
Automatic generation of software-based functional failing test
for speed debug and on-silicon timing verification

E. Sanchez *, G. Squillero *, A. Tonda §

* Politecnico di Torino, Torino, Italy — { ernesto.sanchez, giovanni.squillero }@polito.it

§ Institut des Systèmes Complexes, Paris, France — alberto.tonda@iscpif.fr

Abstract— The 40 years since the appearance of the Intel
4004 deeply changed how microprocessors are designed.
Today, essential steps in the validation process are
performed relying on physical dices, analyzing the actual
behavior under appropriate stimuli. This paper presents a
methodology that can be used to devise assembly
programs suitable for a range of on-silicon activities, like
speed debug, timing verification or speed binning. The
methodology is fully automatic. It exploits the feedback
from the microprocessor under examination and does not
rely on information about its microarchitecture, nor does
it require design-for-debug features. The experimental
evaluation performed on a Intel Pentium Core i7-950
demonstrates the feasibility of the approach.
Index Terms— Microprocessor, Speed debug, On-silicon
verification, Software-based functional failing test,
Evolutionary algorithm.

I. INTRODUCTION

Post-silicon validation is the tip of the iceberg of a growing
trend. Nowadays, significant steps in the validation of
microprocessors must be performed on silicon, i.e., running
experiments on physical devices after tape-out. The cost of
manufacturing prototypes is enormous, but often there are no
alternatives to meet the market demand.

For example, the typical design flow of a modern
microprocessor goes through several iterations of frequency
pushes prior to final volume production. The process is
sometimes referred to as speed stepping: a prototype is tested
at increasing clock frequencies until a misbehavior is
detected. The problem is then analyzed, and eventually traced
back to the design. As soon as a speed grade is reached with
good timing yield, the target is set for an even higher speed
grade [1].

The identification of paths that actually limit the
performance of a chip is called speed debug. It is of
paramount importance because such paths may be the
locations where design fixes should be applied, or they may
indicate holes in the design methodologies. Indeed, speed
debug, as well as other timing verification tasks, must be
performed on silicon. In nanometer processes it is not feasible
to consider simultaneously all factors that contribute to the
timing behavior during the pre-silicon analysis, and even the
analysis algorithms themselves are often approximated or
oversimplified [2] [3].

A failing test is a pattern of operations that uncovers an
incorrect behavior. The availability of failing tests is essential
for performing an effective speed debug. Unfortunately, the
development of failing tests can be very expensive and time
consuming. A software-based functional failing test is an
assembly-language program whose result is functionally
incorrect. That is, the misbehavior may be detected simply
checking the values in the registers at the end of the
execution. Differently from functional tests, as defined in [4],
a software-based functional failing test does not require an

expensive test tester to be applied, nor any design-for-debug
circuit features.

This paper proposes a methodology for the automatic
generation of software-based functional failing tests suitable
for speed debug, speed binning or other on-silicon activities.
The methodology exploits the functional results calculated by
running candidate tests to generate more and more efficient
tests. The proposed approach does not rely on the knowledge
of the microarchitecture of the device under test, nor on
presumptive information about its internal design.

A feasibility study of the methodology has been recently
presented in a poster at VLSI-SoC [5]. The study exploited
undervolting to simulate the instabilities caused by an
increase in operating frequency, and a simpler system to run
experiments. This paper describes the real system, tackling
directly the operating frequency. The results gathered on an
Intel Pentium Core i7-950 clearly demonstrate the feasibility
and effectiveness of the approach.

Section II outlines the proposed approach and section III
details how code is optimized. Section IV explains the
experimental evaluation. Section V concludes the paper.

II. PROPOSED METHODOLOGY

The proposed approach can be classified as feedback-based:
candidate failing tests are created without a rigid scheme, and
evaluated on the target microprocessor. The data gathered are
fed back to the generator and used to generate a new,
enhanced set of candidate tests. The process is then iterated
while improvements are achieved.

Two computers are used: the master computer runs the
optimizer and creates the candidate tests; the slave executes
them. The master also controls the operating frequency of the
slave (see Figure 1).

Figure 1: System architecture

A functional failing test for speed debug is an assembly-
language program that produces the correct result only while
the microprocessor operating frequency is below a certain
threshold. Let us denote this threshold as its functional
frequency threshold, because the incorrect behavior is
functionally observable.

Candidate test

master slave

Operating frequency

Results

optimization
evaluation

2011 12th International Workshop on Microprocessor Test and Verification

978-0-7695-4594-3/11 $26.00 © 2011 IEEE

DOI 10.1109/MTV.2011.19

51

Once the slave executes the program, the most relevant
feedback extracted is the functional frequency threshold of
the candidate test. That is, the frequency when the result
ceases to be correct.

The practical usefulness of a functional speed-path failing
test increases as its functional frequency threshold decreases:
a test that produces a failure at a relatively low frequency is
preferable to a test that fails only at very high frequencies.

Non-deterministic effects pose additional challenges:
design criticalities may appear only occasionally and possibly
only in a percentage of the manufactured chips. Thus, the test
is repeated several times on the slave, and the results sent
back to the master. The practical usefulness of a functional
speed-path failing test increases with its predictability: a test
failing half of the times is more useful than a test that
produces a single failure every thousand runs.

The last component of the feedback is the actual number
of incorrect behaviors.

III. FAILING TEST OPTIMIZER

The core of the optimizer inside the master is an evolutionary
algorithm, that is, a software that loosely mimics some
principles of the Neo-Darwinian paradigm, namely variation,
inheritance, and selection.

The toolkit exploited in this work is called μGP (also
known as MicroGP) [6], it is freely available under the GNU
Public License from Sourceforge1. Since it has already been
used in several works, its description is out of the scope of
this text. However, it could be useful to remind that μGP is an
evolutionary optimizer. Natural evolution is not a random
process. On the contrary, it is based on random variations, but
some are rejected while others preserved according to
objective evaluations. Only changes that are beneficial to the
individuals are likely to spread into subsequent generations.
Darwin called this principle “natural selection” [7]. When
natural selection causes variations to be accumulated in one
specific direction the result strikingly resembles an
optimization process, and μGP takes advantage of it. In
applications like the one presented here, it is able to optimize
solutions only requiring to assess the effect of random
changes, not the ability to design intelligent modifications.

 In μGP candidate test programs are encoded as directed
multigraphs. During the optimization process, a test program
undergoes several types of modifications that ape both sexual
and asexual reproduction. For example one or more
instructions can be added; one or more instructions may be
removed; the operands of certain instructions can be
modified. New programs may also be obtained by mating
existing ones, and the multigraph representation ensures that
the offspring is still a sensible program, resembling both
parents and, thus, inheriting potentially good characteristics
from both of them.

Modifications are completely random, with the only
judiciousness of being small changes more probable than
large ones. However, the evaluation of the candidate solutions
is objective, and, generation after generation, good
characteristics are preserved, while useless one are discarded.
As a result, candidate solutions are optimized “through the
accumulation of slight but useful variations”, in Darwin own
words. Indeed, the ability of similar tools to stress
microarchitectural features of a microprocessor was already
demonstrated in the past, tackling the post-silicon validation
of an Intel Pentium 4 [8].

���������	
���
�	������
�������

The efficacy of the evolutionary core depends on several
factors. The most important ones are: how candidate solutions
are evaluated; and what is encoded inside individuals.
Exploiting an evolutionary approach is per-se of little interest,
while tuning such elements can be the key factor for
effectively finding a solution.

A. Fitness Function

Evolutionary algorithm scholars call fitness the goodness of a
solution. Artificial evolution, as well as the natural one, is
based on the idea of differential survival. That is, different
individuals must have a different chance to survive. And, in
order to be distinguishable in the artificial environment, they
must have a different fitness.
As said before, the first and most important component of the
feedback is the functional frequency threshold. The second is
the number of failures detected over the R repetitions at the
functional frequency threshold. The last is the number of
incorrect results recorded during the running of the test.

Similarly to software-based self test [9], candidate test
programs include a mechanism for checking their correctness:
all the results of the calculations performed by the test
program are compacted in a single signature using a hash
function. Details about the hash itself will be discussed later.

The master computer first runs the test program and stores
the signature. Then it runs the program on the slave computer
at increasing operating frequencies, checking that the
signature is not modified. As soon as a difference is detected,
the functional frequency threshold is recorded. The whole
process is repeated R times to tackle variability.

Operatively, μGP creates assembly functions that are
assembled and linked with a manager module. These
functions contain a loop that executes L times a set of
instructions. The instructions themselves are devised by the
evolutionary core, while the framework is fixed. At the end of
the loop, before the next iteration, the values in the registers
are used to update the signature.

B. Internal Representation, Multithreading and Multicore

The internal representation is another key aspect. The
evolutionary algorithm must be given the opportunity to
generate useful solutions. Modern processors may implement
a multithreaded design; or they can exploit a multicore
architecture; or even both. A single individual is composed of
different independent functions.

Inside each thread, the assembly instructions made
available to μGP can be divided in three main classes: integer
instructions; legacy x87 instructions; single-
instruction/multiple-data (SIMD) instructions. Not
surprisingly, SIMD instructions are particularly critical during
speed stepping: the complex calculations involved by these
instructions cause data to go through several functional units,
and the resulting datapaths are prone to be source of
problems when the operating frequency is increased.

Cache memories must be taken into account as well, since
there may be a significant difference in performance and
power consumption between a L1 cache hit and a L1 cache
miss. μGP was given the possibility to generate cache hits and
cache misses through a set of variables carefully spaced in
memory.

It must be noted that the goal of adding such variables is
to let the evolutionary core control the cache activity, but no
suggestions are given on how to exploit them. μGP finds
autonomously which sequence of operations is more useful to
generate a failing test.

52

IV. EXPERIMENTAL EVALUATION

Devising a comparison for the proposed methodology is not
an easy task: there are no publicly-available test suites for
assessing results on functional failing-test generation, and
very few results have been disclosed in the scientific
literature. Neither is possible to compare against works in
delay testing for speed binning, such as [4], because no
structural information about the tested units is available to the
public.

However, a closely related problem is frequently faced by
the overclockers, a community of computer enthusiasts.
Overclockers enjoy themselves pushing the performance of
their microprocessors by increasing the operating frequency
far beyond the nominal specification [10]. For instance, an
Intel Celeron D 352 has been reported running with a clock
above 8.3 GHz2, more than twice the nominal 3.2 GHz.

After reaching such frequencies, overclockers need to
assess the stability of their systems. The whole community is
actively seeking stability tests able to quickly and reliably
discriminate a working system from one that have been
pushed too far. Such test suites are used to stress the systems
and highlight criticalities, thus they may be regarded as
generic functional fail tests not focused on a specific
microprocessor. They have been used as a baseline to
evaluate the performances of the proposed methodology.

While all the stability tests are quite different, a common
point is that modern ones do extensive SIMD calculation.
Another common point is their ability to increase the
temperature of the microprocessor. It is well known that high
temperature may cause both reversible and irreversible effects
on electronic devices. Heating may increase the skew of the
clock net and alter hold/setup constraints, causing design
criticalities to become manifest and the circuit to operate
incorrectly [11].

However, while such an effect is sensible when assessing
the stability of a system, it may not be desirable when the goal
is to find a failing test during speed stepping. The main reason
is that the failing test should be as repeatable as possible,
while increasing the temperature also increases non-
deterministic phenomena. Nevertheless, since no other
comparison is possible, the proposed approach was tested
against the state-of-the-art stress tests used by the
overclocking community.

A. Overclockers’ Stress Tests

Most of the information about stability stress tests is available
through forums and web sites on the internet, with few or
none official sources. However, there is quite a generalized
agreement in the overclockers community on these tools.

Prime95 is the name of an application written by George
Woltman and used by a project for finding Mersenne prime
numbers 3 . It makes extensive use of the Fast Fourier
Transform, or FFT, with a highly efficient implementation
that exploits SIMD instructions. Over the years, it has become
extremely popular among overclockers as a stability test. It
includes a “Torture Test” mode designed specifically to test
systems and highlight problems. In the overclocking
community, the rule of thumb is to run it for some tens of
hours.

��������������������������������������
�����
���������������	
��� �
�����
������ ����
�������� �
�������

��������������
��� ����������������� ����!�"�#$� ���� ���
�
�� !����� ������ �	�"��� �
� ��
%��
������������	�"���������&�$���$'()�������

LINPACK is a software library for performing numerical
linear algebra on digital computers. It was originally written
in Fortran in the 1970s and early 1980s. Newer
implementations of LINPACK exploit SIMD instructions and
are highly optimized. Significantly, Intel includes a
benchmark based on an optimized version of LINPACK in its
Math Kernel Library4. Different applications exploited such
benchmark to assess the stability. The most common are
LinX5, IntelBurnTest6, and OCCT7. The last one also includes
a proprietary stress test.

B. Target System

Experiments were run on an Intel Pentium Core i7-950 on an
ASUS motherboard Rampage III Extreme with the Intel
chipset X58. The system was equipped with 6 GiB RAM
memory DDR3 1600 MHz, and a Radeon HD 5870 graphic
card. The default clock ranges between 3.06GHz and
3.48GHz, thanks to the so-called Intel turbo boost technology
2.0 that automatically allows processor cores to run faster
than their base operating frequency.

TABLE I. μGP PARAMETERS

Parameter Meaning Value
μ Size of the population 30
� Size of the initial (random) population 100
� Operators applied in each generation 20
R Repetitions of each test to tackle variability 10
L Repetitions inside each test 5,000,000
C Variables to exploit cache hit/miss 16

The i7-950 is based on the Nehalem architecture, the
successor of the Core architecture. It supports the SSE 4.2
instructions, adding 7 new instructions to the SSE 4.1 set
available in the Core 2 series. It is a quad-core
microprocessor, able to run up to 8 threads with simultaneous
multithreading. Each core has two separate 32 KiB L1 caches
for data and instructions, both implementing an 8-way set
associative architecture. Each core has also an L2 cache of 1
MiB, 8-way set associative that is used for both data and
instructions. There is an additional 8 MiB L3 cache, 16-way
set associative that is shared by the 4 cores using a design
branded as Intel smart cache.

C. Experimental Results

The failing tests devised by the proposed approach for the
target microprocessor running at frequencies higher than the
nominal one were compared with the state-of-the-art stress
tools used by the overclocking community. Results obtained
with different V-cores are reported in Table II and Table III.
μGP required about 100 hours to generate each failing test.
Adopted parameters are shown in Table I. The first three (μ, �
and �) control the evolutionary engine and are de-facto
standard. R and L control the evaluation of candidate tests.
The last one (C) limits the possibility to create cache hit/miss.

Columns are labeled with the name of the program used to
test the system. The last column reports data of the test
generated by μGP. Rows indicate the CPU core voltage at
which the experiments were run. Cells shows the time
required for the given stress test to report a failure either in
seconds (“) or minutes (‘). To reduce overheating effects, all
tests were stopped after 10 minutes. The infinity sign “�”

&��������
��������������������*	
������*�!���
+�,��
�����#���
�����������������	�
���������!��
��	��
'������������	�������*����-������
.��������������"�
����������
����!�/����

53

means that no failure has been detected in the allowed time. It
must be noted that the μGP-designed test program does the
first check of the signature about 30 seconds after it starts. All
experiments have been repeated 10 times.

TABLE II. TIME REQUIRED TO DETECT AN INCORRECT BEHAVIOR
(V-CORE SET TO 1.24375 VOLT).

CPU Freq. [GHz] IBT LinX OCCT Prime95 μGP
3.827 2’ 3’ 5’ 30” 29”
3.803 10’ 4’ � 9’ 29”
3.783 � 5’ � � 29”
3.758 � 6’ � � 29”
3.737 � � � � 30”
3.721 � � � � 30”
3.691 � � � � 30”
3.666 � � � � 30”
3.645 � � � � 77”
3.622 � � � � �

Failing tests devised with the proposed methodology
clearly outperform all the other approaches, forcing the
processor to fail at frequencies which are significant lower
than all other. Remarkably, μGP was asked to find a very fast
failing test for a specific microprocessor, and therefore there
is no guarantee that the devised program would fail on a
different model. Moreover, the test was required to be very
short, to avoid heating effects. On the contrary, stress tests
intentionally exploit overheating and are designed to work
with different architectures.

TABLE III. TIME REQUIRED TO DETECT AN INCORRECT BEHAVIOR
(V-CORE SET TO 1.2500 VOLT)

CPU Freq. [GHz] IBT LinX OCCT Prime95 μGP
3.827 6’ 6’ 8’ 3’ 28”
3.803 � 6’ � � 28”
3.783 � � � � 29”
3.758 � � � � 29”
3.737 � � � � 29”
3.721 � � � � 30”
3.691 � � � � 30”
3.666 � � � � 30”
3.645 � � � � �
3.622 � � � � �

It must also be noted that the temperature of the
microprocessor during the experiments never exceeded 50°C,
while it was significantly higher while running LINPACK-
based stress tests, even with the liquid cooling.

Figure 2 shows the code generated for one thread of the
i7-950. The fragment is inserted in a fixed schema and
executed a given number of times. The values of all registers
is saved into an hash at the end of each loop. All the variables
labeled with v are likely to be cached on the same L1 line.
SIMD instructions have been clearly favored by the
optimization process, however, not knowing the underlying
microarchitecte, further examinations of the code is beyond
our possibilities.

D. Feedback from the overclockers community

The generated tests were made available to the overclockers
community as ultra-fast stability test 8 . The feedback is
summarized in Table IV. The column CPU shows the CPU
model used in the experiments. The two columns labeled with
Frequency report the nominal (N) frequency of the CPU and

0����������������������������
������1���	������#/2���	��������

,�������!��
������

the one actually used by the overclocker (A). The next
column shows the actual V-Core. The following columns
report the results of the various stability test: IBT, LinX,
OCCT and the one generated by μGP. All the programs were
considered stability tests, thus “FAIL” is a positive result,
meaning that the test was able to uncover the instability. On
the other hand, “PASS” means that the test was unable to
pinpoint any problem.

Some overclockers did not run comparison tests with IBT,
LinX or OCCT. Nevertheless, the fact that they try the μGP
one implies that they were considering their system fully
reliable.

TABLE IV. FEEDBACK FROM THE OVERCLOCKERS COMMUNITY

CPU
Frequency

V-Core IBT LinX OCCT μGP
N A

i7 860 2.80 4.25 1.4 - FAIL - PASS
i7 860 2.80 4.30 1.4 - FAIL - FAIL
i7 920 2.66 4.02 1.27 - PASS - FAIL
i7 920 2.67 2.65 1.27 - - - PASS
i7 920 2.67 3.20 1.0 PASS - - FAIL
i7 920 2.67 3.20 1.044 PASS - - PASS
i7 920 2.67 3.20 1.0312 FAIL - - FAIL
i7 920 2.67 3.20 1.0375 FAIL - - FAIL
i7 920 2.67 4.20 1.35 - - - PASS
i7 920 2.67 4.33 1.385 - PASS - FAIL
i7 920 2.67 4.40 1.45 - - - PASS
i7 930 2.80 3.80 1.2 - - - PASS
i7 950 3.06 4.03 1.31 PASS - - PASS
i7 950 3.06 4.03 1.28 FAIL - - FAIL
i7 950 3.06 4.03 1.328 PASS - PASS FAIL
i7 950 3.06 4.20 1.34 PASS PASS - FAIL
i7 950 3.06 4.20 1.31 PASS PASS - FAIL
i7 965 3.20 3.46 1.21 - - - PASS

Although not systematic, the feedback fully confirmed our

claims: results on i7-950 microprocessors show the
superiority of the μGP test. Similar results are achieved on all
i7-9xx units. Interestingly, the failing test is not effective on
the i7-860 family. Thus, it sounds plausible that the test
stresses specific microarchitectural features present in the
former families but not in the i7-8xx one.

V. CONCLUSIONS

The paper proposed an efficient post-silicon methodology for
devising software-based functional failing tests. Such failing
test may be exploited during speed debug or other on-silicon
activities, like timing verification.

Experimental results clearly demonstrate that tests are able
to highlight criticalities very specific of the target
microarchitecture. More interestingly, it is able to do it
without any information about the design. The methodology
was successfully tested on an Intel Pentium Core i7-950 and
could be very easily applied to different devices.

The proposed methodology could be easily exploited by
microprocessor manufacturers during timing verification,
speed debug or other post-silicon activities.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Maria Di Vincenzo, Gianluca
Fisanotti and Giuseppe Parlato for implementing the
approach, brilliantly solving several practical problems, and
running the experiments.

54

VII. REFERENCES�
[1] J. Zeng, R. Guo, W.-T. Cheng, M. Mateja, and J. Wang,

"Scan-based Speed-path Debug for a Microprocessor,"
IEEE Design and Test of Computers, Jun. 2011.

[2] K. Killpack, C. Kashyap, and E. Chiprout, "Silicon
Speedpath Measurement and Feedback into EDA flows,"
in 44th Design Automation Conference, 2007, pp. 390-
395.

[3] N. Callegari, L. .-C. Wang, and P. Bastani, "Speedpath
analysis based on hypothesis pruning and ranking," in
46th ACM/IEEE Design Automation Conference, 2009,
pp. 346-351.

[4] J. Zeng, et al., "On correlating structural tests with
functional tests for speed binning of high performance
design," in International Test Conference, 2004, pp. 31-
37.

[5] E. Sanchez, G. Squillero, and A. Tonda, "Post-Silicon
Failing-Test Generation through Evolutionary
Computation," in 19th IFIP/IEEE International
Conference on Very Large Scale Integration, Hong
Kong, 2011.

[6] E. Sanchez, M. Schillaci, and G. Squillero, Evolutionary
Optimization: The μGP Toolkit. Springer, 2010.

[7] C. Darwin, On the Origin of Species by Means of
Natural Selection, or the Preservation of Favoured
Races in the Struggle for Life. London: Murray, 1859.

[8] W. Lindsay, E. Sanchez, M. S. Reorda, and G. Squillero,
"Automatic test programs generation driven by internal
performance counters," in 5th International Workshop
on Microprocessor Test and Verification, 2004, pp. 8-13.

[9] L. Chen and S. Dey, "Software-based self-testing
methodology for processor cores," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, pp. 369-380, 2001.

[10] B. Colwell, "The Zen of overclocking," Computer, vol.
37, no. 3, pp. 9-12, 2004.

[11] A. Chakraborty, et al., "Dynamic Thermal Clock Skew
Compensation Using Tunable Delay Buffers," IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 16, no. 6, pp. 639-649, 2008.

rol ebx, 5
cmp v3, ebx
subpd xmm6, xmm7
mulpd xmm1, [edi+2*16]
or ebx, eax
shl eax, 4
cmp ebx, eax
test v9, ebx
cmp v7, ebx
mov ebx, eax
maxpd xmm3, [edi+3*16]
shl eax, 3
mov eax, v13
sar eax, 7
add ebx, v15
test eax, v16
mov v4, eax
sar eax, 3
pshufb xmm5, xmm2
xor eax, v6
rol ebx, 3
add eax, v16
andpd xmm7, xmm5
xor v13, eax
cmp ebx, v8
phaddd xmm1, xmm1
add ebx, v4
or ebx, v14
shl eax, 9
divpd xmm4, [edi+16]
sar ebx, 4
test eax, v15
mov ebx, v14
andnpd xmm6, xmm5
cmp eax, eax
mov ebx, ebx
shr ebx, 8
sal ebx, 4
rol eax, 4
andpd xmm5, xmm1
shl ebx, 9
and eax, v12
psignd xmm3, xmm7
add ebx, v16
pmulhrsw xmm2, xmm7
sar eax, 4
add v16, eax
sar ebx, 5
mov v11, eax
test v12, eax
sub eax, ebx
pshufb xmm4, [edi+5*16]
andnpd xmm2, xmm5
test v5, ebx
test v4, eax
phsubsw xmm1, [edi]
cmp eax, v11
divpd xmm1, [edi+3*16]
divpd xmm3, xmm4
shr ebx, 0
pshufb xmm3, [edi]
pshufb xmm6, xmm2
haddpd xmm2, xmm4
rol eax, 0

Figure 2: Fragment of generated code

55

