
Real-Time Pedestrian Tracking with Bacterial Foraging Optimization

Hoang Thanh Nguyen and Bir Bhanu
University of California, Riverside

Riverside, CA 92521 USA
nthoang@cs.ucr.edu, bhanu@cris.ucr.edu

Abstract

In this paper, we present swarm intelligence algorithms
for pedestrian tracking. In particular, we present a modi-
fied Bacterial Foraging Optimization (BFO) algorithm and
show that it outperforms PSO in a number of important met-
rics for pedestrian tracking. In our experiments, we show
that BFO’s search strategy is inherently more efficient than
PSO under a range of variables with regard to the num-
ber of fitness evaluations which need to be performed when
tracking. We also compare the proposed BFO approach
with other commonly-used trackers and present experimen-
tal results on the CAVIAR dataset as well as on the difficult
PETS2010 S2.L3 crowd video.

1. Introduction
Human tracking systems generally consist of three main

components: 1) detection, 2) tracking, 3) track association,
and analysis or the fusion of multiple trackers. Since much
of the computational effort is spent on tracking, improving
the speed and effectiveness of the tracking component can
greatly benefit many surveillance and security applications.
A number of challenges make pedestrian tracking difficult:
1) Change in appearance: The visual appearance of pedes-
trians may change gradually or suddenly between frames,
e.g., a person may turn (changing his/her silhouette) or
move away/closer from the camera.
2) Non-uniform lighting and shadows: Light may not be
uniform across a scene, may change across frames, and
pedestrians will generally cast shadows. Non-uniform light-
ing results in the changed appearance of the same pedestrian
depending on the time and location in the scene. Further,
shadows complicate a pedestrian’s appearance by altering
color and size information which may not carry over into
other environments (e.g., walking from a outdoor hall with
concrete floors to a room with red carpet).
3) Uncalibrated cameras: Uncalibrated cameras provide
no definite ground plane or distance information for a track-
ing algorithm to utilize; regardless of whether the cameras

are fixed or non-static, e.g., movable pan/tilt/zoom (PTZ)
cameras. Manually calibrating cameras is a labor-intensive
task which is not always easy or feasible. Since additional
calibration data can only help a tracking algorithm (e.g., by
providing depth data or constraints which can be taken into
account into a tracker’s fitness function), we focus on track-
ing in the more common uncalibrated camera environment.

This paper focuses on the object tracking component of
a human tracking system which must handle the bulk of the
above challenges.

2. Related Work and Contributions
The most successful approaches for pedestrian tracking

usually focus around Particle Filters [4, 8], Mean Shift [1],
or detection-based tracking. An alternative approach con-
siders a family of biologically-inspired evolutionary com-
putational algorithms known as swarm intelligence, a subset
of kernel-based approaches. In this category, the most pop-
ular approach is Particle Swarm Optimization (PSO) [15].
These trackers are often used to generate short-term “track-
lets” which are then used in methods such as Data Associ-
ation Tracking (DAT) to produce long-term inter or intra-
camera tracks.

2.1. Contributions

In this paper, we make the following contributions:

1. We adapt the Bacterial Foraging Optimization algo-
rithm for real-time tracking with changes which im-
prove its speed and accuracy. We refer to the modified
algorithm as m-BFO.

2. We provide system-level performance measurements
of both tracking accuracy and computational efficiency
of swarm intelligence algorithms PSO [9] and BFO
[11] as well as on commonly-used CamShift and parti-
cle filter trackers on the difficult CAVIAR dataset and
the PETS2010 S2.L3 crowd scene. Note that of the
numerous approaches to pedestrian tracking, particle
filter is the most commonly used low-level tracker in

1

(a) (b) (c)
Figure 1. How pedestrians appear to a tracker. (a) Detected pedes-
trians, (b) fitness space for the pedestrian using color similarity in
the YUV YIQ color space (brighter = higher fitness), (c) fitness
space after applying the foreground mask to the input image to
reduce background noise.

practice. From the results of [16], however, it has
been shown that the evolutionary computation algo-
rithm Particle Swarm Optimization (PSO) is an im-
proved and specific variation of particle filter which
outperforms the traditional particle filter implementa-
tion. We show that tracking with m-BFO is better than
PSO. Therefore, we claim that the proposed m-BFO is
better than the particle filter.

3. Technical Approach
The tracking system works as follows. Background sub-

traction is first performed on input frames. Detected blobs
from the subtraction are processed with a pedestrian head-
and-shoulders detector, e.g., [10, 14]. The ROI is then ex-
tended to encompass the whole body and an appearance
signature is created on this initialized silhouette. A fitness
function which measures the similarity between two signa-
tures is then be used by the tracker.

3.1. Pedestrian Detection

In order to create an online tracking system, initializa-
tion of target locations must be completely automated. The
modified Gaussian mixture model (GMM) background sub-
tractor proposed in [17] is used to dynamically learn the
background as the input frames are received (with the addi-
tional benefit of removing shadows). We remove shadows
in order to not confuse the the appearance signature.

In order to automate pedestrian initialization, a Viola-
Jones detector [3] trained to detect heads and shoulders and
the ROIs of positive detections are extended downward to
encompass an estimate of the entire body:

heightbody = heighthead shoulders ×R

where R is a fixed ratio that is dependent on the detector
used (R = 3.1 in this paper).

3.2. Tracking Using Swarm Intelligence

Swarm intelligence is a family of evolutionary stochastic
optimization algorithms modeled after biological systems.
A swarm consists of a number of particles which indepen-
dently follow a strategy which allows the swarm to accom-
plish the common goal of finding an area of optimal fitness.

3.2.1 Bacterial Foraging Optimization

Bacterial Foraging Optimization (BFO) [11] is a stochastic
evolutionary swarm intelligence search algorithm designed
to model the movement and feeding behavior of E. coli bac-
teria. A swarm consists of a number of particles or “agents”
which move or “swim” and “tumble” through an environ-
ment searching for concentrations of food (or regions of
high fitness from a feature space point of view). Given
an image, a swarm of agents is first randomly initialized
on the image. The algorithm consists of R “reproduction”
loops which execute a number of C “chemotaxis” or move-
ment loops. In each chemotaxis loop, all agents “tumble”
(choose a random direction) and are allowed to “swim” (or
sample) up to S times in steps of size Step in a gradient
hill-climbing manner. At the end of each reproduction step,
the bottom T agents with the worst fitness scores die off and
an equal number of agents are born at the locations of the T
best agents. In this manner, resources are quickly allocated
to regions of higher fitness. The agents finally undergo a
dispersal step which randomly relocates agents with prob-
ability P . This step helps to simulate a changing environ-
ment such that the swarm does not fully converge and cease
to track in succeeding frames. Figure 2 shows the behavior
of a BFO swarm in a fitness space.

BFO has never been used previously for pedestrian track-
ing, yet possesses traits which make it suitable to the prob-
lem. The near-uniform coverage of the search space is
useful for overcoming occlusion (whereas many other ap-
proaches lose track once they converge). In addition, the
fast propagation of agents to regions of high fitness reduces
overhead of having the agents gradually making their way
toward global-best fitness regions. This paper utilizes BFO
with the following modifications:
Early Termination allows the algorithm to terminate early
if positions of adequate fitness are discovered early on.
Lookahead allows the algorithm to accept or reject fitness
samples during gradient hill climbing to improve local op-
timality.
Elitism allows the search agents of highest fitness to stop
searching after each round and to select the final location
based on a consensus of these agents as opposed to a single
highest-fitness sample.

Algorithm 1 summarizes the full procedure.

(a) (b) (c) (d)
Figure 2. Behavior of a single Bacterial Foraging Optimization swarm searching for a pedestrian. (a) Random initialization, (b) gradient-
hill climbing in random directions, (c) death/rebirth of agents with poor fitness to location of agents with best fitness, (d) target location
based on consensus of the best agents.

Figure 3. Sample frames of the S2.L3 crowd scene from the PETS2010 dataset [5] (768 × 576 pixels, 240 frames, and 470 pedestrian
ROIs). The objective is the track the two pedestrians labeled A and B as they join in walking with a large incoming crowd.

3.2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [9] is the most
commonly-used swarm intelligence approach for tracking
and is modeled after the social behavior of schools of fish
and flocks of birds. PSO’s standard search strategy moves
particles according to a linear combination of their current
speed and direction, the vector to the position of their local
best fitness, and the vector to the position of the swarm’s
best fitness (see Algorithm 2).

3.2.3 Fitness function

The fitness or objective function used by the two optimiza-
tion algorithms is computed as follows. For each pedestrian,
a color histogram is extracted for all pixels in the YUV YIQ
color space using N = 32 bins for each of the Y, I, and Q
components and normalized to the sum of pixels in the sil-
houette. YIQ was selected after testing the discrimination
power of various colorspaces on the VIPeR dataset [7]. The
similarity between two histograms H0 and H1 is computed
as the histogram intersection:

intersect(H0,H1) =
N∑
i

min(Hi
0,H

i
1)

Figure 1 shows exhaustively-generated fitness spaces for
sample pedestrians by computing the fitness at every pixel
against an initialized signature.

CAVIAR Video # Objs # ROIs # Frames
OneStopMoveEnter1cor 20 13,691 1,590
ShopAssistant2cor 20 11,942 3,700
ThreePastShop1cor 20 9,642 1,650
TwoEnterShop3cor 20 6,856 1,149
WalkByShop1cor 20 11,348 2,360

Table 1. Statistics for the five most crowded corridor videos of the
CAVIAR dataset.

In order to address tracking of similarly-dressed pedes-
trians, an additional trajectory smoothness component [13]
is useful to give preference to areas of fitness which more
closely resemble the current trajectory. Trajectory smooth-
ness at a point can be defined by both smoothness in veloc-
ity and smoothness in direction:

Vt = Pt+1 − Pt

smoothness = Wd ×
Vt−1 · Vt

|Vt−1||Vt|
+Wv ×

2
√
|VT−1||Vt|

|Vt−1|+ |Vt|

where Vt is the vector between the previous point and a pro-
posed point and Wd,Wv are weights which sum to 1.0 and
control emphasis on either direction or velocity. The final
fitness function is:

fitness = Ws × smoothness+ (1−Ws)similarity

where Ws controls the influence of smoothness.

Algorithm 1 Modified BFO (m-BFO) algorithm
1: I ← image to search
2: Target← hist and prev. location of object to search
3: R← number of reproduction steps
4: C ← number of chemotaxis steps per reproduction
5: S ← max number of swims per chemotaxis step
6: Step← swim step size in pixels
7: T ← number of agents to relocate per reproduction
8: P ← probability a non-immune agent gets relocated
9: Thresh← min fitness to trigger early termination

10:
11: procedure BACTERIALFORAGING
12: if I is first frame of target then ◃ Init first frame
13: Initialize agent locations on I
14: end if ◃ Early termination?
15: if fitness(Targetloc, I, Targethist ≥ Thresh

then
16: return Targetloc
17: end if
18: for R reproduction steps do ◃ Begin search
19: for C chemotaxis steps do
20: for all agents A do
21: d← random direction
22: for up to S swims do
23: l← new location Step px from A
24: toward direction d
25: f ← fitness(l, I, Targethist)
26: ◃ Lookahead
27: if f > Acurrent fitness then
28: Acurrent fitness ← f
29: Acurrent location ← l
30: else
31: Break
32: end if
33: end for
34: end for
35: end for
36: for all top T agents A with best fitness do
37: Aimmunity ← true ◃ Elitism
38: end for ◃ Death/rebirth
39: Move the T agents with worst fitness to
40: locations of the T agents with best fitness
41: end for

◃ Elimination/dispersal
42: for all agents A where Aimmunity ̸= true do
43: Relocate A to random position with
44: probability P
45: end for

◃ Return updated location
46: Targetloc ← best location based on all agents A
47: where Aimmunity = true
48: return Targetloc
49: end procedure

Algorithm 2 Particle Swarm Optimization (PSO) algorithm
1: Image← image to search
2: Target ← hist and prev. location of object to search

for
3: P ← number of agents
4: I ← number of iterations
5: Wa ← weight of momentum
6: Wb ← weight of particle best location
7: Wc ← weight of global best location
8:
9: procedure PARTICLESWARM

10: if Image is first frame of target then
11: Randomly initialize P swarm particles
12: Globalfitness ← 0
13: end if
14: for I iterations do
15: for all particles P do
16: fit← fitness(P, Image, Targethist)
17: if fit > LocalbestP,fitness then
18: LocalbestP,fitness ← fit
19: LocalbestP,location ← Plocation

20: end if
21: if fit > Globalfitness then
22: Globalfitness ← fit
23: Globallocation ← Plocation

24: end if
25: r0 ← rand(0, 1)
26: r1 ← 1− r0
27: Vt+1 = WaVt +Wbr0LocalbestP,location

28: + Wcr1Globallocation
29: Plocation = Plocation + Vt+1

30: end for
31: end for
32: return Globallocation
33: end procedure

4. Experimental Results
All trackers are implemented in C++ and experiments

are performed using a single Intel Xeon E5345 2.33GHz
quad-core CPU.

4.1. Datasets

Experiments are performed on the five most crowed cor-
ridor videos of the CAVIAR dataset [6] (see Table 1) as
well as the difficult S2.L3 crowd scenario of the PETS2010
dataset [5].

4.2. Parameter Selection

Parameters are manually optimized for each individual
tracking algorithm and then fixed for all experiments. To
optimize the parameters of the PSO tracker, for instance, the

Figure 4. Tracking accuracy comparison of CamShift, particle fil-
ter, PSO, and m-BFO on the five CAVIAR videos, averaged over
30 runs for each video.

Figure 5. The entire system can be run in real-time on modest hard-
ware (Intel Xeon E5345 2.33GHz). Run times are averaged over
the over 30 runs per video.

tracker was run on a random subset of the CAVIAR videos
using various parameter configurations. The parameters
with the best average performance were then selected for
the full tests. This was done individually for each tracker.

For PSO, P = 30, I = 10, Wa = 1.0, Wb = 0.04, and
Wc = 0.04. For BFO, P = 10, E = 1, R = 10, C = 1,
and S = 5. We use the CamShift available in OpenCV and
the particle filter from OpenCVX [12] using 30 particles.
Weights for smoothness are Wd = 0.5, Wv = 0.5, and
Ws = 0.01.

4.3. Performance Metrics

Tracking accuracy is defined as the percentage of
groundtruth ROIs covered by the tracker initialized on that
pedestrian. A query ROI Query is considered to be track-
ing a target if its intersection with the groundtruth ROI GT

Figure 6. The swarm intelligence approaches perform on par with
the particle filter. Results are averaged over 30 runs on the video
in Figure 3.

Figure 7. Even with multi-threaded tracking of each pedestrian, the
number of pedestrians in the scene (over 40) saturates all available
CPU resources (numbers are averaged over 30 runs on an Intel
Xeon E5345 2.33GHz quad-core CPU).

exceeds at least 50% of their union:

is tracked(Query,GT) =
Query ∩GT

Query ∪GT
> 0.50

An accuracy of “40%” on CAVIAR means that on average
21,000 of the 53,479 groundtruth ROIs are tracked.
Processing speed is evaluated in time spent per frame (in
milliseconds).

4.4. Tracking Results

Figure 4 shows that the swarm intelligence approaches
perform on par with particle filter and m-BFO even achieves
this performance using fewer resources (Figure 5).

The PETS2010 S2.L3 video shows that the number of
pedestrians (over 40) significantly impacts the speed of the

system, bring the same BFO tracker down to 2.85 FPS (Fig-
ure 7). However, the swarm intelligence approaches con-
tinue to perform on par with PF accuracy-wise (Figure 6).

4.5. Effect of Parameters

Bacterial Foraging Optimization. The number of agents
A, reproduction steps R, chemotaxis steps C, and swims S
control the runtime of the BFO algorithm: O(A∗R∗C ∗S).
The step size Step controls how fast agents swim (higher
for bigger steps, lower for finer local search). The number
of agents T to relocate controls how much the algorithm
balances its search; higher values increase exploitation of
areas of higher fitness while lower values increase explo-
ration of the entire search space.
Particle Swarm Optimization. The number of particles P
and number of iterations I are the two primary parameters
which control the runtime of the PSO algorithm: O(P ∗ I).
Setting Wa < 1.0 makes particles tend to slow down, > 1.0
makes particles tend to speed up, and = 1.0 preserves the
current momentum of a particle. The balance of Wb and Wc

affect the influence of a particle’s local best location vs. the
swarm’s global best location so far; setting Wb > Wc leads
to higher results and increased local search while setting
Wb < Wc makes the swarm collapse sooner on a location
(though at the risk of converging on a local minima).

4.6. Discussion of Results

Figure 4 shows that the BFO and PSO swarm intelli-
gence approaches achieve comparable results to the more-
often used particle filter [8] while Figures 5 and 7 show that
such performance is achievable at faster speeds than with
particle filter.

5. Conclusions
We provided in-depth results of the tracking performance

of PSO and BFO and several other commonly-used track-
ers on the CAVIAR dataset and the S2.L3 scenario of the
PETS2010 dataset. Since most previous work relies on
blob-based similarity, this work can easily be integrated to
improve tracking performance of both low-level and higher-
level Data Association Trackers (DATs) [2].

Acknowledgements
This work was supported in part by NSF grants 0727129

and 0905671 and ONR grant N00014-09-C-0388.

References
[1] G. R. Bradski. Computer vision face tracking for use in a

perceptual user interface. Intel Technology Journal, 1998.
[2] M. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and

L. Van Gool. Online multiperson tracking-by-detection from

a single, uncalibrated camera. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 33(9):1820 –
1833, September 2011.

[3] M. Castrillón, O. Déniz, M. Hernández, and C. Guerra. EN-
CARA2: Real-time detection of multiple faces at different
resolutions in video streams. Journal of Visual Communi-
cation and Image Representation (JVCIR), pages 130–140,
2007.

[4] X. Fen and G. Ming. Pedestrian tracking using particle filter
algorithm. In IEEE International Conference on Electrical
and Control Engineering (ICECE), pages 1478 –1481, 2010.

[5] J. Ferryman and A. Ellis. PETS2010: Dataset and chal-
lenge. Seventh IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS), pages 143–
150, 2010. http://pets2010.net/.

[6] R. B. Fisher. The PETS04 surveillance ground-truth data
sets. In IEEE International Workshop on Performance Eval-
uation of Tracking and Surveillance (PETS), 2004. http:
//homepages.inf.ed.ac.uk/rbf/CAVIAR.

[7] D. Gray, S. Brennan, and H. Tao. Evaluating appear-
ance models for recognition, reacquisition, and tracking. In
IEEE International Workshop on Performance Evaluation of
Tracking and Surveillance (PETS), 2007.

[8] M. Isard and A. Blake. CONDENSATION: Conditional den-
sity propagation for visual tracking. International Journal of
Computer Vision (IJCV), 29:5–28, 1998.

[9] J. Kennedy and R. Eberhart. Particle swarm optimiza-
tion. International Conference on Neural Networks (ICNN),
4:1942–1948 vol.4, 1995.

[10] M. Li, Z. Zhang, K. Huang, and T. Tan. Rapid and robust hu-
man detection and tracking based on omega-shape features.
In Sixteenth IEEE International Conference on Image Pro-
cessing (ICIP), pages 2545 –2548, November 2009.

[11] K. M. Passino. Biomimicry of bacterial foraging for dis-
tributed optimization and control. IEEE Control Systems
Magazine (CSM), Vol. 22, No. 3:52–67, 2002.

[12] N. Seo. OpenCVX: Yet another OpenCV eXtension. http:
//code.google.com/p/opencvx/.

[13] I. K. Sethi and R. Jain. Finding trajectories of feature points
in a monocular image sequence. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (TPAMI), 9(1):56 –
73, January 1987.

[14] P. Viola and M. Jones. Robust real-time object detection.
Second International Workshop on Statistical and Computa-
tional Theories of Vision (SCTV), 2001.

[15] X. Zhang, W. Hu, W. Li, W. Qu, and S. Maybank. Multi-
object tracking via species based particle swarm optimiza-
tion. In 12th IEEE International Conference on Computer
Vision Workshops (ICCV Workshops), pages 1105 –1112,
October 2009.

[16] X. Zhang, W. Hu, S. Maybank, X. Li, and M. Zhu. Se-
quential particle swarm optimization for visual tracking. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1 –8, June 2008.

[17] Z. Zivkovic and F. van der Heijden. Efficient adaptive den-
sity estimation per image pixel for the task of background
subtraction. Pattern Recognition Letters (PRL), 27:773–780,
2006.

