed not present in more complex models.  Our model is 
accurate and useful as a first-order structure prediction tool. 
 
Background: 
Traditionally, researchers developing protein folding algorithms have attempted to predict the protein 
folding pathway in order to determine structure.  In predicting folding pathways, we examine patterns of  
residues in other, similar proteins and build new proteins from given sequences with regard to these 
characteristic patterns.  Pathway methods have not successfully predicted a wide-variety of proteins 
accurately.  
 
Therefore, researchers have recently begun to develop statistical perspectives upon protein folding, 
deriving multi-dimensional landscapes of folding probability for entire proteins, as well as common protein 
sub-structures2.  These statistical frameworks take into account (1) local characteristics, such as side-chain 
size and charge, and (2) global characteristics, such as hydrophobicity, bond structure, interaction strength, 
and probabilities of given conformations.  These conformational probabilities are calculated from similar 
protein or substructure training sets.  In addition, environmental variables such as temperature and the 
presence of a chemical can be taken into account in these landscapes.  Landscape analysis represents a shift 
from previous efforts, which sought to optimize energetic properties of the folded protein and failed to 
incorporate knowledge that proteins do not always fold in energy-optimized conformations. 
 
 GAs are especially well-suited to solving landscape-type analysis and optimization problems1.   GAs are 
different from other search methods in that they use probabilistic rules to optimize solutions.  That is, 
fitness measures are supplied by the user, and assignment of these values to a population if potential 
solutions generates a statistically ranked population.  More fit individuals are recombined an mutated to 
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form a new population generation, yielding a more statistically fit population at large.  Gradually, 
statistically more fit individuals are produced until an individual that is maximally fit emerges.  This 
correlates nicely with the probabilistic landscape approach to protein structure prediction.  Well-optimized 
sub-units in a population are repeatedly retained and re-combined, based upon fitness characteristics 
specified by the user, to find a most-fit individual.  If the user provides a realistic model of protein and 
residue characteristics and their contributions to structure fitness, GAs are likely to predict the correct 
structure.  For further background on the basic function of Genetic Algorithms, please refer to Grefenstette5 
and Goldberg6.  Development of a simple model for local and global protein characteristics and their 
contribution to fitness of the short-protein structure is the subject of our analysis. 
 
Highly complex models of protein structure prediction using GAs have been implemented7-9.  These 
models take into account the three residue characteristics that our model does.  In addition, they consider 
the presence and strength of hydrogen bonding interactions, disulfide bridges, and dihedral bond angles.  
Further, while we stipulate only a single site in each crossover event, multiple crossover sites are used in 
complex models.  These more complex methods first attempt to predict the appropriate conformation of 
sub-units within the protein chain, drawing upon residue characteristics and information from highly 
conserved regions from similar proteins.  They then fold these subunits together.  While accurate, these 
complex GA-based structure prediction methods require prior knowledge of the protein structure and are 
slow.  For the purposes of small-protein folding prediction, we demonstrate that computational complexity 
can be greatly reduced with our model, while approximate structure is still well predicted. 
 
Implementation Background: 
This simple model for protein structure prediction seeks an optimal spatial conformation for a given protein 
with static characteristics.  The initial population includes a linear conformation and a set of random 
conformations.  After fitness of  each conformation is assessed, crossover, reproduction and mutation 
operate on the population.  Throughout the analysis, the protein remains constant; that is, there is no 
mutation of the characteristics or ordering of the residues in the protein.  We have chosen to use the 
Genesis Genetic Algorithm (GGA) for optimization of protein structure5.  This user-friendly GA is well 
documented, which will enable others to replicate our method easily.  In addition, it allows analysis based 
upon gene structure, where genes are handled as integer values.  This simplifies development of the fitness 
evaluation procedure significantly. 
 
Optimization Method: 
In preparing our GA-based approach to optimizing protein structure, we follow the four principles of 
preparation outlined in Koza10.  We developed a representation scheme, a method of fitness measurement, 
optimized the major parameters of the GA run, and chose termination criteria. 
 
Protein Spatial Representation 
The protein under study was located in a three-dimensional integer space.  We developed a binary string 
based representation for protein structure and then exploited the gene-based representation scheme in 
Genesis.  The binary representation consists of groups of five bits, arranged in a string, where each group 
codes for one residue.  Thus, the binary representation for a protein under study is L*5 bits long where L is 
the number of residues in the protein. A group of 5 bits is decoded to an integer between 0 and 31.  The 32 
different codings  each represent a potential location at which a residue can be found with respect to the 
previous residue in the chain.  This representation ensures that each residue moves to a point that is no 
more than one integer away from the previous residue along each of the three cardinal axes.  All moves are 
made from the perspective of the user, which is constant throughout the analysis.  Once the protein 
structure has been derived, it can be graphed on coordinate axes which can be rotated to provide different 
perspectives.  The residue representation is summarized in table 1 and illustrated in figure 1. 
 
Note that moves along the cardinal directions, where the residue location differs with respect to the old 
residue location by one integer value along only one axis, are twice as likely to be chosen in the initial 
population as other moves.  However, after evolution has progressed, this affect will be negligible.  
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Binary 
String 

Gene Translation Binary 
String 

Gene Translation 

00000 0 UP 10000 16 DOWN-AWAY 
00001 1 RIGHT 10001 17 DOWN-TOWARD 
00010 2 LEFT 10010 18 DOWN-RIGHT-TOWARD 
00011 3 DOWN 10011 19 DOWN-RIGHT-AWAY 
00100 4 AWAY 10100 20 DOWN-LEFT-TOWARD 
00101 5 TOWARD 10101 21 DOWN-LEFT-AWAY 
00110 6 UP-RIGHT 10110 22 RIGHT-TOWARD 
00111 7 UP-LEFT 10111 23 RIGHT-AWAY 
01000 8 UP-TOWARD 11000 24 LEFT-TOWARD 
01001 9 UP-AWAY 11001 25 LEFT-AWAY 
01010 10 UP-RIGHT-TOWARD 11010 26 UP 
01011 11 UP-RIGHT-AWAY 11011 27 RIGHT 
01100 12 UP-LEFT-TOWARD 11100 28 LEFT 
01101 13 UP-LEFT-AWAY 11101 29 DOWN 
01110 14 DOWN-RIGHT 11110 30 AWAY 
01111 15 DOWN-LEFT 11111 31 TOWARD 
Table 1.  Binary and gene representation of each residue in the protein structure.  Translation directions 
are from the user’s perspective, which remains constant throughout the analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1.  Definition of moves, from a residue located at (0,0,0). 
These are referred to in the translations in table 1.      

 
 
 
 
 
Protein Characteristic Representation 
Protein characteristics remain constant throughout structure optimization.  They are encoded as binary 
strings of length N, in which element (i) of the string holds the characteristic of amino acid residue (i) in the 
chain.  In this representation, three characteristics are encoded in four strings.  These strings represent  
hydrophobicity, side-chain size, and hydrophilic positive and negative charge.  The presence of a 
characteristic is encoded as 1 and absence as 0.  Small side-chain size is encoded as 1.  Table 2 summarizes 
the characteristics of  each amino acid.  
 
 
 

Residue Located at (0,0,0)

Right = x+1

Toward = z+1

Away = z-1 

Left = x-1

Up = y+1

Down = y-1
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Amino Acid Abbreviation Hydrophobic Small Side 
Chain 

+ Charge - Charge 

Glycine G Y Y   
Alanine A Y Y   
Valine V Y Y   
Leucine L Y Y   
Isoleucine I Y Y   
Methionine M Y    
Phenylalanine F Y    
Tryptophan W Y    
Proline P Y    
Serine S  Y   
Threonine T  Y   
Cysteine C  Y   
Tyrosine Y     
Asparagine N     
Glutamine Q     
Aspartic Acid D    Y 
Glutamic Acid E    Y 
Lysine K   Y  
Arginine R   Y  
Histidine H   Y  
Table 2.  Characteristics of amino acid residues.  ‘Y’ denotes that the residue has the characteristic. 
 
 
Fitness Measure 
The raw search space of a given protein containing L resides is large: roughly 32L.  To save computational 
time in evaluating the fitness of a given protein structure, we first attempt to eliminate all non-viable 
protein structures.  Structures are laid out on a three-dimensional integer grid, and if more than one residue 
is present at a single coordinate location, they are classified as non-viable and assigned a fitness of 0.  We 
next assign value to the relative spatial configurations of residues with various combinations of the 
characteristics listed above.  In so doing, we make the following assumptions, which are valid in the case of 
most proteins that reside in normal pH, aqueous environments. 
 

• Hydrophobic regions of the protein tend to localize to the center of the structure, surrounded by 
hydrophilic regions when possible. 

• Small side-chain residues fit more easily at the center of a tightly folded structure whereas larger 
side-chain residues tend to be located at the perimeter of such folds. 

• Positively and negatively charged residues attract and so tend to be adjacent. 
• Positively charged residues repel one another so tend to be located as far apart as possible.  The 

same is true of negatively charged residues. 
 
In quantifying these assumptions to measure fitness, we consider pairs of residues that are not connected in 
the protein chain, but do not assess connected residue pairs.  This prevents rewarding or penalizing 
adjacencies that are not directly controlled by the algorithm.  We found it best to consider pairs adjacent in 
only the cardinal directions to reward linearity above kinkiness. 
 
We optimized the values assigned to the presence of the conformations listed above in order to obtain an 
end result that closely matched experimental protein conformation.  The fitness measures listed in table 3 
are the result of this optimization.  Table 3 assumes a comparison between two non-connected residues, k 
and n, that are adjacent in one of the cardinal directions. 
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Fitness Evaluation Fitness Value Explanation 
hydrophobicity[k] = 1 and hydrophobicity[n] = 1 +6 Hydrophobics conglomerate and 

locate at the center of folds. 
hydrophobicity[k] = 1 and hydrophobicity[n] = 0  
hydrophobicity[k] = 0 and hydrophobicity[n] = 1 

+2 Combined with above, ensures 
that hydrophilics are pushed 
outside. 

SmallSize[k] = 1 and SmallSize[n] = 1 +4 Small side-chain residues fit 
together in tight folds more easily. 

SmallSize[k] = 1 and SmallSize[n] = 0 
SmallSize[k] = 0 and SmallSize[n] = 1 

+2 Combined with above, ensures 
that large side-chains are pushed 
outside. 

PositiveCharge[k] = 1 and NegativeCharge[n] = 1 
NegativeCharge[k] = 1 and PositiveCharge[k] = 1 

+2, exp. 
 

Opposite charges attract. 

PositiveCharge[k] = 1 and PositiveCharge[n] = 1 
NegativeCharge[k] = 1 and NegativeCharge[n] = 1 

-2, exp. 
 

Like charges repel. 

Table 3.  Summary of fitness measures comparing two non-connected adjacent residues k and n.  
 
 
Experimental Parameters 
We optimized the experimental parameters for this GA protein structure prediction technique based upon 
comparison of the GA structure result to NMR experimental structure for two short-length proteins.  These 
randomly chosen test-set proteins were 1ACW, a toxin found in scorpions, and 1ALG, an Hgr inhibitor.  
We will refer to these as Scorp and Hgr.  The characteristics of these proteins are summarized in table 4. 
 

Protein HGR SCORP 
Sequence QGLGCDEMLQGFAVAV

KMGATKAD 
VSCEDCPEHCSTQKAQAKCD
NDKCVCEPI 

Hydrophobicity String 0 1 1 1 0 0 0 1 1 0 1 1 1 1 1 
1 0 1 1 1 0 0 1 0 

1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 
0 0 0 0 0 0 1 0 0 1 1 

SmallSize String 0 1 1 1 1 0 0 0 1 0 1 0 1 1 1 
1 0 0 1 1 1 0 1 0 

1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 1 0 
1 0 0 0 0 1 1 1 0 0 1 

PositiveCharge String 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 
0 0 0 0 1 0 0 0 0 0 0 

NegativeCharge String 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 

0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 1 0 1 0 0 0 0 1 0 0 

Table 4.  Summary of characteristics of the test-set with which the experimental parameters and fitness 
value assignments were optimized. 
 
 
We varied four experimental parameters: initial population size, number of generations run, crossover rate, 
and mutation rate, to achieve the best result in the smallest number of trials.  The simplified spatial model 
that we used, three-dimensional integer space, made a direct quantitative comparison between the NMR 
structure model of the protein and the GA-optimized model difficult.  Therefore, the efficacy of the fitness 
measures was judged by careful visual comparison of the GA structure result to the NMR experimental 
structure, and the resulting optimal fitness measures are listed in table 3.  In choosing the fitness measures, 
we aimed to achieve a structure most similar to the NMR experimental structure.  These fitness measures 
did not necessarily yield the most tightly folded structure. 
 
The initial population size was set to 1000 to optimize variety in the initial population, encouraging faster 
convergence, while minimizing required computation time.  We optimized the combination of mutation 
rate and crossover rate to yield the best terminal fitness in the shortest number of generations possible.  The 
optimal values were found to be 0.73 for the crossover rate and 0.005 for the mutation rate.   
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Terminal Criteria 
The terminal result was identified when fitness of the best individual in the population ceased to increase 
with increasing numbers of generations.  At least two orders of magnitude of generations without changing 
fitness were observed to confirm the terminal result.   
 
Tableau 
The experimental characteristics are summarized in the Genetic Algorithm Tableau10 presented in Table 5. 
 
Objective: To find the structural conformation that most closely resembles the experimental 

conformation. 
 

Representation 
Scheme: 

L genes for a protein consisting of L residues: each gene takes one of 32 values and each 
value represents the location of the residue with respect to the preceding residue. 
 

Fitness Cases: Evaluated based upon non-connected residues adjacent in the cardinal directions.  
Characteristics of the protein are stored in static arrays and used to evaluate fitness.  
Please see table 3 for details. 
 

Raw Fitness: Sum of positive contributions of adjacent hydrophobic, small side-chain, or opposite 
charge residues and negative contributions of adjacent like-charge residues.  Fitness is 
maximized. 
 

Parameters: Population Size M = 1000 
Generations G vary based upon protein length 
Crossover Rate = 0.73 
Mutation Rate = 0.005 
Necessary Genesis Options: aCefLM 
 

Termination 
Criteria: 

The best individual is identified when the best fitness in the population ceases to change 
over the span of two orders of magnitude of generations. 
 

Result 
Designation: 

The most fit individual in the population, derived from the checkpoint file dumped from 
the last generation of the run. 
 

Table 5.  Tableau summarizing the experimental method for the simple GA-based protein structure 
optimization technique. 
 
 
Analysis Method: 
In order to analyze the results of the Genesis optimization, we developed a simple protein structure viewer 
in C and Matlab.  This viewer consists of a C program to translate the binary representation of a protein 
structure into a set of coordinates in three-dimensional integer space and a Matlab program to graph these 
coordinates and the chain connecting them.  In order to compare the GA structure to the experimentally 
determined structure for the test-set proteins, we spliced code from PDB files containing NMR structural 
coordinates.  In each case, we chose the first structural model given in the PDB file.  The simple protein 
viewer is available upon request. 
 
Discussion of Results: 
The GA-based protein structure prediction technique yielded good results for the test-set proteins.  As 
discussed above, it is difficult to quantify the quality of the prediction given the simplified coordinate 
system employed.  However, visual comparison of the predicted results to experimental results suggests 
that the simple GA-based protein structure prediction technique works accurately and quickly.  The optimal 
conformation of Hgr illustrated in figure 2(b) has fitness of 232 and is achieved at generation 800.   The 
optimal conformation of Scorp illustrated in figure 2(e) has fitness of 156 and is achieved at generation 
3500.  These results are compared to NMR structures in figures 2(c) and (f). 
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Figure 2.  Results of GA-based protein structure prediction technique and comparison to NMR 
experimental structure: 
(a) Hgr initial linear conformation.  (d) Scorp initial linear conformation. 
(b) Hgr folded by GA.   (e) Scorp folded by GA. 
(c) Hgr NMR structure.   (f) Scorp NMR structure. 
 
Figures (a) through (c) illustrate the analysis of Hgr and figures (d) through (f) illustrate the analysis of 
Scorp.  Figure (b) peers down the helix that is viewed from the side in figure (c).  Figures (b) and (c) 
illustrate a structure that consists of a helical segment surrounded by two tails.  This similarity between the 
predicted and experimental conformations of Hgr in figures 2(b,c) suggests that the protein structure viewer 
works.  Figure (e) shows a helix leading into a conglomerated tail region.  This helical region is parallel to 
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that in figure (f) but, in contrast to the GA prediction in figure (e), the tail in figure (f) is extended.  This 
case illustrates a shortcoming of the prediction technique: it has a higher tendency than nature to fold into 
conglomerate regions.   
 
The simple protein viewer uses color to represent the presence of each of the fitness characteristics at each 
residue location in the protein.  In color versions of figures (b) and (e), we can see that hydrophobic, small-
side-chain residues are localized to the inside of the protein folds.  In addition, we note that like-charge 
interactions are minimized and opposite-charge interactions are maximized.  All of these results suggests 
that the simple GA-based protein structure prediction technique is effective as a first-order analysis. 
 
It is interesting to examine intermediate stages during the protein structure optimization.  We find that clear 
schema emerge early in the process and are conserved in the best-of-generation individuals until optimal 
conformation is reached.  For example, the best of generation individual from generation 30 of the Hgr 
analysis has fitness of 170 and is illustrated in figure 3.  It is already clear that the protein will fold into a 
helical conformation, though optimization occurs over 770 additional generations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Intermediate conformation of Hgr, at generation 30 out of 800 total.  This structure has fitness of 
170 compared to the terminal fitness of 232, and the helical conformation is already forming. 
 
 
Suggestions for Future Work: 
The fitness measure presented here is easily expanded to new residue characteristics.  For example, the next 
implementation might take the hydrogen bonding tendencies of each residue into account.  The method is 
also easily extended to calculate substructure characteristics and incorporate them into the overall structural 
analysis.  For example, segments containing structures that represent helices might be more highly 
conserved through crossovers.  In addition, local environmental variables could be introduced.  For 
example, the residues of a known transmembrane protein segment could be isolated from the rest of the 
analysis in order to prevent spurious conglomeration around the hydrophobic transmembrane region.  
Certainly, a more complex three dimensional space could also be implemented to improve the accuracy of 
the model.  Clearly, the expansion possibilities associated with this simple technique are very promising, 
and there is much room future work in this area. 
 
In preparation for future work, it will be important to implement a quantitative measure for comparison of 
GA-predicted structure to experimental structure.  We suggest that a simple measure might first recalculate 
coordinated of the experimental structure to make bond distances constant.  The measure might then orient 
the first two residues of the predicted and experimental structure at the same place on the coordinate axes in 
order to align them and normalize bond distances.  The measure could then calculate the average difference 
between the locations of corresponding residues in the two structures.  We also suggest development of a 
more robust protein viewer to aid in visual analysis.  
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Conclusion: 
We have developed a simple GA-based method for prediction of short-protein structure.  By modeling 
proteins in three-dimensional integer space, and residues with characteristics of hydrophobicity, charge, 
and side-chain size, this method improves upon that presented by Unger and Moult1.  This technique is 
simple, fast, and the only prior information required to use this simulator is the protein sequence, and the 
amino acid characteristics.  As a result, this model is a very attractive mechanism for making first-order 
approximations about protein structure.  
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