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ABSTRACT
In this paper we propose the first genetic algorithm (GA)-
based solver for jigsaw puzzles of unknown puzzle dimen-
sions and unknown piece location and orientation. Our
solver uses a novel crossover technique, and sets a new state-
of-the-art in terms of the puzzle sizes solved and the accu-
racy obtained. The results are significantly improved, even
when compared to previous solvers assuming known puzzle
dimensions. Moreover, the solver successfully contends with
a mixed bag of multiple puzzle pieces, assembling simulta-
neously all puzzles.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing

General Terms
Algorithms

Keywords
Computer Vision, Genetic Algorithms, Jigsaw Puzzle, Re-
combination Operators

1. INTRODUCTION
Jigsaw puzzles are a popular form of entertainment, first

produced around 1760 by John Spilsbury, a Londonian en-
graver and mapmaker. Given n different non-overlapping
tiles of an image, the objective is to reconstruct the original
image, taking advantage of both the shape and chromatic
information of each piece. Despite the popularity and vast
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distribution of jigsaw puzzles, their assembly is not triv-
ial computationally, as this problem was proven to be NP-
hard [1, 7]. Nevertheless, a computational jigsaw solver may
have applications in many real-world applications, such as
biology [14], chemistry [20], literature [16], speech descram-
bling [22], archeology [2, 12], image editing [5], and the re-
covery of shredded documents or photographs [3, 15, 11, 6].
Regardless, as noted in [10], research of the topic may be
justified solely due to its intriguing nature.

Most recently proposed solvers employ greedy strategies.
Greedy algorithms are known to be problematic when en-
countering local optima. Moreover, such solvers rarely offer
a backtrack option, i.e., a possibility to cancel a piece assign-
ment which seemed correct at first but then turned to be
globally incorrect. Hence, state-of-the-art solvers are very
successful on some images, but perform poorly on others.
The enormous search space of the problem, containing many
local optima, seems most suitable for a genetic algorithm
(GA)-based solver. The use of genetic algorithms in the field
was first attempted in 2002 by Toyama et al. [19] but its suc-
cessful performance was limited to 64-piece puzzles, proba-
bly due to the inherent difficulty in designing a crossover
operator for the problem [18]. More recently, Sholomon et
al. [18] presented another GA-based solver which can han-
dle up to 22,755-piece puzzles. Nevertheless, their solver can
handle only puzzles with (1) known piece orientations, (2)
known image dimensions, and (3) pieces of a single image.

In this work we propose a novel GA-based solver, relaxing
most previous assumptions. First, we assume no a priori
knowledge regarding piece location or orientation. Second,
we assume that the image dimensions (i.e., the number of
row and column tiles) are unknown. Finally, we allow the
input piece set to contain pieces from either a single image or
from multiple images. In the case of a “mixed-bag” puzzle,
the solver concurrently solves all puzzles, unmixing their
pieces along the process. We set a new state-of-the-art by
solving the largest and most complex puzzle ever (i.e., 22,755
pieces, which is twice the size of the current state-of-the-art
without making any assumptions) and achieving the highest
accuracy ever reported, even with respect to solvers that
assume known image dimensions.

2. RELATED WORK
Freeman and Garder [8] were the first to tackle compu-

tationally the jigsaw problem, in 1964. Their solver han-
dled up to 9-piece puzzles, using only piece shape. Kosiba
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Figure 1: Example of a relative relation assignment: (a) Pieces 4 and 7, (b)–(e) all possible image configurations of assigning
the relative relation (4.b, 7.c). Note that the two pieces are always in the same relative configuration despite the different
orientations.

et al. [13] were the first to facilitate the use of image con-
tent. Subsequent research has been confined to color-based
square-piece puzzles, instead of the earlier shape-based vari-
ants. Cho et al. [4] presented a probabilistic puzzle solver
that can handle up to 432 pieces, given some a priori knowl-
edge of the puzzle (e.g., anchor pieces). Their results were
improved a year later by Yang et al. [21], who presented
a so-called particle filter-based solver. A major contribu-
tion to the field was made recently by Pomeranz et al. [17]
who introduced, for the first time, a fully automated jigsaw
puzzle solver that can handle square-piece puzzles of up to
3,000 pieces, without a priori knowledge of the image. Their
solver treats puzzles with unknown piece location but with
known orientation. Gallagher [9] was the first to handle puz-
zles with both unknown piece location and orientation, i.e.,
each piece might be misplaced and/or rotated by 90, 180 or
270 degrees. The latter solver was tested on 432- and 1,064-
piece puzzles and a single 9,600-piece image. Sholomon et
al. [18] successfully solved a 22,755-piece puzzle with only
piece location unknown. Thus, as far as we know, current
state-of-the-art algorithms can solve correctly a 22,755-piece
puzzle with unknown piece location and a 9,600-piece puz-
zle with unknown piece location and orientation. All of the
above solvers make use of the image dimensions during the
solution process. We believe our work provides for the first
time a solver capable of perfectly reconstructing a 22,755-
piece puzzle with unknown piece location and orientation
and no knowledge of the original image dimensions.

3. PUZZLE SOLVING
In its most basic form, every puzzle solver requires an

estimation function to evaluate the compatibility of adja-
cent pieces and a strategy for placing the pieces (as accu-
rately as possible). We propose using genetic algorithms
as a piece placement strategy, aimed at achieving an opti-
mal global score with respect to compatibilities of adjacent

(a) Original Image (b) Chromosome

Figure 2: Characteristics sought by crossover; chromosome
shown correctly assembled a number of puzzle segments,
most of which are incorrectly located (with respect to cor-
rect absolute location) or oriented (notice tower orientation
versus flags); crossover operator should exploit correctly as-
sembled segments and allow them to be translated and ro-
tated in a child chromosome.

pieces in the resulting image. The proposed GA elements
(e.g., chromosome representation, crossover operator, and
fitness function) are required to tackle several non-trivial
issues. First, the eventual solution needs to be valid, i.e.,
every puzzle piece should appear once and only once, with-
out missing and/or duplicate pieces. Second, the resulting
image dimensions should strive to meet those of the (un-
known) dimensions of the original image, avoid undesirable
cases (e.g., pseudo-linear configurations) which contrive to
be optimal solutions. Third, in the spirit of a gradual, evolu-
tionary improvement over time, puzzle segments assembled
correctly, up to an exact location and orientation, should
be tracked, inherited to child chromosomes, and undergo
proper translation and rotation (see Figure 2).



(a) (b) 1.b – 2.d (c) 4.d – 8.c (d) 8.d – 7.c

(e) 3.a – 4.c (f) 2.c – 7.a (g) 2.a – 6.b (h) 5.b – 1.a

Figure 3: Different types of relative relation assignment; each sub-caption describes the corresponding assignment made, also
marked by a red line, (c) rotation of pieces, (e) explicit assignment (4.c, 3.a) leading to an implicit assignment (3.d, 7.d),
and (f) merge of two piece groups, during which the entire left group is rotated. Note how in (d) the assignment (2.a, 4.c) is
geometrically infeasible due to a collision between pieces 1 and 7.

3.1 Chromosome Representation
We propose for each chromosome to be equivalent to a

complete solution of the jigsaw puzzle problem, i.e., a sug-
gested placement of all the pieces. Since the image dimen-
sions are unknown, it is not clear how to store a piece con-
figuration in a two-dimensional array (according to piece
locations and orientations), in accordance with the actual
image. Instead, we store, for each chromosome, only the
relative placement of neighboring pieces. Since a piece ori-
entation is unknown, for each given piece we denote its edges
as a, b, c, d, starting clockwise from a random edge. To de-
note the relative placement of two pieces we may say, for ex-
ample, that edge pi.b (i.e., edge b of piece pi) is placed next
to edge pj .c, thus encoding both the relative spatial location
and orientation of the pieces. Figure 1 depicts the labeling of
piece edges and their relative placement. Each chromosome
is represented by an (n× 4) matrix (i.e., a matrix whose di-
mensions are the number of pieces times the number of piece
edges), where a matrix entry xi,j(i = 1..n, j = 1..4) is the
corresponding piece edge adjacent to xi.j (e.g., xi.j = p2.c)
or “none”, if no edge is placed next to it (e.g., at the puz-
zle’s boundary). This representation lends itself more easily
to subsequent relative-placement evaluations and crossover
operations.

3.2 Chromosome Evaluation
We use the dissimilarity measure below, which was pre-

sented in various previous works [17, 4, 18]. This measure
relies on the premise that adjacent jigsaw pieces in the orig-
inal image tend to share similar colors along their abutting
edges, and thus, the sum (over all neighboring pixels) of
squared color differences (over all color bands) should be
minimal. Assuming that pieces pi, pj are represented in
normalized L*a*b* space by a K ×K × 3 matrix, where K
is the height/width of a piece (in pixels), their dissimilarity,
where pj is “to the right” of pi, for example, is

D(xi.b, xj .d) =

√√√√ K∑
k=1

3∑
ch=1

(xi(k,K, ch)− xj(k, 1, ch))2.

(1)

when ch denotes a spectral channel. Obviously, to maximize
the compatibility of two pieces, their dissimilarity should be
minimized.

We compute the compatibility of all possible edges for
all possible pieces, summing up to 16 edges per piece pair.
Notice that computing the dissimilarity between piece edges
(e.g., between p1.b and p2.c) is invariant to their final piece
rotation. For example, assume b is the right edge of piece
p1 and c is the left edge of piece p2, with respect to some
initial piece orientation. The compatibility of p1.b to p2.c is
similar whether or not the pieces are rotated, i.e., p2 is to
the right of p1 (if the pieces are not rotated), or p2 is below
p1 if they are rotated (clockwise) by 90 degrees. In any
event, the final chromosome fitness is the sum of pairwise
dissimilarities over all adjacent edges.

Representing a chromosome, as suggested, by an (n × 4)
matrix, where a matrix entry xi,j(i = 1..n, j = 1..4) corre-
sponds to a single piece edge, we define its fitness as:

n∑
i=1

4∑
j=1

D(pi.j, xi,j) (2)

where D is the dissimilarity of the two given edges (edge j
of piece pi and the edge located at xi,j). This value should,
of course, be minimized.

Special care should be taken in the case of xi,j = none,
i.e., a piece edge with no adjacent pieces. Intuitively, “none”
piece edges should be highly discouraged. In principle, only
boundary pieces of the original image should contain none
edges. Most boundary pieces should have only a single none
edge, whereas the four corner pieces are expected to have two
none edges each. (Ideally, no piece should have more than
two none edges.) Assigning a dissimilarity of “0” to a none
edge might cause the GA to converge to a non-rectangular
image. On the other hand, assigning an extremely high value
might lead to cases where image shape might take prece-
dence over image content. Having tested the algorithm with
many different values, we picked the dissimilarity of a none
edge (i.e., D(pi.j, none)) to be twice the average of all dis-
similarities (i.e., the average of all 16 pairwise dissimilarities
over all piece pairs). It appears that this measure highly
encourages the GA to reach a correct reconstruction of the
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Figure 4: Solution process of a 22,755-piece puzzle (largest puzzle solved with unknown piece orientation and image dimen-
sions): (a)–(e) Best chromosomes achieved by the GA in the first to fifth generation, and (f) final generation. Note that every
chromosome (image) contains all puzzle tiles, so its image results in varying dimensions (down scaled, for display purposes).
The original image was perfectly reconstructed.

original image, with respect to both image dimensions and
content.

3.3 Crossover Operator
The most involved element of the proposed GA is the

crossover operator. Considering the proposed representation
and in light of the chosen fitness function, one can grasp the
major role undertaken by the crossover operator. The op-
erator must verify the validity of each newly created chro-
mosome. Traditionally, this means that each puzzle piece
appears once and only once in the child chromosome, and
no piece is missing or duplicated. The inherent difficulty
surrounding merely this condition is likely to have delayed
the derivation of an effective GA-based solver for the prob-
lem. Meeting this condition still assures no validity. Since
chromosomes contain only relative relations (e.g., edge p1.b
is adjacent to edge p2.c), the operator must also verify that
all relative relation assignments result in a geometrically fea-
sible image, i.e., that all pieces must be placed properly with
no overlaps. Moreover, the operator should verify that all
prospective characteristics (e.g., correctly assembled puzzle
segments) discovered by the parents may be inherited by
their offsprings, and allow these segments to be translated
in space and rotated inside the offspring (see, e.g., Figure 2).

We propose a novel specialized crossover operator to ad-
dress the aforementioned challenges. In contrast to previous
works and in accordance with the chosen representation, this
operator is based on relative relations of pieces edges. The
assignment of a relative relation, e.g., “edge p1.b is adjacent
to edge p2.c”, is the basic building block of the operator.
An example of such an assignment can be viewed in Fig-
ure 1. To maintain consistency, each assignment is double
since it immediately implies the commutative relation (i.e.,
that edge p2.c is adjacent to edge p1.b). Each crossover con-
sists of exactly n − 1 double relative relation assignments,
resulting in a single connected component (albeit not neces-
sarily rectangular). Examples of such images can be viewed

in Figure 4. (Note that since every chromosome contains all
the puzzle pieces, its image results in varying dimensions.
This is not depicted, as the figure is down scaled for display
purposes.) The following paragraphs describe the complete
crossover procedure. First, we describe the intrinsics of the
relative relation assignment and then provide the full details
of creating a child chromosome.

3.3.1 The Relative Relation Assignment
The crossover procedure starts with no relative relations;

each puzzle piece is detached and isolated from the others.
Each assignment of a relative relation between two piece
edges falls inside one of three possible scenarios. The first
option is for the relation to be between two detached pieces.
Naturally, this is always the case of the first assignment.
The double relation between the two edges is recorded and
the pieces are inserted into a newly created “piece group”.
Each such group is recorded inside a matrix, tracking the
spatial relations of its pieces and verifying the geometrical
validity of the represented sub-image. The second possible
scenario is that one of the edges belongs to such a piece
group, while the other is of a detached piece. Again, the
relation is recorded and the detached piece is inserted, at
the correct location, into the already existing group. Notice
that by inserting a piece inside a group, implicit relations
might be set, e.g., inserting a piece to the left of a piece
results in it being inserted below another piece, as depicted
in Figure 3. All such implicit relations are recorded at the
end of the crossover operation.

Unlike the first two cases, the third case requires extra
care. This is the case of the two edges originating from two
different piece groups. Notice that setting a relation between
two edges belonging to the same group is prohibited, since
it is either redundant (the pieces already conform implicitly
to the relation) or results in an invalid image. The two piece
groups should then be merged to a single connected compo-
nent. Unfortunately, as can be seen in Figure 5, some piece



(a) Valid assignment

(b) Geometrically infeasible as-
signment

Figure 5: Geometrically valid and invalid relative relation
assignments.

formations cannot be merged. The operator tries to merge
the smaller group to the larger one, starting from the re-
quested edge and continuing with all other recorded relations
in the group. If a collision occurs between two pieces, the en-
tire assignment of this particular relative relation is deemed
illegal and is discarded, leaving the two groups disjoint. In
case of a success, the new double relation is recorded and the
two groups are merged into a single group. Notice that such
a merge might change the orientation of all pieces inside the
group being merged.

3.3.2 A Multi-Phased Algorithm
Having described the relative relation assignment, we now

proceed with the assignment selection algorithm. Given two
parent chromosomes, the operator initiates a multi-phased
algorithm, described in Figure 6. Note that the algorithm
continuously attempts to assign edges, until n−1 successful
assignments are made. Each assignment could fail if one
of the edges has already been assigned during the above
group merging; otherwise, it could fail as a result of the
mutation process, with some low probability. The algorithm
first tries to assign all common relations, i.e., all relative
relations appearing in both parents. Second, the algorithm
tries to assign relations which appear in at least one of the
parents and are also best buddies. To understand this phase,
we briefly review the concept of a best-buddy piece, first
introduced by Pomeranz et al. [17]. Two pieces are said
to be best buddies if each piece considers the other as its
most compatible piece, according to the dissimilarity score.
We generalize this notion for piece edges, i.e., two edges are
considered best-buddy edges if each edge considers the other
as its most compatible edge out of all existing edges. The
edges xi.a and xj .d are said to best buddies if

∀ek ∈ Edges, D(xi.a, xj .d) ≤ D(xi.a, ek)

and (3)

∀ep ∈ Edges, D(xj .d, xi.a) ≤ D(xj .d, ep)

where Edges is the set of all piece edges (i.e., sides a, b, c,
and d of all n given pieces). Next, we introduce a greedy el-
ement. We compute, in advance, the most compatible edge
for each of the 4×n edges and then try to assign most com-

patible edges in a random order. Finally, we try to assign
two random edges until completing n− 1 successful assign-
ments.

Upon termination, after merging all piece groups, the
crossover results in a single matrix, containing all n − 1
pieces. The matrix records the absolute location and ori-
entation of each piece in the resulting image. As mentioned
earlier, the operator now scans the matrix, and records all
relative relations created, both explicitly and implicitly, to
the new chromosome. Note that this chromosome repre-
sents a geometrically valid images, containing each puzzle
piece exactly once.

Until (n− 1) relative relations are assigned do

1. Try assigning all common relative relations.

2. Try assigning all best-buddy relative relations.

3. Try assigning all most-compatible relative rela-
tions.

4. Try assigning random relative relations.

Figure 6: Crossover overview

3.4 Rationale
The proposed genetic algorithm is based entirely on the

concept of assigning relative relations between piece edges.
This concept stems from the intuitive understanding that
some puzzle segments are “easier” than others. A human
solver will usually assemble first disjoint but distinct ele-
ments (e.g., animals, humans, vehicles, etc.), gradually join-
ing them together. The assembly of more difficult parts
(skies, sea, woods, and other background scenes) would be
deferred to a later stage, when there are less pieces to choose
from, which makes each decision easier. We mimic this be-
havior by allowing the solver to concurrently assemble differ-
ent puzzle segments (piece groups), forcing it to merge them
only at later stages. This advantage should be constructive
especially in the case of puzzle pieces belonging to multi-
ple images (i.e., a “mixed bag” of pieces), as the solver may
handle each sub-image separately, as opposed to tackling the
entire image of multiple excessive pieces.

Correctly assembled segments in the parents are identified
either by their mutual appearance in both parents, or by a
greedy consideration (due to a very high compatibility of
certain edges). Only the relative relation between the edges
is inherited, as the segments might be easily rotated and
translated in space during the crossover procedure.

3.5 GA Parameters
We use the standard roulette-wheel selection. In each gen-

eration we start by copying the best four chromosomes. The
following are the parameters used:

population size = 300
number of generations = 100
probability of not using a shared relation = 0.001
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Figure 7: Solution process of a “mixed-bag” puzzle, composed of four different 432-piece puzzles: (a)–(e) Best chromosomes
achieved by the GA from first to fifth generation, and (f) final generation. All original four images were perfectly reconstructed.
GA has no knowledge that given pieces belong to different images.

# Pieces Neighbor Perfect

432 94.88% 11
540 94.08% 8
805 94.12% 6

5,015 94.90% 7
10,375 98.03% 4

Table 1: Accuracy results under neighbor comparison on
different benchmark sets. For each set we report the av-
erage accuracy obtained by the GA and number of puzzles
perfectly reconstructed (out of 20).

4. RESULTS
To evaluate the accuracy results of each assembled im-

age, we adopt the neighbor comparison measure used in all
previous works, i.e., the fraction of correct pairwise piece
adjacencies (with respect to the original image). In all ex-
periments we used a standard tile size of 28 × 28 pixels.

We tested our solver against previously published bench-
mark sets [17, 18, 4] containing 20-image sets of 432-, 540-,
805-, 5,015-, and 10,375-piece puzzles. We report in Table 1
the average accuracy results per set, as well as the number
of puzzles reconstructed perfectly. The results obtained for
the set of 432-piece puzzles can be compared to the ones
achieved by [9] on the same image set (see Table 2). We
stress that the solver in [9] assumes known image dimen-
sions to improve the accuracy results (described there as
the “trimming” and “filling” stages), while ours does not.
According to Table 6 in [9], their algorithm results in an
average of 90.4%, i.e., we achieve a significant improvement
of over 4% with less assumptions.

The largest puzzle that has been attempted so far with
pieces of unknown orientation is a 9,600-piece puzzle. We at-
tempted a 22,755-piece puzzle (i.e., more than twice larger),
with unknown piece orientation and unknown image dimen-
sions. As can be seen in Figure 4, perfect reconstruction was
achieved. The solution process required a meager 3.5 hours

Neighbor Perfect

Gallagher [9] 90.4% 9
GA 94.88% 11

Table 2: Performance comparison for puzzles with 432
pieces. Note that [9] assumes known image dimensions to
improve accuracy results, while our solver does not.

on a modern PC (compared to 23.5 hours reported in [9] for
the 9,600 piece-puzzle).

Finally, we applied the solver to “mixed-bag” puzzles, i.e.,
puzzles containing pieces from multiple images. Of course,
the solver is unaware of the image dimensions, and of the
fact that multiple images are involved. We created a mixed
puzzle by combining four different 432-piece puzzles. Fig-
ure 7 depicts the gradual assembly of the puzzle until a per-
fect reconstruction of all four images is achieved. Next, we
created another mixed puzzle by combining 16,405 pieces
from seven different images; three 5,015-piece puzzles and
four smaller ones. To the best of our knowledge, this is the
most complex mixed-bag that has been solved, in terms of
both the puzzle size and the number of mixed images. De-
spite containing a much larger number of pieces (relatively
to single-image puzzles solved previously), the GA succeeds
in fully reconstructing all the seven puzzles. Figure 8 shows
the reassembled puzzles.

5. CONCLUSIONS
In this paper we presented, for the first time, a GA-based

solver capable of handling puzzles with (1) pieces of un-
known orientation, (2) unknown image dimensions, and (3)
pieces originating from multiple images. Our solver sets a
new state-of-the-art in terms of the accuracy achieved and
the complexity of the puzzles handled. We improved signif-
icantly results obtained by previous works, making almost
no assumptions. Specifically, we successfully tackled puzzles
of more than twice the size that has been attempted before
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Figure 8: Perfect reconstruction of a “mixed-bag” puzzle. This puzzle is constructed of 16,405 pieces from seven different
images; three 5,015-piece puzzles and four smaller puzzles. As far as we know, this is the largest and most complex mixed
puzzle that has been solved, in terms of size and number of puzzles.



with the same relaxed assumptions [9]. Finally, we showed
how to assemble mixed puzzles, i.e., puzzles with pieces from
multiple different images. As far as we know, the mixed puz-
zle solved in this paper is the largest and most complex in
terms of the total number of pieces and the number of mixed
images.
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