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Genetic Algorithms for Evolving
Computer Chess Programs

Omid E. David, H. Jaap van den Herik, Moshe Koppel, and Nathan S. Netanyahu

Abstract—This paper demonstrates the use of genetic algo-
rithms for evolving: 1) a grandmaster-level evaluation function,
and 2) a search mechanism for a chess program, the parameter
values of which are initialized randomly. The evaluation function
of the program is evolved by learning from databases of (human)
grandmaster games. At first, the organisms are evolved to mimic
the behavior of human grandmasters, and then these organisms
are further improved upon by means of coevolution. The search
mechanism is evolved by learning from tactical test suites. Our
results show that the evolved program outperforms a two-time
world computer chess champion and is at par with the other
leading computer chess programs.

Index Terms—Computer chess, fitness evaluation, games,
genetic algorithms, parameter tuning.

I. Introduction

DESPITE the many advances in machine learning and
artificial intelligence (AI), there are still areas where

learning machines have not yielded a performance comparable
to the top performance exhibited by humans. Computer chess
is one of the most difficult areas with this aim.

It is well known that computer games have served as an
important testbed for spawning various innovative artificial
intelligence AI techniques in domains and applications such
as search, automated theorem proving, planning, and learning.
In addition, the annual world computer chess championship
(WCCC) is arguably the longest ongoing performance evalua-
tion of programs in computer science, which has inspired other
well known competitions in robotics, planning, and natural
language understanding.

Computer chess, while being one of the most researched
fields within AI, has not lent itself to the successful applica-
tion of conventional learning methods, due to its enormous
complexity. Hence, top chess programs still resort to manual
tuning of the parameters of their evaluation function and their
search functions, typically through years of trial and error. The
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evaluation function assigns a score to a given chess position,
and the selective search function decides which moves to
search more deeply and which moves to prune at an earlier
stage in the search tree.

Our previous work described how the parameters of an
evaluation function can be evolved by learning from other
chess programs [21] and human chess players [19]. It also
provided a method for tuning the search parameters of a chess
program [20]. That is, we developed a method for evolving
the parameters of a chess program’s evaluation function given
a tuned search mechanism, and a method for evolving the
parameters of the search mechanism given a highly tuned
evaluation function.

In this paper, we extend our previous work by providing a
methodology for evolving the parameters of both the evalua-
tion function and the selective search mechanism of a chess
program using genetic algorithms (GA). That is, we assume no
access to either a tuned function or a tuned search mechanism,
but rather initialize the parameters of both components ran-
domly (i.e., the initial program includes only the rules of the
game, a set of randomly initialized evaluation function parame-
ters, and search function parameters). Additionally, we provide
extensive experimental results demonstrating that the com-
bined approach is capable of evolving highly tuned chess pro-
grams, on a par with top tournament-playing chess programs.

We observe that although the experimental results of the
resulting approach presented in this paper differ from those of
our previous work, in terms of the evolved parameter values,
the number of positions solved using a test suite, and the
results of matches against other top programs, the overall
performances are comparable. This suggests that the new
algorithm is advantageous in the sense that it initially relies
only on databases of (human) grandmaster games.

At the first stage we evolve the parameters of the evalu-
ation function, relying on a straightforward mechanism for
conducting 1-ply searches only. That is, since we do not yet
have a sophisticated selective search mechanism, we use a
plain mechanism for making legal 1-ply moves. After evolving
the parameters of the evaluation function and incorporating its
evolved values, we evolve at the second stage the parameters
of our selective search mechanism.

In Section II, we review past attempts at applying evolution-
ary techniques in computer chess. We also compare alternative
learning methods to evolutionary methods, and argue why
the latter are more appropriate for evolving an evaluation
function. Section III presents our new approach, including a
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detailed description of the framework of the GA as applied
to evolving the parameters of a chess program’s evaluation
function. Section IV provides a GA-based method for tuning
the parameter values of the selective search mechanism of
the program. Section V provides our extended experimental
results, and Section VI contains the concluding remarks.

II. Learning in Computer Chess

While the first chess programs could not pose a challenge
to even a novice player [42], [46], the current advanced
chess programs have been outperforming the strongest human
players, as the recent man versus machine matches clearly
indicate [48]. This improvement is largely a result of the deep
searches that are possible nowadays, thanks to both hardware
speed and improved search techniques. While the search depth
of early chess programs was limited to only a few plies,
nowadays tournament-playing programs easily search more
than a dozen plies in the middlegame, and tens of plies in
the late endgame.

Despite their groundbreaking achievements, a glaring defi-
ciency of today’s top chess programs is their severe lack of a
learning capability (except in the most negligible ways, e.g.,
“learning” not to play an opening that resulted in a loss, etc.).
In other words, despite their seemingly intelligent behavior,
those top chess programs are mere brute-force (albeit efficient)
searchers that lack true underlying intelligence.

A. Conventional Versus Evolutionary Learning in Computer
Chess

During more than 50 years of research in the area of
computer games, many learning methods have been employed
in less complex games. Chellapilla and Fogel [11]–[13],
[24] created an expert-level checkers program by using
coevolution to evolve neural network board evaluators.
Temporal difference learning has been successfully applied
in backgammon [44] and checkers [40]. Although temporal
difference learning has also been applied to chess [3], the
results showed that after three days of learning, the playing
strength of the program was merely 2150 Elo (see Appendix
B for a description of the Elo rating system), which is quite
a low rating for a chess program. These experimental results
confirmed Wiering’s [47] formal arguments, presented five
years earlier, for the failure of these methods in rather complex
games such as chess. Runarsson and Lucas [38] compared
least squares temporal difference learning [LSTD(λ)] with
preference learning in the game of Othello, using samples of
games from human competitions held by the French Othello
Federation. Their results showed that preference learning
produces policies that better capture the behavior of expert
players, and also lead to higher levels of play when compared
to LSTD(λ). It would be interesting to apply this approach
to chess, which is more complex than Othello. For example,
while the average branching factor (i.e., the average number
of legal moves available in each position) in chess is 38, it
is seven in Othello, and smaller than three in checkers (when
considering both capture and non-capture positions).

The issue of learning in computer chess is basically an
optimization problem. Each program plays by conducting a
search, where the root of the search tree is the current position,
and the leaf nodes (at some predefined depth of the tree) are
evaluated by some static evaluation function. In other words,
sophisticated as the search algorithms may be, most of the
knowledge of the program lies in its evaluation function. Even
though automatic tuning methods, that are based mostly on
reinforcement learning, have been successfully applied to less
complex games such as checkers, they have had almost no
impact on state-of-the-art chess engines. Currently, all top
tournament-playing chess programs use hand-tuned evaluation
functions, since conventional learning methods cannot cope
with the enormous complexity of the problem. This is under-
scored by the following four points.

1) The space to be searched is huge. It is estimated that
there are about 1046 different positions possible that
can arise in chess [14]. As a result, any method based
on exhaustive search of the problem space is so far
infeasible.

2) The search space is not smooth and unimodal. The
evaluation function’s parameters of any top chess pro-
gram are highly co-dependent. An example from David’s
computer chess career [15], [18] may illustrate this. In
many cases, increasing the values of three parameters
results in a worse performance, but if a fourth parameter
were also increased, then an improved overall perfor-
mance would be obtained. Since the search space is not
unimodal, i.e., it does not consist of a single smooth
hill, any gradient-ascent algorithm, such as hill climbing,
will perform poorly. In contrast, genetic algorithms are
known to perform well in large search spaces, which are
not unimodal.

3) The problem of tuning and learning is not well under-
stood. As will be discussed in detail in the next section,
even though all top programs are hand-tuned by their
programmers, finding the best value for each parameter
is based mostly on educated guessing and intuition. (The
fact that all top programs continue to operate in this
manner attests to the lack of practical alternatives.) Had
the problem been well understood, a domain-specific
heuristic would have outperformed a general-purpose
method such as GA.

4) We do not require a global optimum to be found.
Our goal in tuning an evaluation function is to adjust
its parameters so that the overall performance of the
program is enhanced. In fact, a unique global optimum
most probably does not exist for this tuning problem.

In view of the above four points it seems appropriate to
employ GA for automatic tuning of the parameters of an
evaluation function. Indeed, at first glance this appears like an
optimization task, well suited for GA. The many parameters
of the evaluation function (bonuses and penalties for each
property of the position) can be encoded as a bit-string.
We can randomly initialize many such chromosomes, each
representing one evaluation function. Thereafter, one needs
to evolve the population until highly tuned fit evaluation
functions emerge.
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However, there is one major obstacle that hinders the above
application of GA, namely the fitness function. Given a set
of parameters of an evaluation (encoded as a chromosome),
how should the fitness value be calculated? A straightforward
approach would be to let the chromosomes in each generation
play a series of games against each other, and subsequently,
record the score of each individual as its fitness value (each
individual is a chess program with an appropriate evaluation
function).

The main drawback of this approach is the large amount of
time needed to evolve each generation. As a result, limitations
should be imposed on the length of the games played after each
generation, and also on the size of the population involved.
With a population size of 100, a ten seconds limit per game,
and assuming that each individual plays each other individual
once in every generation, it would take 825 minutes for
each generation to evolve. Specifically, reaching the 100th
generation would take up to 57 days. These figures suggest
that it would be rather difficult to evolve the parameter values
of a chess program relying on coevolution alone. (When some
a priori knowledge regarding material and positional values is
used, as in [25]–[27] for example, good results are attainable
in a reasonable amount of time.)

In Section III we present our approach for using GA in
evolving state-of-the-art chess evaluation functions. Before
that, we briefly review previous works of applying evolution-
ary methods in computer chess.

B. Previous Evolutionary Methods Applied to Chess

Despite the abovementioned problems, there have been
some successful applications of evolutionary techniques in
computer chess, subject to some restrictions. Genetic program-
ming was successfully employed by Hauptman and Sipper
[30], [31] for evolving programs that can solve Mate-in-N
problems and play chess endgames.

Kendall and Whitwell [35] used evolutionary algorithms
for tuning the parameters of an evaluation function. Their
approach had limited success, due to the very large number
of games required (as previously discussed), and the small
number of parameters used in their evaluation function. Their
evolved program managed to compete with strong programs
only if their search depth (lookahead) was severely limited.

Similarly, Aksenov [1] employed genetic algorithms for
evolving the parameters of an evaluation function, using games
between the organisms for determining their fitness. Again,
since this method required a very large amount of games, it
evolved only a few parameters of the evaluation function with
limited success. Tunstall-Pedoe [45] also suggested a similar
approach, without providing an implementation.

Gross et al. [28] combined genetic programming and evo-
lution strategies to improve the efficiency of a given search
algorithm using a distributed computing environment on the
Internet.

Fogel et al. [25]–[27] used coevolution to successfully
improve the parameters of an existing chess program. Their
algorithm learns to evaluate chessboard configurations by us-
ing the positions of pieces, material and positional values, and
neural networks to assess specific sections of the chessboard.

The method succeeded in modifying the parameter values of
an existing chess program to gain a respectable performance
level (the program scored three wins, 11 draws, and ten losses
against Fritz 8 and defeated a human master). As far as
we know, no successful attempt has been described at using
coevolution to evolve the parameters of a chess program from
fully randomized initial values, without relying on any a priori
knowledge. Fogel et al. showed that coevolution could be
employed successfully in chess when the initial material and
positional parameters are already initialized within sensible
ranges. Furthermore, Chellapilla and Fogel [11]–[13], [24]
successfully employed coevolution to evolve the parameters
of a checkers program. However, the applicability of their
approach to chess is not clear, as the game of chess is by
orders of magnitude more complex than checkers (the fact
that checkers is by now a solved game [41] further attests to
its relative simplicity in comparison to chess, which seems far
from being solved).

Samothrakis et al. [39] used covariance matrix adaptation
evolution strategy (CMA-ES) for coevolution of weighted
piece counters (WPCs) in Othello. These WPCs were used
to operate as value functions in a 1-ply minimax player. The
aim was not to find Othello players that are strong in absolute
terms, but rather use Othello as an interesting domain of study
in which to measure performance and intransitivities in co-
evolution. Using CMA-ES within a coevolutionary setting, the
authors succeeded in evolving the strongest WPCs for Othello,
published as of yet. While this coevolutionary approach yields
interesting results for Othello, it would be challenging to apply
it to chess, which is more complex than Othello (as noted in
the previous section).

There are two main components of any chess program, an
evaluation function and a search mechanism. In our previous
work, we provided a mentor-assisted approach [21] for reverse
engineering the evaluation function of a target chess program
(the mentor), thereby evolving a new comparable evaluation
function. This approach relied on the fact that the mentor
provides an evaluation score for any given position, and so,
using a large set of positions, the evaluation score of the target
program can be obtained for each position. Subsequently,
the parameters of the evaluation function can be evolved to
mimic the scores provided by the mentor. This mentor-assisted
approach produces an evaluation function that mimics a given
chess program, but is dependent on access to the evaluation
score of the target program.

In order to extend the concept of mentor-assisted evolution
to learning from humans as well, we combined evolution and
coevolution for evolving the parameter values of the evaluation
function to simulate the moves of a human grandmaster,
without relying on the availability of evaluation scores of some
computer chess programs [19]. In both these versions we had
assumed that the program already contained a highly tuned
search mechanism.

While most past attempts at automatic learning in chess
focused on an evaluation function, few efforts have been made
to evolve automatically the parameters controlling the search
mechanism of the program. Moriarty and Miikkulainen [37]
used neural networks for tuning the search of an Othello
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program, but as mentioned in their paper, their method is
not easily applicable to more complex games such as chess.
Cazenave [10] presented a method for learning search-control
rules in Go, but the method cannot be applied to chess (the
search mechanism in Go is of a different, less critical nature
than chess).

Björnsson and Marsland [8] presented a method for auto-
matically tuning search extensions in chess. Given a set of test
positions (for which the correct move is predetermined) and a
set of parameters to optimize (in their case, four extension
parameters), they tune the values of the parameters using
gradient descent. Their program processes all the positions,
and for each position it records the number of nodes until a
solution is found. The optimization goal is to minimize the
total node count for all the positions. In each iteration, their
method modifies each of the extension parameters by a small
value, and processes all the positions, recording the total node
count. Thus, given N parameters to be optimized (N = 4 in
their case), in each iteration their method processes all the
positions N times. The parameter values are updated after each
iteration, such that the total node count decreases. Björnsson
and Marsland applied their method for tuning the values
of four search extension parameters: check, passed pawn,
recapture, and one-reply extensions. Their results show that
their method optimizes the values for these parameters such
that the total node count for solving the test set is decreased.

Despite the success of this gradient-descent method for
tuning the values of four search extension parameters, it cannot
be used efficiently to optimize a large set of parameters
consisting of all the critical selective search parameters, of
which search extensions comprise only a few parameters.
This is due to the fact that the gradient-descent approach
requires processing the whole test set for each of the pa-
rameters in each iteration. While this might be practical for
four parameters, it becomes more difficult when the number
of parameters involved is considerably larger. Additionally,
unlike the optimization of search extensions, where parameter
values are mostly independent, other search methods would
exhibit a high interdependency between the parameter values,
and consequently it would be more difficult to apply gradient-
descent optimization.

In our previous work [20] we demonstrated that given a
chess program with a highly tuned evaluation function, we
can use GA to evolve the search parameters by evolving
the parameters such that the overall performance in test
suites is improved. As mentioned previously, we have also
demonstrated [19], [21] how to evolve an evaluation function
using GA, given a highly tuned search mechanism.

In this paper we combine the two approaches in order to
evolve both the evaluation function and the search mechanism,
assuming that the parameters of none of these two components
are tuned a priori (but rather initialized randomly).

III. Evolution and Coevolution of Evaluation

Functions

The parameters of an evaluation function can easily be
represented as a chromosome. However, applying a fitness

Fig. 1. Fitness function for evolution of evaluation functions using database
of grandmaster-level games.

function is more complicated. As previously noted, estab-
lishing a fitness evaluation by means of playing numerous
games between the organisms in each generation (i.e., single-
population coevolution) is quite difficult (when the organisms
are initialized randomly).

In our previous work on mentor-assisted evolution [21], we
described how the fitness value can be issued by running
a grandmaster-level chess program on a set of positions,
and recording, for each position, the difference between the
evaluation score computed by the organism and the score
computed by the target program. We define this difference
as the evaluation error and a magnitude inversely proportional
to it as the fitness function. However, this approach is not
practical when trying merely to learn from a player’s moves
(whether a human player or a computer program, assuming no
access to the program itself).

This paper significantly extends our previous framework.
Specifically, we present a learning approach, which relies only
on widely available databases of grandmaster-level games.
This task is significantly more difficult than using existing
chess programs as mentors, since for any position taken from
a (human) game, the only available information is the move
actually played (and not the associated score). Our approach
is based on the steps shown in Fig. 1.

Although performing a search for each position seems to be
a costly process, in fact it consumes little time. Conducting a
1-ply search amounts to less than a millisecond for a typical
chess program on an average machine, and so 1000 positions
can be processed in one second. This allows us to use a large
set of positions for the training set.

After running the abovementioned process a number of
times, we obtain several evolved organisms. Due to the random
initialization of the chromosomes, each time the process is
applied, a different best evolved organism is obtained. Com-
paring the best evolved organisms from different runs, we
observe that even though they are of similar playing strength,
their evolved parameter values differ, and so does their playing
style.

In order to further improve the obtained organisms (each
organism is the best evolved organism from a complete run of
the abovementioned process), we next use a single-population
coevolution phase. During this phase the evolved organisms
play against each other, and the fitness function applied is
based on this relative performance. After running this coevo-
lution for a predetermined number of generations, the best
evolved organism is selected as the best overall organism.
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As the results in Section V indicate, this best of best
organism improves upon the organisms evolved from the
evolutionary phase only. As noted before, it is difficult to
evolve the parameter values of a chess program from randomly
initialized values relying on coevolution alone. The difference
in our case is that the population size is small (we used ten),
and the initial organisms are already well tuned, rather than
randomly initialized.

In the following subsections, we describe in detail the chess
program, the implementation of the evolutionary method, and
the GA parameters used.

A. Chess Program and the Evaluation Function

The evaluation function of our program (which we are
interested in tuning automatically) consists of 35 parameters
(see Fig. 3). Even though this is a small number of parameters
in comparison to other top programs, the set of parameters
used does cover all important aspects of a position, e.g.,
material, piece mobility and centricity, pawn structure, and
king safety.

The parameters of the evaluation function are represented
as a binary bit-string (chromosome size: 224 bits), initialized
randomly (note that we use binary encoding since it is the
most basic type of encoding for GA [33], although it is not
necessarily superior to an alternative encoding method for this
problem). The value of a pawn is set to a fixed value of 100,
which serves as a reference for all other parameter values.
Except for the four parameters representing the material values
of the pieces, all the other parameters are assigned a fixed
length of 6 bits per parameter. Obviously, there are many
parameters for which 3 or 4 bits suffice. However, allocating
a fixed length of 6 bits to all parameters ensures that a priori
knowledge does not bias the algorithm in any way. Note that
at this point, the program’s evaluation function is merely a
random initialization, so that apart from the rules of the game,
the program has essentially no game skills at all.

B. Evolution Using Grandmaster Games

For our experiments, we used a database of 10 000 games of
grandmasters rated above 2600 Elo, and randomly picked one
position from each game. We picked winning positions only,
i.e., positions where the side to move had ultimately won the
game (e.g., if it was white’s turn to move, the game would
be won eventually by white). Of these 10 000 positions, we
selected 5000 positions for training and 5000 for testing.

In each generation, for each organism, the algorithm trans-
lates its chromosome bit-string to a corresponding evaluation
function. For each of the N test positions (in our case,
N = 5000), it then performs a 1-ply search using the decoded
evaluation function, and the best move returned from the
search is compared to that of the grandmaster in the actual
game. The move is deemed correct if it is the same as the
move played by the grandmaster, and incorrect otherwise. The
fitness of the organism is calculated as the square of the total
number of correct moves.

Note that unlike the mentor-assisted approach for mimicking
existing chess programs, which provide numeric values for

each position, here we only have 1-bit of information for
each processed position (correct/incorrect). This underscores
why learning merely from a player’s moves is much more
challenging than using computer programs as mentors.

Other than the special fitness function described above, we
used a standard GA implementation with gray coded chromo-
somes, fitness-proportional selection, uniform crossover, and
elitism (the best organism is copied to the next generation).
The following parameters are used by the algorithm:

population size = 100;
crossover rate = 0.75;
mutation rate = 0.005;
number of generations = 200.

C. Coevolution of the Best Evolved Organisms

We ran the evolution process ten times, thus obtaining ten
organisms, each being the best organism from one run. The
parameter values of these ten organisms differ due to the
random initialization in each run. Consequently, although these
ten programs are of similar playing strength, their playing style
is different. Note that using the top ten evolved organisms from
one of the runs is not equivalent to taking ten organisms from
ten different runs, as in the former case the top ten organ-
isms from the same run will have mostly similar parameter
values.

An alternative method for generating multiple evolved or-
ganisms would be to use different training sets for each run.
For example, we might use a specific grandmaster for each
run in the hope of obtaining organisms that mimic the styles
of various grandmasters. However, our tests indicate that this
approach does not improve over the method used. Appar-
ently, using 1-ply searches only enables mimicking general
grandmaster style, rather than the subtleties of a specific
player.

In the coevolution phase, the ten best organisms selected
serve as the initial population, which is then co-evolved over
50 generations. In each generation, each organism plays four
games against each other organism (to obtain a more reliable
result). Note that for each game, a different sequence of
opening moves is selected from an opening book file. This
ensures that each game is unique (i.e., each game contains a
unique set of opening moves). At the end of each generation,
rank-based selection is applied for selecting the organisms for
breeding. Elitism is used here as well, which ensures that
the best organism survives for the next generation. This is
especially critical in light of the small population size. Other
GA parameters remain unchanged, that is, uniform crossover
with crossover rate of 0.75 and mutation rate of 0.005.

Note that at this phase we still do not have a tuned search
mechanism. So, for the coevolution phase described above,
we use a basic alpha-beta search mechanism, without any of
the advanced selective search mechanisms (for which we have
yet to evolve their parameter values). As a result, the playing
strength of the program at this stage is substantially limited.
However, this does not pose a problem, since this limitation
equally applies to all ten programs which play against each
other.
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TABLE I

Chromosome Representation of 18 Search Parameters

(Length: 70 Bits)

In the following section we present our method for evolving
the parameter values of the selective search mechanism.

IV. Evolution of Selective Search

After evolving the parameter values of the evaluation func-
tion and incorporating the values of the best evolved organism
into the program, we now focus on evolving the parameter
values of the search mechanism.

Several popular selective search methods are employed by
top tournament-playing programs. These methods allow the
program to search more selectively, i.e., prune uninteresting
moves earlier, thus spending additional time on more promis-
ing moves. That is, instead of searching all the moves to a
certain fixed depth, some moves are searched more deeply
than others.

The most popular selective search methods are null-move
pruning [4], [17], [22], futility pruning [32], multicut pruning
[6], [7], and selective extensions [2], [5]. A description of
these methods can be found in [20]. Each of these selective
search methods requires several critical parameters to be
tuned. Normally these parameters are manually tuned, usually
through years of experiments and manual optimizations.

In order to apply GA for tuning the parameters of these
selective search methods automatically, we represent these
parameters as a binary chromosome where each parameter’s
number of allocated bits is based on the reasonable ranges for
the values of the parameter. Table I presents the chromosome
and the range of values for each parameter. Note that for
search extensions the notion fractional ply is applied, where 1
ply = 4 units (e.g., an extension value of two is equivalent to
half a ply, etc.).

We employ the optimization goal in Björnsson and Marsland
[8] as our fitness function. A set of 879 tactical test positions
from the encyclopedia of chess middlegames (ECM) was
used for training. Each position in the ECM test suite has

a predetermined best move. Each chromosome processes all
of the 879 positions, and for each position it attempts to find
this predetermined best move as fast as possible.

Instead of counting the number of correctly solved positions
(number of positions for which the organism found the best
move), we used the number of nodes the organism had to
process in order to find the best move. For each position,
we recorded the number of nodes the organism searched
before finding the correct move. The total node count for each
organism is the total node count for all the 879 positions. We
imposed an upper search limit of 500 000 nodes per position.
That is, if the correct move is not found after searching 500 000
nodes, the search is stopped and this upper limit is returned
as the number of nodes for that position. Naturally, more
positions will be solved if a larger search limit is chosen,
but also more time will be spent, and subsequently the whole
evolution will take much longer.

The lower the total node count for all the positions, the
higher the fitness of the organism will be. Using this fitness
measure instead of taking, in a straightforward manner, the
number of solved positions has the benefit of deriving more
fitness information per position. Rather than obtaining a 1-bit
information (correct/false) for each position, a numeric value
is obtained, which also measures how quickly the position is
solved. Thus, the organism is not only encouraged to solve
more positions, but also to find quicker solutions for the
already solved test positions.

Similar to [20], we used a standard GA implementation with
Gray coded chromosomes, fitness-proportional selection, uni-
form crossover, and elitism. All the organisms are initialized
with random values. The following parameters are used for
the GA:

population size = 10;
crossover rate = 0.75;
mutation rate = 0.05;
number of generations = 50.
The next section contains the experimental results using the

GA-based method for the parameters of the evaluation function
and the search mechanism.

V. Experimental Results

We now present the results of running the evolutionary
process described in the previous two sections. We also
provide the results of several experiments that measure the
strength of the evolved program in comparison to Crafty,
a former two-time world computer chess champion that is
commonly used as a baseline for testing chess programs. The
details of our experimental setup are provided in Appendix A.

A. Results of Evolution

Fig. 2 shows the number of positions solved (i.e., the
number of correct moves found) for the best organism and the
population average for 200 generations (the figure shows the
results for the first run, out of a total of ten runs). Specifically,
the results indicate that the average number of solved positions
is about 800 (out of 5000) in the first generation. Note
that even without any chess knowledge an organism would
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Fig. 2. Number of positions solved (out of 5000) for the best organism and
the population average in each generation (total time for 200 generations ≈
two hours). The figure shows the results for the first run, out of a total of ten
runs.

occasionally select the correct move by random guessing.
Additionally, since the randomly initialized parameters contain
only positive values, an organism can find some basic captures
of the opponent’s pieces without possessing any real chess
knowledge.

The average number of solved positions increases until
stabilizing at around 1500, which corresponds to 30% of the
positions. The best organism at generation 200 solves 1620
positions, which corresponds to 32.4% of the positions. Due
to the use of elitism, the number of solved positions for
the best organism is monotonically increasing, since the best
organism is preserved, due to the use of elitism. The entire
200-generation evolution took approximately two hours.

At first glance, a solution rate of 32% might not seem too
high. However, in light of the fact that the organisms base their
move on a 1-ply search only (as opposed to the thorough anal-
ysis and consideration of the position by a grandmaster prior
to their move), this figure is quite satisfactory. In other words,
by conducting merely a 1-ply search, the evolved organism
selects successfully a grandmaster’s carefully analyzed move
in one out of three cases.

With the completion of the learning phase, we used the
additional 5000 positions set aside for testing. We let our best
evolved organism perform a 1-ply search on each of these
positions. The number of correctly solved positions was 1521
(30.4%). This indicates that the first 5000 positions used for
training cover most types of positions that can arise, as the
success rate for the testing set is close to the success rate for
the training set.

B. Results of Coevolution

Repeating the evolutionary process, we obtained each time a
best evolved organism with a different set of evolved parameter
values. That is, each run produced a different grandmaster-
level program. Even though the performance of these inde-
pendently evolved best organisms is fairly similar, our goal
was to improve upon these organisms and create an enhanced
best of best organism.

Fig. 3. Average evolved parameters of the evaluation function of the best
individual after ten runs (the values are rounded).

We applied single-population coevolution to enhance the
performance of the program. After running the evolution
ten times (which ran for about 20 hours), ten different
best organisms were obtained. Using these ten organisms
as the starting population, we applied GA for 50 genera-
tions, where each organism played each other organism four
times in every round. Each game was limited to ten seconds
(five seconds per side). In practice, this coevolution phase ran
for approximately 20 hours.

Fig. 3 provides the average evolved values of the best
individual obtained after running our method ten times (the
values are rounded). Conventionally, knight and bishop are
valued at three pawns, and rook and queen are valued at five
and nine pawns, respectively [9]. These values are used in most
chess programs. However, it is well known that grandmasters
frequently sacrifice pawns for positional advantages, and that
in practice, a pawn is assigned a lower value. Interestingly,
the best organism assigns a pawn about half the value it
is usually assigned, relative to the other pieces, which is
highly unconventional for chess programs. This implies that
the evolved organism, which learns its parameter values from

brownste
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Fig. 4. Total node count (in millions) for 879 ECM positions for the best
organism and the population average in each generation.

TABLE II

Learned Values For the Search Parameters

human grandmasters, ends up adopting also their less material-
istic style of play. This is also reflected in the playing style of
the ultimate evolved program, as it frequently sacrifices pawns
for gaining positional advantages.

C. Evolving Search Parameters

After incorporating the best evolved parameters for the
evaluation function into the program, we then evolved the
search parameters. Fig. 4 shows the total node count for 879
positions for the best organism and the population average in
each generation. Table II provides the evolved values of the
best individual.

We incorporate the values obtained here together with the
values obtained from evolution of the parameter values of the
evaluation function into our program (which is an experimental
descendant of the program Falcon [15], [18]). We call
this program Evol*. The program contains all our obtained
parameter values for the evaluation function and the search
mechanism.

To measure the performance of Evol*, we conducted a
series of matches against the chess program Crafty [34].
Crafty has successfully participated in numerous WCCCs,
and is a direct descendent of Cray Blitz, the WCCC winner
of 1983 and 1986. It is frequently used in the literature
as a standard reference. In order to obtain a measure for
the performance gain due to the coevolution phase, we also

TABLE III

Number of ECM Positions Solved by Each Program (Time: Five

Seconds per Position)

TABLE IV

Evol* Versus Evol0 And Crafty (W% is The Winning

Percentage And RD is The Elo Rating Difference). Time

Control: Five Minutes Per Game

compared the performance of Evol* to a version of Evol*,
which uses the parameters in its evaluation function that are
evolved after the evolutionary phase (i.e., parameters evolved
before the coevolution phase). We call this program Evol0.
For the search mechanism we used the same parameter setting
in Evol* and Evol0.

For a proper comparison, we let Evol*, Evol0, and
Crafty process the ECM test suite with five seconds per
position. Table III provides the results. As can be seen, both
Evol* and Evol0 solve significantly more positions than
Crafty.

The superior performance of Evol* on the ECM test set is
not surprising, as it was evolved on this training set. Therefore,
in order to obtain an unbiased performance comparison, we
conducted a series of 300 matches against Crafty, using a
time control of five minutes per game for each side. Table IV
provides the results.

The results further show that Evol* outperforms Evol0

and Crafty, not only in terms of solving more tactical
test positions, but more importantly in test matches. These
results establish that although the search parameters were
evolved from randomly initialized chromosomes, the resulting
organism outperforms a grandmaster-level chess program in
five minute games.

We extended our experiments to compare the performance
of Evol* against several of the world’s top commercial
chess programs. These programs included Junior, Fritz,
and Hiarcs. Junior won the World Microcomputer Chess
Championship in 1997 and 2001 and the World Computer
Chess Championship in 2002, 2004, 2006, and 2011. In
2003, Junior played a six-game match against the legendary
former world champion, Garry Kasparov, that resulted in a
3–3 tie. In 2007, Junior won the ultimate computer chess
challenge organized by the World Chess Federation (FIDE),
defeating Fritz 4–2. Fritz won the World Computer Chess
Championship in 1995. In 2002, it drew the Brains in Bahrain
match against former world champion, Vladimir Kramnik,
4-4, and in 2003 it drew again a four-game match against
Garry Kasparov. In 2006, Fritz defeated the incumbent world
champion, Vladimir Kramnik, 4–2. Hiarcs won the 1993
World Microcomputer Chess Championship. In 2003, it drew
a four-game match against Grandmaster Evgeny Bareev, then
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TABLE V

Evol* Versus Junior, Fritz, And Hiarcs (W% is The Winning

Percentage, And RD is The Elo Rating Difference). Time

Control: Five Minutes Per Game

TABLE VI

Evol* Versus Crafty, Junior, Fritz, And Hiarcs (W% is The

Winning Percentage And RD is The Elo Rating Difference).

Time Control: One Hour Per Game

the 8th ranked player in the world (all four games ended in a
draw). In 2007, Hiarcs won the 17th international Paderborn
computer chess championship.

As mentioned earlier, Evol* is an experimental descendant
of the program Falcon [15], [18], which successfully partici-
pated in three WCCCs. During the 2008 world computer chess
championship [16], Falcon used an earlier version [21] of the
evolutionary approach described in this paper. Competing with
an average laptop against nine strong chess programs (eight
of which ran on fast multicore machines ranging from 4 to 40
cores), the GA-based version of Falcon reached second place
in the world computer speed chess championship and sixth
place in the WCCC. These highly surprising results, especially
in light of the huge hardware handicap of Falcon relative to
its competitors, demonstrate the capabilities of the GA-based
approach.

Table V provides the results of Evol* against the top
commercial programs Junior, Fritz, and Hiarcs. Again, all
matches consisted of 300 games at a time control of 5 minutes
per game for each side.

To further examine the performance of Evol* under long
time control conditions, we conducted a series of matches
between Evol* and the abovementioned top tournament-
playing programs at a time control of 1 hour per game for each
side. Each match consisted of 100 games. Table VI provides
the results.

The results show that the performance of a genetically
evolved program is on a par with that of the top commercial
chess programs. The superior performance by Junior is well
noted and should serve as a source of inspiration. In addition,
Table VII compares the tactical performance of our evolved
organism against these three commercial programs. The results
show the number of ECM positions solved by each program.
A similar trend emerges, i.e., the evolved organism is on a par
with these top commercial programs.

The results of the abovementioned tests establish that even
though the parameters of our program are evolved from

TABLE VII

Number of ECM Positions Solved by Each Program (time: Five

Seconds per Position)

chromosomes initialized randomly, the resulting organism is
on a par with top commercial chess programs.

VI. Concluding Remarks

In this paper, we presented a novel approach for evolving the
key components of a chess program from randomly initialized
values using genetic algorithms.

In contrast to our previous successful attempts, which fo-
cused on mimicking the evaluation function of a chess program
acting as a mentor, the approach presented in this paper
focuses on evolving the parameters of the evaluation function
and the search mechanism. This is done by observing solely
(human) grandmaster-level games, where the only available
information to guide the evolution is the moves played in these
games.

Learning from the actual moves of grandmaster-level games
in the first phase of the evolution, we obtained several evalu-
ation functions. Specifically, running the procedure ten times,
we obtained ten such evolved evaluation functions, which
served as the initial population for the second coevolution
phase. Using coevolution in our case proved successful as the
initial population was not random, but relatively well tuned
due to the first phase of the evolution.

We further used genetic algorithms to evolve the parameters
of the search mechanism. Starting from randomly initialized
values, our method evolves these parameters. Combining the
two parameter sets (i.e., those of the evaluation function and
the search mechanism) resulted in a performance that is on a
par with that of top tournament-playing programs.

Overall, this paper provides, to the best of our knowledge,
the first methodology of automatic learning the parameters
of the evaluation function and the search mechanism from
randomly initialized values for computer chess. We note that
although the experimental results of the module presented
here differ from those of our previous work (which assumed
access to a highly tuned evaluation function [20] or a highly
tuned search mechanism [19], [21]), the overall performance
observed was comparable. Thus, the approach in this paper
is superior to these previous efforts, in the sense that it
achieves grandmaster-level performance without relying on
any assumptions.

The results presented in this paper point to the vast potential
in applying evolutionary methods for learning from human
experts. We believe that this approach could be applied to a
wide array of problems for essentially reverse engineering the
knowledge of a human expert. While we successfully used
genetic algorithms to evolve the parameter values of a chess
program, it would be of interest to apply other natural and
evolutionary optimization methods in future research [e.g.,
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covariance matrix adaptation evolution strategy (CMA-ES)
[29], differential evolution (DE) [43], and particle swarm
optimization (PSO) [36]].

Appendix A

Experimental Setup

Our experimental setup consisted of the following resources.

1) Crafty, Junior, Fritz, and Hiarcs chess programs
running as native ChessBase engines.

2) Encyclopedia of chess middlegames (ECM) test suite,
consisting of 879 positions.

3) Fritz 9 interface for automatic running of matches,
using Shredder opening book.

4) Long time control matches (see Table VI) were con-
ducted on an Intel Core 2 Quad Q8300 with 8.0 GB
RAM. All the other experiments were conducted on an
Intel Core 2 Duo T8100 with 3.0 GB RAM.

Appendix B

Elo Rating System

The Elo rating system, developed by Arpad E. Elo [23], is
the official system for calculating the relative skill levels of
players in chess. A grandmaster is generally associated with
rating values above 2500 Elo and a novice player with rating
values below 1400 Elo.

Given the rating difference (RD) of two players, the follow-
ing formula calculates the expected winning rate (W , between
zero and one) of the player:

W =
1

10−RD/400 + 1
.

Given the winning rate of a player, as is the case in our
experiments, the expected rating difference can be derived
from the above formula

RD = −400 log10(
1

W
− 1).
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