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State of the Art

Over 30 formulee in the literature, with various
empirical studies with slightly different results
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State of the Art

S e i Optimality Proof (Naish et al. 2011)
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Optimality Proof (Naish et al. 2011)
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But the proof is against a specific model

if (£10)
s10); /* S1 */
else
s20); /* S2 */
if (£20)
x = True; /* S3 x/
else
x = t3(0); /* S4 - BUG */

... not to mention hard.



Human Competitiveness

How many of 9 Existing Techniques
can 30 GP runs match and/or outperform?

* 6 runs outperform 8 existing
techniques and match /outperform

one of the state of the art with
proof (Opl and Op2).

* 16 runs outperform all 7 existing
techniques without proof.

® <5 5 ® 6 @ 7

‘ 8 ‘ 9 Four Unix tools with 92 faults: 20 random faults for training, 72 for evaluation.
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The most effective way to do 1t,
1s to do 1t.

* GP provides a structured,
automated way of doing
iterative design.

* It can cope with a much diverse
spectra and other meta-data.

# GP can evolve to suit your
project.



The most effective way to do 1t,
1s to do 1t.

* GP provides a structured,
automated way of doing
iterative design.

!

* It can cope with a much diverse |FFEGG=E_—_
spectra and other meta-data.

# GP can evolve to suit your |
project.

Human



The most effective way to do 1t,
1s to do 1t.

* GP provides a structured,
automated way of doing

* It can cope with a much diverse
spectra and other meta-data.

Write Formula

iterative design. Tl ]
|

* GP can evolve to suit your |

roject.
2 Human GP



The most effective way to do 1t,
1s to do 1t.

* GP provides a structured, m
automated way of doing

* It can cope with a much diverse
spectra and other meta-data.

Write Formula

iterative design. Tl ]
|

* GP can evolve to suit your |

roject.
2 Human GP



The most effective way to do 1t,
1s to do 1t.

* GP provides a structured, m
automated way of doing
lterative d681gn' Think Hard Genetic Op.

* It can cope with a much diverse
spectra and other meta-data.

Write Formula

ny

* GP can evolve to suit your |

roject.
2 Human GP



The most effective way to do 1t,

1s to do 1t.

* GP provides a structured,
automated way of doing
iterative design.

* It can cope with a much diverse
spectra and other meta-data.

# GP can evolve to suit your
project.

Think Hard

Write Formula

Human

Dependency

Change Hist.

Genetic Op.

e

GP



The most effective way to do 1t,
1s to do 1t.

Dependency
Change Hist.
* GP provides a structured, m
automated way of doing
lterative d681gn' Think Hard Genetic Op.

* It can cope with a much diverse
spectra and other meta-data.

Write Formula
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Human Competitiveness

How many of 9 Existing Techniques
can 30 GP runs match and/or outperform?

* 6 runs outperform 8 existing
techniques and match/outperform
one of the state of the art with
proof (Op1 and Op2).

* 16 runs outperform all 7 existing
techniques without proof.

® <5 5 ® 6 @ 7

. 8 . 9 Four Unix tools with 92 faults: 20 random faults for training, 72 for evaluation.
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How many of 9 Existing Techniques
i can 30 GP runs match and/or outperform?
P
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* 6 runs outperform 8 existing
, techniques and match/outperform

Program Spectrum Risk Evaluation Formula one of the state of the art with
T l proof (Op1 and Op2).

* 16 runs outperform all 7 existing
techniques without proof.

® <5 5 @ 6 @7

Tests Rankin
g . 8 . 9 Four Unix tools with 92 faults: 20 random faults for training, 72 for evaluation.

The most effective way to do it,
1s to do 1t.

Dependency

Change Hist.

* GP provides a structured,
automated way of doing
iterative design.

Spectrum Spectrum

Think Hard Genetic Op.

* It can cope with a much diverse |G —_u-
spectra and other meta-data. ‘
* GP can evolve to suit your | | |

project.
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How many of 9 Existing Techniques
i can 30 GP runs match and/or outperform?
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* 6 runs outperform 8 existing
\ techniques and match/outperform

Program Spectrum Risk Evaluation Formula one of the state of the art with
T l proof (Op1 and Op2).

* 16 runs outperform all 7 existing
techniques without proof.

® <5 5 @ 6 @7

Tests Rankin
g . 8 . 9 Four Unix tools with 92 faults: 20 random faults for training, 72 for evaluation.

The most effective way to do it,
1s to do 1t.

Detailed Statistics & Spectra Data
Change Hist.

* GP provides a structured,
automated way of doing
iterative design.

Spectrum

Spectrum

http: / /www.cs.ucl.ac.uk /staff/s.yoo/

Think Hard

Genetic Op.

* It can cope with a much diverse |G —_u-
spectra and other meta-data.

* GP can evolve to suit your “

project.
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