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ABSTRACT
The Gaussian Q-function is the integral of the tail of the
Gaussian distribution; as such, it is important across a vast
range of fields requiring stochastic analysis. No elementary
closed form is possible, so a number of approximations have
been proposed. We use a Genetic Programming (GP) sys-
tem, Tree Adjoining Grammar Guided GP (TAG3P) with
local search operators to evolve approximations of the Q-
function in the form given by Benitez [1]. We found more ac-
curate approximations than any previously published. This
confirms the practical importance of local search in TAG3P.

Categories and Subject Descriptors
I.2.8 [Problem Solving]: Control Method—Search, Heuris-
tics

Keywords
Q-function approximation, Genetic Programming, Tree Ad-
joining Grammar, Local Search

1. INTRODUCTION
We present Genetic Programming (GP) methods which

have led to what is, under important criteria, the best ap-
proximation to the Gaussian Q-function currently known. It
substantially improves in accuracy, over practically-relevant
ranges, on previous approximations . It possesses desirable
properties (notably, a form that is easy to integrate) that
previous-best approximations do not.
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GP [19, 13] is an evolutionary paradigm for automatically
finding problem solutions. Since its inception, GP has been
applied to a wide range of fields [19], and routinely exhibits
human-competitive performance [14]. Tree Adjoining Gram-
mar Guided GP (TAG3P) [6] uses tree adjoining grammars
to define a language bias controlling the evolved programs
(individuals). TAG3P has been demonstrated as a powerful
tool in finding models approximating a given data set, espe-
cially when it is used with some readily-defined local search
operators – (point) insertion and deletion [5, 7].

The Q-function is particularly important in the field of
communications, where Gaussian noise is assumed. It is
closely related to the cumulative density function (CDF)
of the Gaussian, in which form it appears in almost every
field where Gaussian distributions are used, from theoretical
physics to psychology. In many scenarios, the integral is also
required, because methods for computing expectations over
a Gaussian typically lead to such an integral.

The Q-function’s definition in the form of an improper in-
tegral makes it hard to conduct exact analyses for communi-
cation systems [2, 12]. Thus it would be highly desirable to
obtain a closed (analytical) form using elementary functions.
However no such solution is possible [20]. The only option
has been to approximate [12]1. A number of approximations
have been proposed by mathematicians (see section 2), but
the search continues.

In this paper, we discuss the use of TAG3P with local
search operators to discover new approximations. To the
best of our knowledge, this work (together with our previous
result [17], which it substantially improves) are the first at-
tempts to use GP to find approximations to the Q-function.
We compare it with human-derived approximations.

The remainder of the paper is organised as follows. In the
next section, we present the basics of Q-function approxim-
ation. In Section 3, we briefly describe tree adjoining gram-
mars, TAG3P, and the local search operators – insertion and
deletion. Section 4 explains our experimental settings. The
results are presented in section 5. Section 6 briefly describes
an application of our new Q-function approximation in wire-

1The Taylor expansion gives a closed, analytical approxim-
ation, but it converges too slowly.



less communications. The paper concludes with section 7 ,in
which we highlight some potential future extensions.

2. BACKGROUND
We define the Q-function approximation problem, and re-

view some well-known solutions designed by human experts.

2.1 Q-function Approximation
The Gaussian Q-function is important in performance anal-

ysis for communications [21]. It is closely related to the CDF
Φ of the Gaussian2, and in this form its importance stretches
across most applications of probability. It arises from the
common assumption that system noise is Gaussian. Since
we typically need to compute expectations of some prop-
erty over this distribution, we need to integrate over its tail.
In turn, that implies computing some form of the Gaussian
error function Q(x), which is defined as:

Q(x) =

∫ ∞

x

1√
2π

e−y2/2 dy (1)

As Simon and Alouini [22] explain, this form is not compu-
tationally useful. What we need for computational efficiency
is an approximation – ideally, in finite form (rather than a
series), and preferably similar in form to the Gaussian itself
(since there are known techniques for handling it).

2.2 Previous Solutions

Table 1: Historical Approximations

Name Equation Name Equation

PBCS 2 OPBCS 3
CDS 4 GKAL 5
EXP 6

A number of authors have looked for free-form approxi-
mations, with no constraints on the form. Borjesson and
Sundberg [2] derived a class PBCS of approximations to the
complementary error function (closely related to the Gaus-
sian Q-function). Rewriting in terms of Q, it has the form:

Q(x) ≈ e−
x2

2√
2π

√
1 + x2

(2)

Chan and Beaulieu [3], call this the PBCS approximation;
we follow their terminology. A similar form with optimised
parameters, also proposed in [2], is:

Q(x) ≈ 1

(1− a)x+ a
√
x2 + b

· e
− x2

2√
2π

(3)

with a = 0.339, b = 5.510 – optimised PBCS (OPBCS).
Chiani et al. proposed a simple approximation [4] that

works well for some problems, but large errors on small ar-
guments limit its applications:

2Q(x) = 1−Φ(x) = Φ(−x); but most Q-function work min-
imises the maximum absolute error, while Φ-minimisation
uses the mean relative error, due to different applications.

Q(x) ≈ 1

12
e−

x2

2 +
1

4
e−

2x2

3 (4)

which we denote as the CDS approximation in this paper.
The GKAL approximation of Karagiannidis and Lioumpas [12]

gives smaller approximation errors. It can be written as:

Q(x) ≈ (1− e
−Ax√

2 )e−
x2

2√
2πBx

(5)

with A = 1.98 and B =1.135.
Although these free-form solutions may be accurate, they

may not be so easy to apply practically: what is needed is
not Q itself, but a transformed form. More restricted ap-
proximations, even if less accurate, may be preferable. Ben-
itez and Casadevall [1] proposed the EXP approximation,

resembling the Gaussian, eP (x), with P (x) = ax2 + bx+ c:

Q(x) ≈ eax
2+bx+c (6)

Over the range x ⊂ [0, 8], they found optimum values for a, b
and c of -0.4698, -0.5026, and -0.8444. It is less accurate than
OPBCS, but its mathematical tractability makes it useful
nevertheless [1]. The relative absolute error (RAE) of these
functions is depicted in Figure 1 over the interval [0, 8].

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

x

A
bs

ol
ut

e 
R

el
at

iv
e 

E
rr

or

GKAL
PBCS
OPBCS
CDS
EXP

Figure 1: Relative Errors of Q-Function Approxi-
mations found by Human Experts

3. METHODS

3.1 Tree-Adjoining Grammars
Proposed by Joshi [10, 11] as tree rewrite systems, a tree-

adjoining grammar (TAG) is a quintuple (
∑

, N, I, A, S):
(i)

∑
is a finite set of terminal symbols.

(ii) N is a finite set of non-terminal symbols: N ∩∑
= ∅.

(iii) S is a distinguished non-terminal symbol: S ∈ N .
(iv) I (initial) is a finite set of finite labelled trees, known as
α-trees. The labels on interior nodes are non-terminals, but
on frontier nodes may be terminals. Non-terminal symbols
on the frontier of an α-tree are marked as ↓ (substitution).
(v) A (auxiliary) is a finite set of finite labelled trees, known



as β-trees. The labels on interior nodes are non-terminals,
but on frontier nodes may be terminals. One distinguished
non-terminal (the foot node) on the frontier is marked with
an asterisk, to denote that it is used for adjunction; all others
are marked with a ↓ (for substitution).
Adjunction builds a new (derived) tree τ ′ from an auxil-

iary tree β and another tree τ (initial, auxiliary or derived).
If τ has an interior node labelled A, and β is an A-type tree
(i.e. the label of its root node is A), the adjunction of β into
τ to produce τ ′ is as follows: Firstly, the sub-tree τ1 rooted
at A is temporarily disconnected from τ . Next, β is attached
to replace the sub-tree. Finally, τ1 is attached back to the
foot node of β. τ ′ is the final derived tree achieved from
this process. Substitution also builds a new (derived) tree
τ ′ from an auxiliary tree β and another tree τ ; but in this
case, the operation is conducted on a frontier node marked
with a non-terminal A. Again, β is assumed to be an A-type
tree. τ ′ is formed by replacing the frontier node with β.

TAGs form the representation in three extant GP systems,
TAG3P [5], DTAG3P [9] and TAGE [16].

3.2 Tree-Adjoining Grammar Guided Genetic
Programming - TAG3P

TAG3P, proposed in [6], uses TAGs to guide GP search [6,
5]. An individual is represented by a TAG derivation tree.
To evaluate fitness, the tree is decoded first into a deriva-
tion tree of the corresponding CFG, then the corresponding
expression tree; fitness is evaluated on the latter as in stan-
dard GP. Figure 2 depicts the form of a TAG3P individual
and its transcription to a CFG derivation tree.
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Figure 2: TAG3P Individual and its Transcription
to CFG Derivation Tree

3.3 Local Search Operators
Among these operators are two local search operators,

(point) insertion and deletion [5]. In insertion, a node is
randomly added to the TAG-derivation tree (TAG3P indi-
vidual) in an open adjoining address of a node (square node
in Figures 3 and 4), while in deletion, a random node is
deleted from the tree. Figures 3 and 4 show the effect of

insertion and deletion operators on a TAG3P individual.

Before insertion After insertion

Figure 3: TAG3P Insertion Operator

After DeletionBefore Deletion

Figure 4: TAG3P Deletion Operator

In [7], it was shown that insertion and deletion are lo-
cal operators (when neighbourhoods are defined by tree-edit
distance). Thus these operators can act in TAG3P either as
fine-grained mutation operators, or as local search operators
in a hybrid evolutionary/hill-climbing search. The results
of [8] strongly support the latter strategy. In this paper,
we compare basic TAG3P (subtree mutation and crossover
only) with a version (TAG3PL) augmented by hill-climbing
local search applying the insertion and deletion operators
with equal probability.

4. EXPERIMENTAL SETTINGS
Traditionally, for symbolic regression problems, the fit-

ness function is the sum of the absolute (or sometimes the
square) error. For Q-function approximation, the literature
uses relative absolute error (RAE) (e.g. [2, eq. 15]), and we
follow this practice. Formally, the fitness of an individual is:

RAE =
1

N

N∑
i=1

|fi − yi|
fi

(7)

where N is the number of data samples (fitness cases), fi is
the value of the Q-function, and yi is the function value of
the individual at the ith point in the sample set. In this pa-
per, the sample (data) set consists of 400 equidistant points
over the interval [0,8], together with their function values
computed with Equation 1. The limited sampling interval
reflects the Q-function’s exponential convergence to 0 for
x > 8: the region beyond attracts much less interest [21].



Figure 5: TAG for Q-function Approximation

Table 2: TAG3P/TAG3PL Parameter Settings

Parameter Value

Generations 100
Population size 3000 (TAG3P)

100 (TAG3PL)
Selection Tournament
Tournament size 9
Crossover probability 0.9
Local search operator Randomly selected Insertion

or Deletion Operator
Local search steps 30 (TAG3PL)

0 (TAG3P)
Local search strategy Hill-Climbing
Raw fitness Relative absolute error

over all fitness cases
Termination Max generations exceeded
Trials per treatment 50 independent runs

Other factors that affect the performance of GP/TAG3P
are the set of non-terminals and terminals. These sets gen-
erally depend on the problem. In this paper,we focus on ap-
proximations of the Q-function of the form eP (x), as in [1].
Thus the non-terminal and terminal sets are respectively: +,
-, * and x, ERC, π,13. Here, ERC is an ephemeral random
constant that takes a value from the interval (0,1). The
TAG for this problem is depicted in Figure 5.4 To com-
pare TAG3P and TAG3PL, we ran the two settings with
the same number of fitness evaluations. Other settings were
determined by preliminary experiments, see Table 2.

5. RESULTS AND DISCUSSION
To determine potentially good solutions for the Q-function

approximation problem, at the end of each run, we recorded
the best-of-run individual if it had an acceptable RAE value
relative to the human designed approximations. Table 3
shows the RAEs for the previous approximations (section 2),
on our training data.
Based on this, we recorded two classes of solutions: those

3Since we assume here that the form of the target function
is eP (x), the evolved part is P (x)
4TL in the Figure stands for a lexicon that can be substi-
tuted with x, ERC, π or 1.

Table 3: Previous Results

Name RAE Name RAE

PBCS 0.0346417 OPBCS 0.0017471
CDS 0.2437469 GKAL 0.0614184
EXP 0.0348177

having an RAE ≤ 10−2 (better than any human approxim-
ation except for OPBCS) and those having an RAE ≤ 10−3

(better than the best human approximation).
For TAG3P, out of 50 runs we have only one solution

satisfying the first performance criterion, and none satisfy-
ing the second. That is, TAG3P is barely able to achieve
human-comparable performance. In comparison, TAG3PL
found 30 solutions satisfying the first criterion (i.e. human-
comparable performance), and four satisfying the second
(i.e. better-than-human performance). We attribute this to
the ability of TAG3PL to fine-tune GP structure and param-
eters. Of these solutions, the best has an RAE of 0.0006189
(substantially better than OBPCS). It has the form

Best Exp Form = eax
6+bx5+cx4+dx3+ex2+fx+g (8)

using the parameter values shown in table 4.

Table 4: Coefficients for Equation 8

Coeff. Value Coeff. Value

a 0.0000018643 b -0.000109
c 0.002238 d -0.023735
e -0.344644 f -0.774128
g -0.698740

Following [3], we evaluate this approximation by plotting
its relative error. For the sake of comparison, the relative
error of the best approximation produced by human experts
in the literature, OPBCS, and the approximation of similar
form, EXP, are also plotted in Figure 6.

It can be seen from this figure that the accuracy of the ap-
proximation found by TAG3PL is competitive with OPBCS
in terms of error in the interval (0,1.5). For x > 1.5 it is
uniformly better than OPBCS. This is important because,
from the time of its introduction in 1979, no better approx-
imation has been found by human experts. But where this
new approximation wins hands down is in tractability. De-
spite its worse accuracy, the EXP approximation [1] has been
heavily used because of its tractability. The new form is as
tractable as the EXP approximation, but at least as accurate
as OPBCS – and in most ranges of interest, more accurate.
Compared to EXP, it is – very substantially – more accurate
almost everywhere. Thus TAG3PL has been effective in de-
riving highly accurate, and closed form, approximations of
the Q-function. In this, it has substantially improved on the
previous best, human-derived, approximations.

6. APPLICATION IN COMMUNICATIONS
In this section, we test our new approximation to the Q-

function in evaluating the symbol detection performance of
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Figure 6: Relative Errors of the Approximations
found by TAG3PL, EXP, and OPBCS

a wireless communications receiver. From digital communi-
cations theory it is known that the symbol error probability
for many popular modulation techniques can be expressed in
terms of Q(

√
γ), where γ is the signal-to-noise ratio (SNR)

per symbol at the receiver [22, Chapter 8]. In order to test
the accuracy of our Q-function approximation, we have se-
lected the case of differential quadrature phase-shift keying
(DQPSK) [22, Chapter 4] whose error probability has the
expression [22, Eqn. (8.38), p. 203]:

Pe(γ) = 4Q(
√
γ)− 8Q2(

√
γ) + 8Q3(

√
γ)− 4Q4(

√
γ) (9)

Note that, compared to other digital modulation techniques,
DQPSK has a complicated Pe expression in the Q-function.
Nevertheless, our approximation can yield accurate Pe re-
sults, as shown next.
Fig. 7 shows the DQPSK symbol error probability vs. SNR

(in decibels) computed with (9) by employing integration
(which yields the true Pe) as well as by employing the best
previously-available approximation (OPBCS) and our new
TAG-based approximation. Note that only Pe values be-
tween 10−1 and 10−6 are practically relevant. This figure
suggests that both approximations yield Pe near the true
one. Next, we look more closely at approximation accuracy.
Fig. 8 shows the relative error in Pe approximation. Note

that our new approximation is much more accurate than
the OPBCS variant over the relevant SNR range. Other
results (not shown here due to space limitations) obtained
for other digital modulation techniques have yielded similar
results. Thus, we conclude that our new approximation can
help evaluate Pe much more accurately than other available
approximations. Furthermore, the exponential form of our
approximation helps to straightforwardly evaluate the Pe

expressions of most digital modulation techniques.

7. CONCLUSION
The primary objective of this work was to improve on the

solutions of a practically-important problem (Q-function ap-
proximation), which has current applications in analysis and
optimisation of communications systems, and in a number
of other fields. We have shown that a GP system (TAG3P)
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could discover new approximations that are better, in terms
both of accuracy and of analytical tractability, than the best
found by human experts. The best closed form approxim-
ation obtained by TAG3P is not only more accurate than
the best human-derived approximation, but also easier to
use in computing expectations and other computations im-
portant in practical applications. The results also confirmed
the value of local search operators in TAG3P.
In future, we are planning to extend the work in this pa-

per in a number of ways. Firstly, we hope to find more
accurate approximations by giving TAG3PL more compu-
tational time. Second, we will investigate the use of bloat
control methods such as Tarpeian Bloat Control [18, 15], to
test whether TAG3PL can find simpler solutions of similar
quality. Finally, we plan to apply these approximations in
communications analysis, to build more accurate simulations
of specific systems.
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