
Creation of Simple, Deadline, and Priority Scheduling Algorithms using Genetic Programming 
 

Thomas P. Adams 
3710 Rawlins Ave, Suite 940, Dallas, Texas  75219 

tadams@stanford.edu / 214-965-0777 
 

Abstract:  Genetic programming is used to evolve three different schedulers, each intended to 
optimize the selection/processing of a job from queues with increasingly complex job data.  In the 
first, a queue of simple jobs with known run times must be processed in a way that minimizes the 
average wait time of all jobs.  In the second, a queue of jobs with known run times and deadlines 
must be processed in a way to minimize the sum of job delays.  In the third, a queue of jobs with 
known run times, deadlines, and assigned relative priorities must be processed in a way to 
minimize the sum of job delays relative to the priority of each job.  GP is shown to match or 
outperform the basic scheduling techniques of FIFO and Shortest Job First.  For the simple queue 
case, GP evolves the provably optimal selection mechanism. 

 
1. Introduction 
Scheduling involves the allocation of resources in order to perform a specific task or job.  Scheduling algorithms are 
designed to allocate the resources among the jobs to be processed.  The primary intention of scheduling algorithms 
vary among environments: when the resources themselves are limited or expensive to operate, algorithms are 
intended to maximize the utilization of those resources; when an expense or penalty is incurred by delayed jobs, 
algorithms are commonly intended to minimize the average wait time of jobs.  The complexity of the scheduling 
problem domain increases with the number of resources, job dependencies, and constraints. 
 
Because of the generalized nature of scheduling in terms of resources and tasks, scheduling algorithms are applied in 
a variety of areas.  For example, in computer science, scheduling algorithms are used to determine the next process 
which the CPU should run; in manufacturing environments, scheduling is used to determine when and which 
products should be produced; in hospitals, scheduling is used to manage critical resources such as operating rooms, 
MRI, and other limited-availability equipment.  Even among these few examples, it can be seen that sub-optimal 
scheduling wastes time, resources, and money while jeopardizing profits or even patient health. 
 
This paper explores the ability of Genetic Programming (GP) to evolve programs capable of performing scheduling 
algorithms under three different models, each of which is briefly described below. 
 
Simple Scheduling 
The simplest scheduling model involves a queue of jobs and a single resource capable of processing one job at a 
time, from beginning to completion.  Each job has a known (or estimated) time necessary for completion.  In this 
case, it is the responsibility of the scheduling algorithm to select the next job that is to be processed from the queue.  
The selected job is then removed from the queue and processed exclusively by the resource.  The scheduling 
algorithm is then presented with the queue of remaining jobs, and the cycle repeats until there are no more jobs to be 
selected.  A job’s wait time is the time spent in the queue before being selected for processing.  After all the jobs in a 
queue have been processed, the average wait time (AWT) can be calculated as the sum of all wait times divided by 
the number of jobs processed.1 
 
Deadline Scheduling 
A deadline scheduling model is built from the simple scheduling model above, with additional information that 
assigns a deadline to each job.  A deadline is expressed as a number of time units after a job’s arrival into the queue 
after which a job is considered delayed.  A job’s delay time is the amount of time between its selection time and 

                                         
1 The simple model assumes that all jobs to be processed exist in the queue before the algorithm begins.  In other models, a more 
complicated simulation will assign arrival times to jobs.  The jobs which arrive into the queue while other jobs are being 
processed will then be available to the scheduling algorithm during the next selection cycle.  In terms of analyzing the simple 
scheduling model as presented, such a simulation is superfluous since (1) the optimal selection mechanism (discussed later) is 
Shortest Job First and would still need to be discovered, (2) such a mechanism would perform identically whether or not new jobs 
are added between each selection cycle, and (3) would not be recognized under the simulation used since no operators to provide 
for the memory of prior jobs processed since they are removed from the queue at selection time. 



deadline.  Two basic, alternative intentions of a scheduling algorithm in this case are (1) to minimize the average 
delay time of jobs, or (2) to minimize the number of jobs that experience any delay. 
 
Deadline Scheduling with priority 
A deadline scheduling with priority model functions as the deadline scheduling model above, with additional 
information that assigns a priority to each job.  The priority value itself is meaningful only in the value it has relative 
to other priorities.  In scheduling with priorities, the primary intention of a scheduling algorithm can be either the 
minimization of the average delay of jobs or the minimization of the number of jobs that experience delay as above; 
however, simulation using either intention must specify how jobs with different priorities influence the values to be 
minimized.  The approach used in this paper is to weight the actual job delay using a priority-relative factor.  
 
The preparation, simulation, and results of the three scheduling models are discussed below, each in its own section.  
All runs were performed on one of two single-processor 866MHz machines with 256 or 512MB of RAM, on the 
Windows 2000 operating system.  Java-based, publicly available ECJ 8 by Sean Luke, available at 
www.cs.umd.edu/projects/plus/ec/ecj , was used with IBM’s Visual Age for Java. 
  
2. Simple Scheduling 
A program capable of simple scheduling as defined above has as its input a queue of jobs, each with a run time.  The 
output of the program’s invocation is a single job, that is, the job to be processed next.  The algorithm is repeatedly 
invoked until the queue is empty, at which time processing statistics are used to assign a fitness to the program.  The 
simulation of the simple scheduling environment is shown in Figure 1. 
 

(1) Initialize current time to 0
(2) Load jobs into queue

Is the job
queue empty?

Run individual with job queue as input

(1) Remove job selected by individual from queue
(2) Set job’s delay time to the current time
(2) Increment the current time by the selected job’s run time

Assign fitness to individual

 
Figure 1.  Simulation environment for evaluating simple scheduler individuals 

 
Simple Scheduling Preparatory Steps 
Program Architecture 
From the beginning of this project, it was obvious that any evolved program capable of making an optimal selection 
from a job queue would need to examine every job in the queue before determining which job should be selected.  
After early unsuccessful attempts (discussed in detail below) to endow individuals with the ability to traverse the job 
queue “on their own” by making iteration functions available to the individuals themselves, it became obvious that 
such an approach monumentally increases the time, if ever, to evolve functional individuals.  As a result, the 
structure of the individuals themselves was fixed such that each contained independently evolved branches:  an 
iteration branch and a selection branch. 
 



When the individual is presented with a job queue, the iteration branch is invoked exactly once for each job 
currently in the queue.  Then the selection branch is invoked once, the result of which is the job to be selected.  The 
concept of this restricted iteration architecture (Koza 1994), is that the individual is “shown” each job one at a time, 
and may “remember” relevant information by storing jobs into any of its memory locations (discussed below).  After 
all iterations are complete, the selection branch uses the memory locations presumably set by the iteration branch to 
select the job to be processed. 
 
Terminal Set 
Before discussing the terminal and function set, it is necessary to understand the data structure that is evaluated at 
each node. 
 
The purpose of the selection branch is to select one of the jobs from the queue; thus, the output of every node (since 
any may be at the top of the selection branch) must be interpretable directly or indirectly as referring to one of the 
jobs from the queue.  Many early attempts to interpret any integral value whatsoever produced by the selection 
branch (i.e., by applying the mod operator with the queue’s current size) were woefully inadequate.  On advisement, 
a data structure that itself always identifies a job while the value portion of the data structure -- in this case the 
runtime of the job -- provides the function arguments used by the program nodes, was used.  Thus, every terminal is 
actually a job-runtime data structure, and every function set examines only the runtime data portion of the structure.  
Only the simulator itself, after selection has been made, examines the job-identifying portion of the data structure. In 
this way, the output of any individual, however unfit, always yields a selectable job. 
 
The terminal set consists of five memory locations and one node representing the current job (i.e., the job which the 
iteration branch is being “shown”).  Each of the memory locations are initialized to the first job in the queue.  Such 
initialization effectively translates a null (uninitialized) memory location arbitrarily into the first job in the queue.  
Such arbitrary assignments are liable to be recognized and exploited by GP, but without detrimental effects in this 
case.  Similar to protected division, the initialization provides for meaningful processing while not biasing 
individuals to an optimal solution.  If anything, individuals are biased to a first-in/first-out (FIFO) selection 
mechanism which would never produce the optimal results from the data used. 
 
Thus, terminal set for the simple scheduler is 
 

Ts = {M0, M1, M2, M3, M4, CUR} 
 

where Mx is the memory location x, and CUR denotes a data structure storing the identity and runtime of the current 
job. 
 
The entire terminal set is used in the iteration branch.  Only the memory location terminals are used in the selection 
branch. 
 
Function Set 
Two types of functions are necessary to provide an individual with the capability to compare jobs.  First, memory 
read and write functions are necessary to enable remembering previously seen jobs from the queue, and comparative 
functions are necessary to compare the runtimes of remembered jobs. 
 
Thus, the function set is 
 

Fs = {SETM0, SETM1, SETM2, SETM3, SETM4, IFLT, IFGT} 
 
SETMx takes one argument and sets memory location x to that value. 
 
IFLT/GT takes four arguments: left, right, if, else.  If the runtime of the job returned by the left branch is GT/LT the 
job returned by the right branch, the result of the “if” subtree is evaluated and returned; otherwise, the “else” branch 
is evaluated and returned. 
 
The entire function set is used in the iteration branch.  Only the IFLT and IFGT functions are used in the selection 
branch. 



 
Originally, two additional operators, Larger/Smaller (>, <) each taking two arguments and returning the job with the 
larger/smaller runtime were used.  While their inclusion admittedly provided individuals with capability 
redundancies, they proved to be neither necessary nor material; however, it was important to establish early positive 
results, even if heavy-handedly so.  These operators were included in the other scheduling models to follow. 
 
Fitness Measure 
The value of the fitness measure of each individual was the sum of wait times after processing a queue of 32 jobs, 
with runtimes randomly distributed between 1 and 1000. The GP software used in this project ranks 0 as the ideal 
fitness and positive infinity as the worst. 
 
It should be noted that a fitness case of a single queue of 32 jobs, from an individual’s point of view, is effectively 
32 different fitness cases.  The individual is presented with a queue of 32 jobs and makes a selection.  The memory 
locations are then initialized and the individual is presented with a job queue of 31 jobs, then 30, 29, etc. until the 
job queue is empty.  While each subsequent trial is related from the point of view of the simulator (since it tabulates 
the results of all 32 invocations), there is no memory from one selection to the next on the part of the individual.  
The same logic is applied to each of the 32 differently sized queues, and the fitness is a measure of performance 
against all 32 trials. 
 
Given a job queue of 32 jobs, there are 32! or 2.6E+35 different ways to order the processing of jobs. 
 
Additionally, the best individual is validated against a formerly unseen queue of 32 jobs.  As discussed in the results 
section, the nature of the optimal solution for a simple scheduling algorithm makes the identification of an ideal 
individual unambiguous. 
 
A hit was recorded when the job selected by the individual was the job known to the simulator to be the ideal 
selection. 
 
Control parameters 
The genetic operators of crossover (90%) and reproduction (10%) were used on a population of 1024 individuals. 
 
Termination 
The run was terminated when either an individual reached 32 hits or 50 generations were processed.  An individual 
scoring 32 hits indicates that it always selects the optimal job for processing. 
 

Table 1. Tableau for the Simple Scheduling problem 
Objective: To process a queue such that the average wait time of 

jobs is minimized. 
Terminal set, iteration branch: M0, M1, M2, M3, M4, CUR 
Terminal set, selection branch: M0, M1, M2, M3, M4 
Function set, iteration branch: SETM0, SETM1, SETM2, SETM3, SETM4, IFLT, 

IFGT 
Function set, selection branch: IFLT, IFGT 
Fitness cases: A queue of 32 jobs 
Fitness: The sum of wait times of all jobs 
Parameters: M=1024, G=50 
Termination criteria: Ideal individual found or 50 generations processed. 
Result designation: The best individual of run. 
 
 
Simple Scheduling Results 
It is known that selecting the job with the minimum runtime -- the Shortest Job First (SJF) algorithm -- is the 
optimal selection technique under the circumstances represented by this simple scheduling problem (Silberschatz 
1998).  To help understand the program architecture and the terminal and function set, an example of a specifically 



designed ideal individual is presented in Figure 2.  Here, M1 of the iteration branch is used to store the job with the 
lowest runtime yet seen.  The selection branch simply selects the remembered job. 
 

Indiv.

IFLT

CUR M1 SETM1 M1

M1

CUR

Iteration Branch Selection
Branch

 
 

Figure 2. Specifically designed ideal individual for Simple Scheduling 
 
In the run of GP, an ideal individual, validated against a previously unseen job queue, was found after only 2 
generations.  The individual is: 
 
Tree 0: 
 M0 
Tree 1: 
 (IFGT (SETM4 (SETM3 (SETM3 (SETM1 M2)))) 
     (IFGT (IFGT (IFGT (IFLT M1 M3 M3 M4) (IFLT 
         M1 M3 M2 CUR) (IFGT M1 M0 M0 M2) (IFLT M2 
         M3 M4 M1)) (SETM0 (SETM4 M1)) (SETM2 (SETM1 
         M0)) (SETM4 (IFGT M0 M3 M3 M0))) (SETM4 (SETM3 
         (SETM0 CUR))) (SETM0 (SETM0 (SETM0 CUR))) 
         (SETM3 (SETM0 (SETM2 M1)))) (IFGT (SETM2 
     (IFLT (SETM2 M4) (SETM3 M0) (IFGT M4 M4 M3 
         M2) (IFGT M3 CUR M0 M1))) (SETM3 (SETM3 (SETM2 
     M0))) (SETM1 (SETM4 (SETM2 CUR))) (SETM1 
     (SETM1 (SETM4 M2)))) (IFLT (IFLT (SETM2 (SETM4 
     M0)) (SETM2 (SETM1 M0)) (SETM3 (SETM1 M0)) 
     (SETM2 (SETM3 M1))) (SETM3 (SETM1 (SETM4 
     M3))) (SETM1 (SETM2 (SETM4 M2))) (SETM0 (SETM3 
     (SETM3 M1))))) 
 
In this case, the individual stores the job with the minimum runtime on each iteration into location M0.  The 
selection branch simply returns the job stored in location M0. 
 
When the same run was made against job queues of varying lengths, and using more than one job queue, the results 
were comparable.  The explanation for this seems to be that since the retention of the shortest job by the iteration 
branch is a technique discovered fairly quickly, its application immediately yields optimal results on cases of any 
size.  Although only mildly interesting since an ideal individual was found so quickly, the results validated the 
architecture and data structure approach that would be applied to the more complicated models. 
 



3. Deadline Scheduling 
The deadline scheduling model adds an additional attribute to each job, its deadline.  Jobs which are not completed 
in the simulated environment by the deadline are assigned a delay time; jobs completed on time or before their 
deadline are assigned a delay time of zero.  An individual’s fitness is the sum of all delays. 
 
Under this set of conditions, individuals must now perform a calculation in order to select the appropriate job.  
Rather than merely store the shortest job, an individual must now consider the current time, the time at which a job 
if selected will be completed, and the delay that a job will experience.  It must then store the relevant information in 
memory locations for use by subsequent iterations. 
 
To endow individuals with this capability, the data structure was modified and additional functions were added.  The 
data structure now becomes: 

{  job identifier, runtime, deadline, value } 
 

The value portion of the data structure is the argument that each function reads in order to operate on and sets before 
returning; it is initialized to the job’s runtime. 
 
Terminal and Function Set 
The terminal set for this problem is the same used in simple scheduling, that is: 
 

Ts = {M0, M1, M2, M3, M4, CUR} 
 
The function set is: 
 

Fs = {SETM0, SETM1, SETM2, SETM3, SETM4, IFLT, IFGT, >, <, +, -, RT, REQ, TIME} 
 
Where previously mentioned functions have the same definition, and + and – take their natural meanings with 2 
arguments. Both functions arbitrarily set the value portion of the left branch and return its associated structure. 
 
RT, REQ, and TIME each takes a single argument, sets the value portion of the data structure to the runtime, 
deadline, or simulator’s current time respectively, and returns the structure. 
 
As an example, Figure 3 shows how an individual could calculate the estimated completion of the current job, and 
store that estimate into memory location M2 in the iteration branch.  In this example, the selection branch blindly 
selects the job stored in M0, thereby ignoring the potentially useful calculation performed by the iteration branch. 

Indiv.

SETM2

+

M0

RT

Iteration Branch Selection
Branch

CUR M4

TIME

 
Figure 3. Individual capable of projecting the current job’s completion time for Deadline Scheduling 

 



Fitness Measure 
The value of the fitness measure is the sum of all delays after processing 5 queues of 32 jobs each.  Each queue is 
populated with jobs having a randomly assigned runtime between 1 and 1000.  The deadline is randomly assigned to 
a value between 5 time units greater than its runtime and the sum of all runtimes for the queue (i.e., the time it takes 
to run all jobs regardless of their ordering). 
 
Table 2 summarizes the run parameters. 
 

Table 2. Tableau for the Deadline Scheduling problem 
Objective: To process a queue such that the sum of all delay times 

is minimized. 
Terminal set, iteration branch: M0, M1, M2, M3, M4, CUR 
Terminal set, selection branch: M0, M1, M2, M3, M4 
Function set, iteration branch: SETM0, SETM1, SETM2, SETM3, SETM4, IFLT, 

IFGT, >, <, +, -, RT, REQ, TIME 
Function set, selection branch: IFLT, IFGT, >, <, +, -, RT, REQ, TIME 
Fitness cases: 5 queues of 32 jobs each 
Fitness: The sum of all delay times; a hit is scored for each job 

completed prior to its deadline 
Parameters: M=2048, G=50 
Termination criteria: 50 generations processed 
Result designation: The best individual of run. 
 
Deadline Scheduling Results 
The best individual of the run was a 12-point selection branch, 153-point iteration branch individual which scored 
123 hits.  Although the maximum number of hits is 160, it must be recognized that the random generation of 
deadlines does not guarantee that there exists a schedule such that all jobs meet their deadline (in fact that would be 
unlikely); instead, it ensures that an optimal selection of jobs with only a few delayed jobs likely exists. 
 
 

Deadline Scheduling Average Individual

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Generation

Fi
tn

es
s

 
Figure 4: Average Individual for Deadline Scheduling 

 



Deadline Scheduling Best Individual

30000

35000

40000

45000

50000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generation

Fi
tn

es
s

 
Figure 5: Best Individual for Deadline Scheduling 

 
The best individual was achieved at Generation 36.  Analysis of the selection data reveals that the best individual 
achieves its performance by having evolved the common sense notion that jobs with earlier deadlines should be 
scheduled first.  Additional runs were performed in which the randomly selected deadline was some fraction of the 
total run times, thereby making it inevitable that a larger percentage jobs would miss their deadline.  Similar results 
were observed under these conditions, namely, that jobs with earlier deadlines were selected first. 
 
4. Deadline Scheduling with Priority 
The deadline scheduling with priority model adds an additional attribute of priority to each job.  Under this model, 
jobs continue to have deadlines, but jobs with higher priorities incur a higher delay penalty than those with lower 
priorities.  A job which is not completed by the deadline is assigned a calculated or weighted delay equal to its actual 
delay multiplied by (actual_delay * priority / max_priority).  The precise formula, which means that the calculated 
delay of a job with the maximum priority will be the square of its actual delay, was settled upon after several trial 
runs of various weighting ratios.  It is somewhat arbitrary and merely reflects one way to indicate to evolving 
individuals that failing to schedule a high priority job will be penalized.  If the penalty is too low, the data does not 
allow GP to give it due consideration (within 100 generations) and merely causes rediscovery of the deadline 
scheduling technique.  If the penalty is too high (for example, cubic), no recognizable pattern or real improvement 
emerged within 25 generations and the run was terminated without further investigation. 
 
A priority variable was added to the data structure and the function PRI was added to access this value, and 
multiplication and division functions were added to make the consideration of weighted delays possible.  Two 
additional memory locations were added.  Finally, an additional restricted iteration branch was added. Table 3 
summarizes the run parameters. 
 

Table 3. Tableau for the Deadline Scheduling with Priority problem 
Objective: To process a queue such that the sum of all weighted 

delay times is minimized. 
Terminal set, iteration branch 1 and 2: M0, M1, M2, M3, M4, M5, M6, CUR 
Terminal set, selection branch: M0, M1, M2, M3, M4, M5, M6 
Function set, iteration branch 1 and 2: SETM0, SETM1, SETM2, SETM3, SETM4, IFLT, 

IFGT, >, <, +, -, *, /, RT, REQ, PRI, TIME 
Function set, selection branch: IFLT, IFGT, >, <, +, -, *, /, RT, REQ, PRI, TIME 
Fitness cases: 10 queues of 32 jobs each 
Fitness: The sum of all weighted delay times; a hit is scored for 

each job completed prior to its deadline 
Parameters: M=4096, G=50 
Termination criteria: 50 generations processed 
Result designation: The best individual of run. 
 



Deadline Scheduling with Priority Results 
The best individual of the run contained 62-points in the selection branch, 51-points in the first iteration branch and 
18-points in the second iteration branch.  It achieved 99 hits out of 320 (as a theoretical maximum not actually 
achievable by any algorithm).  Table 4 shows the best individual performance against one of the ten job queues. 
 

Table 4. Best-of-run performance against one job queue 
Time Runtime Deadline Priority Wt Delay  Time Runtime Deadline Priority Wt Delay

0 2 453 18 0   766 33 114 0 685 
2 44 623 10 0   799 92 809 0 82 

46 70 214 10 0   891 17 42 0 866 
116 25 735 7 0   908 83 791 0 200 
141 7 559 14 0   991 5 237 0 759 
148 41 316 19 0   996 51 284 0 763 
189 45 642 8 0   1047 92 454 0 685 
234 88 561 8 0   1139 35 597 0 577 
322 8 370 18 0   1174 30 132 0 1072 
330 48 578 17 0   1204 61 526 0 739 
378 64 547 14 0   1265 37 397 0 905 
442 99 460 8 2624   1302 74 626 0 750 
541 89 491 7 6762   1376 7 683 0 700 
630 18 600 5 576   1383 32 521 0 894 
648 58 455 5 1570   1415 4 509 0 910 
706 60 240 5 69169   1419 31 524 0 926 

 
Here the best individual selects higher priority jobs first but not universally.  The individual has learned that higher 
priority jobs are more important but that deadlines should still be considered.  Although the scheduling does not 
appear to be optimal – for example, consider the high penalty paid at time 706 for neglecting the job with a runtime 
of 240 – it does reveal a rudimentary tradeoff strategy.  The absolute values that priorities assume are not inherently 
meaningful to GP as discovered by at least two other runs in which the range of priorities were altered slightly from 
the one described here.  GP is eventually able to recognize the general principle that higher priority jobs are more 
important.  It is not clear that the ideal individual has discovered the exact penalization formula used to produce the 
weighted delay, although the functions necessary to derive it are available. 
 
Problems Encountered 
Early runs demonstrated the inadequacy of two approaches: (1) unrestricted iteration and (2) direct terminal values 
without data structures. 
 
The initial approach to the queue iteration problem was attempted with the definition of a single-argument ITER 
function node, which would invoke its sub-tree once for every job currently in the queue.  Since ITER was treated as 
any other function, it would occur several times in any given individual, and would frequently be nested two or more 
times.  This nesting made the evaluation of individuals prohibitive and several runs had to be terminated.  In an 
attempt to shorten evaluation time, the function itself was altered to only allow some maximum number of nested 
iterations over the queue.  However, this proved unhelpful as well, since the evaluation time was still prohibitive, 
and it was advised that the introduction of arbitrary constants of this sort may inadvertently acquire significance and 
influence the course of evolution. 
 
Early approaches also used values such as the current queue position QPOS, the runtime of the current job RT, and 
constants zero and one as terminals.  The function set operated on single integral values only, and memory locations 
stored only these integral values.  In sharp contrast to the data structure approach which yielded an ideal individual 
in only 2 generations, the purely numeric approach was unsuccessful over many different runs of different 
population sizes and was eventually abandoned.  It appears that the single iteration branch had difficulty sorting out 
the incommensurate terms (a job’s position in the queue added to its runtime is meaningless) to the extent that 
operations against runtimes (one terminal) should be performed only in order to preserve a job’s queue position 



(another terminal) for the selection branch.  Because of this, the queue position itself was subject to operators such 
as addition, which meant that the result of the selection branch was rarely even a value that indicated a position in 
the queue.  In order to produce a meaningful selection, the queue position was calculated using the value actually 
produced by the selection branch mod the job queue size.  This produced, even after many generations, individuals 
that simply made what appeared to be a random selection from the queue. 
 
Conclusions 
These experiments demonstrate that GP with restricted iteration and memory is able to produce individuals capable 
of considering an unspecified number of entities each with multiple attributes.  Further, it is able to make 
considerations and calculations using those attributes in order identify a single entity for selection.  By utilizing 
memory, GP is able to infer attribute relationships among the entities being considered.  For example, in deadline 
scheduling, the ideal individual is able to compute that an entity’s runtime is related to its deadline in consideration 
of the current time, which value changes at each selection opportunity.  Further, GP is able to discover that 
priorities, although the range of values is itself arbitrary, represent relative importance even though their exact 
mathematical nature is determined by the simulator’s delay-weighting penalty formula and may not have been 
explicitly discovered. 
  
Future Work 
Given that GP successfully operates on a group of entities with multiple attributes, further studies could explore how 
GP behaves given more complicated scheduling models and job descriptions.  There are several directions in which 
to add complexity to the scheduling models to more closely simulate real world dilemmas:  (1) with explicitly stated 
relationships between the entities, say with the notion of precedence wherein some jobs require the completion of 
others prior to selection (perhaps via pointers to other jobs), how quickly would GP discover them?  (2) How well 
would GP identify generalized constraints placed on any of the attributes?  (3) Given the availability of more than 
one resource, how soon would GP maximize their parallel use?  In general, the introduction of more complex job 
descriptions and resource constraints would provide interesting fields for further study. 
 
References 
Koza, John R. 1994.  Genetic Programming II Automatic Discovery of Reusable Programs.  Cambridge, MA: The 
MIT Press. 
 
Silberschatz, Abraham.  1998.  Operating System Concepts.  Addison-Wesley. 


