Constructing low star discrepancy point sets with genetic algorithms

François-Michel De Rainville, Carola Doerr, Christian Gagné, Michael Gnewuch, Denis Laurendeau, Olivier Teytaud, Magnus Wahlström
Numerical Integration

- One of the most challenging questions in numerical analysis: compute $\int f(x)dx$ for a (possibly complicated) function $f: \mathbb{R}^d \rightarrow \mathbb{R}$
- FAR from being a purely academic problem: applications in financial derivative pricing, scenario reduction, computer graphics, pseudo-random number generators, stochastic programming...
- One of the oldest problems in mathematics
Monte Carlo Integration

- Instead of computing $\int f(x)dx$, evaluate f in random samples
- Approximate the integral by the mean value $\frac{1}{n}\sum_{i=1}^{n} f(x^i)$
- How good is this approximation?

Approximation error can be measured by $V(f) d^*_\infty(x^1, ..., x^n)$, where
- $V(f)$ depends only on f
- $d^*_\infty(x^1, ..., x^n)$ depends only on $x^1, ..., x^n$

We cannot influence $V(f)$, but we can very well choose $x^1, ..., x^n$
Low Star Discrepancy Point Sets

- Idea of Quasi-Monte Carlo integration: evaluate f in low discrepancy point sets

(Pseudo) Random

Quasi Random
Low Star Discrepancy Point Sets

- Idea of **Quasi-Monte Carlo integration**: evaluate f in low discrepancy point sets
- **2 Main Problems:**
 - Where to place the points?
 - *(high-dimensional problem!)*
 - Computation of star discrepancies is provably hard
 - *(NP-hard and W[1]-hard in the dimension, cf. [GSW09,GKWW12])*

Our algorithm(s) are the gold-standard to address both problems

De Rainville et al.: Constructing Low Star Discrepancy Point Sets with GAs
http://qrand.gel.ulaval.ca/
Criterion (B): *The results are equal to or better than a result that was accepted as a new scientific result at the time when it was published in a peer-reviewed scientific journal*

- Our algorithms clearly outperform all previous works
 - Exponential performance increase for our evaluation algorithm (previous work includes [WF97, Th01a, Th01b, Sh12])
 - Computed point sets are better by 36% on average when compared to results in [Th01a, Th01b, DGW10]
Human-Competitiveness 2/5

Criterion (D): The results are **publishable in its own right** as new scientific results independent of the fact they were mechanically created

- We have published our papers in the most prestigious journals of the field: *ACM Transactions on Modeling and Computer Simulation* & *SIAM Journal on Numerical Analysis*
- We have as well presented them in the relevant conferences of the different communities: *GECCO 2009, MCQMC 2008, MCM 2011, UDT2012, MCQMC 2012, GECCO 2013*, and at various relevant workshops
Human-Competitiveness 3/5 & 4/5

Criterion (E): The results are equal to or better than the most recent human-created solution to a long-standing problem for which there has been a succession of increasingly better human-created solutions.

Criterion (F): The results are equal to or better than a result that was considered an achievement in its field at the time it was first discovered.

- There has been a long sequence of previous works on both problems (computing the discrepancy of a given point set and creating low discrepancy point configurations, respectively) [e.g., Nie72, De86, BZ93, DEM96, WF97, Th00, Th01a, Th01b, DGW10, and many more].

- Our algorithm is suited also for computing inverse star discrepancies.

 \[(\text{i.e., for given dimension } d \text{ and constant } \delta, \text{ what is the smallest } n \text{ such that there exists } x^1, \ldots, x^n \text{ in } [0,1)^d \text{ with } d^*_\infty(x^1, \ldots, x^n) \leq \delta?)\]
Human-Competitiveness 3/5 & 4/5, cont.

Criterion (E): The results are equal to or better than the most recent human-created solution to a long-standing problem for which there has been a succession of increasingly better human-created solutions

Criterion (F): The results are equal to or better than a result that was considered an achievement in its field at the time it was first discovered

- Our algorithm is also much faster than previous approaches:

<table>
<thead>
<tr>
<th>Instance</th>
<th>Time</th>
<th>Result</th>
<th>Time to get same result</th>
<th>Result at same time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faure-12-169</td>
<td>25s</td>
<td>0.2718</td>
<td>1s</td>
<td>0.2718</td>
</tr>
<tr>
<td>Sobol’-12-128</td>
<td>20s</td>
<td>0.1885</td>
<td>7.6m</td>
<td>0.1463</td>
</tr>
<tr>
<td>Sobol-12-256</td>
<td>35s</td>
<td>0.1110</td>
<td>1.6d</td>
<td>0.0873</td>
</tr>
<tr>
<td>Faure-20-1500</td>
<td>4.7m</td>
<td>0.0740</td>
<td>>4d</td>
<td>None</td>
</tr>
<tr>
<td>GLP-20-1619</td>
<td>5.2m</td>
<td>0.0844</td>
<td>>5d</td>
<td>None</td>
</tr>
<tr>
<td>Sobol-50-4000</td>
<td>42m</td>
<td>0.0665</td>
<td>9h</td>
<td>None</td>
</tr>
<tr>
<td>GLP-50-4000</td>
<td>42m</td>
<td>0.1201</td>
<td>>5d</td>
<td>None</td>
</tr>
</tbody>
</table>
Human-Competitiveness 5/5

Criterion (G): The result solves a problem of **indisputable difficulty** in its field

- The addressed problems are **provably (!) difficult** and subject to the curse of dimensionality
- **Great interest** by scientific and industrial researchers and engineers: we have started **several new projects** that build on our algorithms
- We could solve some **open problems** posed in the literature (e.g., open problem 42 in [NW10])
Achievements

✓ New genetic algorithms for
 ▪ computing low discrepancy point sets
 ▪ evaluating star discrepancy values
 ▪ computing inverse star discrepancies

✓ Our results clearly outperform previous results by a large margin, both in terms of quality and speed

✓ All computed point sets are available online:
 http://qrand.gel.ulaval.ca/
 (idea: maintain a database with low star discrepancy point sets)

✓ Great interest from different communities:
 several new projects with further applications have been launched (both with mathematicians and engineers)
Full References of Our Papers

- Carola Doerr, François-Michel De Rainville
 Constructing low star discrepancy point sets with genetic algorithms
 In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’13
 Association for Computing Machinery (ACM), 2013. To appear

- François-Michel De Rainville, Christian Gagné, Olivier Teytaud, Denis Laurendeau
 Evolutionary optimization of low-discrepancy sequences
 Association for Computing Machinery (ACM), 2012

- Michael Gnewuch, Magnus Wahlström, Carola Winzen
 A new randomized algorithm to approximate the star discrepancy based on threshold accepting
 In: SIAM Journal on Numerical Analysis, 50:781--807
 Society for Industrial and Applied Mathematics (SIAM), 2012
Other References 1/4

- P. Bundschuh, Y. Zhu
 A method for exact calculation of the discrepancy of low-dimensional point sets (I)
 In: Abhandlungen aus dem Mathematischen Seminar der Univ. Hamburg, 63(1):115--133
 Springer, 1993

- L. De Clerck
 A method for exact calculation of the star-discrepancy of plane sets applied to the sequence of Hammersley
 In: Monatshefte für Mathematik, 101(4):261--278
 Springer, 1986

- David P. Dobkin, David Eppstein, Don P. Mitchell
 Computing the discrepancy with applications to supersampling patterns
 Association for Computing Machinery (ACM), 1996

- Benjamin Doerr, Michael Gnewuch, Magnus Wahlström
 Algorithmic construction of low discrepancy point sets via dependent randomized rounding
 In: Journal of Complexity, 26:490--507
 Elsevier, 2010
Other References 2/4

- Panos Giannopoulos, Christian Knauer, Magnus Wahlström, Daniel Werner
 Hardness of discrepancy computation and epsilon-net verification in high dimension
 In: Journal of Complexity, 28(2):162--176
 Elsevier, 2012

- Michael Gnewuch, Anand Srivastav, Carola Winzen
 Finding optimal volume subintervals with k points and calculating the star discrepancy are
 NP-hard problems
 In: Journal of Complexity, 25(2):115--127
 Elsevier, 2009

- Harald Niederreiter
 Methods for estimating discrepancy
 In: Applications of Number Theory to Numerical Analysis, 203--236
 Academic Press, 1972

- Erich Novak and Henryk Wozniakowski
 Standard Information for Functionals
 In: Tractability of Multivariate Problems, vol. 2
 EMS Tracts in Mathematics, European Mathematical Society, 2010
Other References 3/4

- **Manan Shah**
 A genetic algorithm approach to estimate lower bounds of the star discrepancy
 In: *Monte Carlo Methods and Applications, 16(3-4):379--398*
 De Gruyter, 2010

- **Eric Thiémard**
 Computing bounds for the star discrepancy
 In: *Computing 65(2):169--186*
 Springer, 2000

- **Eric Thiémard**
 An algorithm to compute bounds for the star discrepancy
 In: *Journal of Complexity, 17(4):850--880*
 Elsevier, 2001

- **Eric Thiémard**
 Optimal volume subintervals with k points and star discrepancy via integer programming
 Springer, 2001
Other References 4/4

- Peter Winker and Kai-Tai Fang
 Applications of threshold-accepting to the evaluation of the discrepancy of a set of points
 In: SIAM Journal on Numerical Analysis, 34:2028--2042
 Society for Industrial and Applied Mathematics (SIAM), 1997