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State of the Art

Over 30 formulæ in the literature, with various
empirical studies with slightly different results



State of the Art

ef
ef + nf + ep ef

ef + 2(nf + ep)

2ef
2ef + nf + ep

2ef
ef + nf + ep

ef
nf + ep

1

2
(

ef
ef + nf

+
ef

ef + ep
)

ef
ef + nf + ep + np

ef + np � nf � ep
ef + nf + ep + np

ef + np

ef + nf + ep + np

2(ef + np)

2(ef + np) + ep + nf

ef
ef + np + 2(ep + nf )

ef + np

nf + ep

ef
ef+nf

ep
ep+np

+ ef
ef+nf

Over 30 formulæ in the literature, with various
empirical studies with slightly different results



State of the Art

Optimality Proof (Naish et al. 2011)

Op1 =

(
�1 if nf > 0

np otherwise

Op2 = ef � ep
ep + np + 1



State of the Art

Optimality Proof (Naish et al. 2011)

But the proof is against a specific model
8 · Naish et al.

if (t1())

s1(); /* S1 */

else

s2(); /* S2 */

if (t2())

x = True; /* S3 */

else

x = t3(); /* S4 - BUG */

Fig. 1. Program segment If-Then-Else-2 (ITE2)

model the fact that ranking methods (and debugging in general) must cope with
“noise”. It may be that the execution of S1, for example, is strongly correlated
with failed test runs. This may be due to logical dependencies within the program
or the particular selection of test data. The “signal” we want to detect is associated
with t2() — the buggy statement is executed if and only if t2() returns False.
The signal is essentially attenuated by t3() — if t3() almost always returns True
there is little signal we can detect (and its more likely that the noise will be greater,
leading to S1 or S2 being ranked top).

Our intuition suggested that having noise and an attenuated signal were the two
most important features we needed in a model, and ITE2 is the simplest model
program we could think of that has these features. Despite its simplicity, this model
has been very useful in evaluating, understanding and improving the performance
of spectral diagnosis methods, as our later results show. There are many ways the
model could be extended, for example, by:

—having more bugs,

—having more sources of noise,

—simulating loops, so both branches of an if-then-else can be executed in a single
test, and

—having statements that are executed more or less often over typical sets of tests
(in ITE2 all statements are executed in half the tests, on average).

The way we evaluate performance of metrics (described in the next section) is
independent of the model. We have experimented with all these extensions and
report some general observations here.

5. PERFORMANCE EVALUATION USING MULTISETS OF EXECUTION PATHS

We use the term execution path to mean the set of statements executed for a
particular test, along with the result of the test. A single test case determines the
execution path (for deterministic programs at least). A set of test cases determines
a multiset of execution paths (two or more distinct test cases might result in the
same execution path), which determines the aij values for each statement and
the performance of a given metric for that set of tests cases. We abstract away
the details of test cases (and sidestep the issue of nondeterminism) and focus on
multisets of execution paths. A typical metric ranks the buggy statement highly
for some multisets of execution paths but not for others. Ideally we would like a
test set to give an even coverage of all execution paths but in reality test sets are

Journal of the ACM, Vol. V, No. N, June 2009.
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Human Competitiveness

How many of 9 Existing Techniques
can 30 GP runs match and/or outperform?
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< 5 5 6 7
8 9

✤ 6 runs outperform 8 existing 
techniques and match/outperform 
one of the state of the art with 
proof (Op1 and Op2).

✤ 16 runs outperform all 7 existing 
techniques without proof.

Four Unix tools with 92 faults: 20 random faults for training, 72 for evaluation.



Human Competitiveness

✤ Per-fault view shows that 
evolved techniques can 
outperform ones with 
optimality proofs.
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✤ Per-fault view shows that 
evolved techniques can 
outperform ones with 
optimality proofs.

●
●
●

●

●●

●

●

●●●●●●●●●

●

●
●

●

●

●

●

●

●●●●
●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●●●

●

●●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10
0

GP08

op
2

3

10

59

●
●
●

●

●●

●

●

●●●●●●●●●

●

●
●

●

●

●

●

●

●●●●
●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●●●

●

●●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10
0

GP08

op
2

3

10

59



Human Competitiveness

✤ Per-fault view shows that 
evolved techniques can 
outperform ones with 
optimality proofs.
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Future of Search-Based Software 
Engineering

From Solutions to
Generic Problems...

To Techniques and Strategies
for Your Problems.



The most effective way to do it, 
is to do it.

✤ GP provides a structured, 
automated way of doing 
iterative design.

✤ It can cope with a much diverse 
spectra and other meta-data.

✤ GP can evolve to suit your 
project.
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