
D
R

A
FT

Memetic Computing manuscript No.
(will be inserted by the editor)

GP-RARS:
Evolving Controllers for the Robot Auto Racing Simulator

Yehonatan Shichel · Moshe Sipper

Received: June 6, 2011/ Accepted: date

Abstract We use evolutionary computation techniques
to create real-time reactive controllers for a race-car

simulation game: RARS (Robot Auto Racing Simula-
tor). Using genetic programming to evolve driver con-
trollers, we create highly generalized game-playing agents,

able to outperform most human-crafted controllers and
all machine-designed ones on a variety of game tracks.

1 Introduction

The domain of games is a computational field wherein

Artificial Intelligence (AI) plays an important role. From
chess to checkers, Pac-Man to poker, games have always
been an AI “playground”. Since games are a celebration

of human intelligence, cognition, and spirit, they have
attracted many AI enthusiasts, aiming to compete with
and even beat human players at their own game.

Programming Games are a subset of this domain,
in which the games are played by computer programs

rather than human players. This class of games intro-
duces an interesting challenge: instead of being the op-
timal player, the goal is to write the optimal playing

program. Usually, these programs are hand-coded by
human programmers; however, in some cases, machine-
learning techniques are utilized for the creation or op-

timization of the controllers.

Y. Shichel · M. Sipper

Department of Computer Science,
Ben-Gurion University, Beer-Sheva, Israel

Y. Shichel
E-mail: shichel@gmail.com

M. Sipper
E-mail: sipper@cs.bgu.ac.il

In this paper we use Genetic Programming (GP) to
create a game controller program by means of evolu-

tion. As our benchmark we have chosen the game of
RARS (Robot Auto Racing Simulator), which is an
open-source, car-race simulator. This game was chosen

mainly because of its extensive human-written driver
library, and the substantive amount of published works
that describe machine-learning approaches applied to

RARS—enabling us to perform significant comparisons
between our results and both human- and machine-
designed solutions.

This task is considered a hard problem because race-
car control requires a high level of expertise in vari-
ous game aspects, such as speeding, steering, and race-

line planning, and, moreover, the controller should ulti-
mately outperform existing solutions, created by both
humans and various AI approaches, as described in Sec-
tion 2.

This paper is organized as follows: Section 2 de-
scribes previous work, while Section 3 introduces the
game of RARS. Section 4 presents our approach for

evolving RARS controllers, followed by results in Sec-
tion 5. Finally, Section 6 presents concluding remarks
and future work.

2 Previous work

Controlling a moving vehicle is considered a complex

problem, both in simulated and real-world environments.
Dealing with physical forces, varying road conditions,
unexpected opponent behavior, damage control, and

many other factors, render the car-racing problem a
fertile ground for artificial intelligence research. Below
we survey several works on evolving controllers for cars

in simulated environments.

2

Wloch and Bentley [24] used Genetic Algorithms
(GAs) to optimize setup parameters, such as tire air

pressure, gear change rates, and spring tension, in the
“Formula One Challenge ’99-’02” simulator; modifying
the car setup rather than its controlling software, they

were able to show improvements in the overall perfor-
mance.

Floreano et al. [10] used coevolution of Artificial

Neural Networks (ANNs) to develop both image fea-
ture selection (filtering an image in order to extract
various features) and active vision (selecting parts of

the image to focus on) to create a controller for the
“CarWorld” open-source simulator.1 They developed a
controller able to complete a lap on several given tracks,

relying only on visual inputs, as seen from the driver’s
seat.

Togelius and Lucas [22] employed various approaches

based on GAs and ANNs in order to train a simu-
lated radio-controlled car to drive on simple tracks, in
which the controllers possessed complete knowledge of

the track structure via a simulated overhead camera.
In another, rather unorthodox work, Togelius et al. [23]
used GAs to evolve the tracks rather than the con-
trollers, and tried to maximize the “fun factor” for the

game players by suggesting tracks that were challenging
yet not overly hard so as to cause frustration. (In a sim-
ilar unorthodox vein, Sipper [19] evolved environments

to fit a robot.)

On or about the same time, Chaperot [4] and Chap-
erot and Fyfe [5] used GAs and ANNs to create motor-

cycle controllers for the “Motocross—The Force” sim-
ulator, which features competitive bike driving across
a three-dimensional terrain, including complex rigid-

body physics.

Tanev et al. [21] used GAs to optimize the param-
eters of a real-world, radio-controlled car controller.

They demonstrated an increase in performance during
the course of evolution, and the emergence of obstacle-
avoiding behavior once obstacles were introduced onto

the track.

RARS, the Robot Auto Racing Simulator,2 attracted
numerous academic researchers and hobbyists, and was

one of the first platforms to enable objective compari-
son between the performance of controller algorithms,
by holding open, online racing competitions on a reg-

ular basis. In addition to many controllers hand-coded
by hobbyist programmers, various AI techniques were
used to create, train, and optimize RARS controllers.

Several researchers used ANNs within the RARS
framework: Coulom [7] applied temporal difference re-
inforcement learning to train an ANN to drive a car

1 http://carworld.sourceforge.net
2 http://rars.sourceforge.net

around a track, while Pyeatt and Howe [17] trained mul-
tiple ANNs to perform low-level tasks—such as driv-

ing and overtaking—and a higher-level mechanism to
switch between the low-level behaviors.

Sáez et al. [18] and Eleveld [9] used GAs to find an

optimal path around a RARS track, a highly effective
method for known tracks without stochastic effects, but
one that leads to very poor performance on unknown

tracks or in nondeterministic situations.
Stanley et al. [20] presented a combined ANN and

GA approach, using Neuro-Evolution of Augmenting

Topologies (NEAT) to evolve and train a RARS-based
collision warning system. This approach combined a
conventional ANN training algorithm for the network

weights with an evolutionary algorithm that modified
their topologies. Although their main focus was on the
creation of a collision warning system rather than the

development of a fast driver, their evolved controllers
were able to complete a lap in good time.

Rule-based solutions, created using reinforcement

learning, were suggested by Cleland [6] and led to the
creation of rather competitive RARS controllers. Ng
et al. [14] trained RARS controllers to imitate the be-

havior of a “good” human-crafted controller, using the
Modular Neuro-Fuzzy (MoNiF) approach—a combina-
tion of fuzzy classifying functions, which were used to
create discrete input values for artificial neural net-

works.
TORCS (The Open Race Car Simulator3), which is

based on RARS, has been gaining popularity over the

past couple of years, and several TORCS-related papers
have been published. Notable works include the appli-
cation of fuzzy classification functions to the creation

of competitive controllers [15, 16], parameter optimiza-
tion of a hand-coded controller using an evolutionary
strategy [1], and the imitation of successful machine-

or human-crafted controllers by using either ANNs [13]
or NEAT and k-nearest neighbor classifiers [2].

Ebner and Tiede [8] showed that genetic program-

ming (GP) can be successfully applied to evolving TORCS-
playing agents, however, their evolved controllers were
not able to compete successfully with manually con-

structed drivers, and their generalization capabilities
were not tested.

Finally, Cardamone et al. [3] used real-time Neuro-

Evolution of Augmenting Topologies (rtNEAT) to evolve
a TORCS controller from scratch and optimize its per-
formance on unseen tracks during the course of a sin-

gle game, unlike the usual application of learning tech-
niques, which were applied prior to the race itself.

Some of the above RARS-based works provide the

exact lap times of the generated controllers. In Section

3 http://torcs.sourceforge.net

3

5, we will inspect these results and compare them with
our own.

3 Robot Auto Racing Simulator

RARS is an open-source, car-race simulator, written in
C++. It was created by several individual programmers

in 1995, and evolved since then into a complex racing
system. This game employs a detailed physical engine,
including most of the forces relevant to moving cars,

such as acceleration and deceleration, frictional factors,
and centripetal forces. This game enjoyed a large and
lively gamer community, until recently, and RARS tour-

naments were held regularly between the years 1995 and
2004.

The goal of the game is fairly simple: one or more
cars race on a given track. The cars are positioned at the

starting line, and simultaneously start moving when the
race begins. Cars are damaged upon collision or when
driving off the track. When a car reaches the starting
line, which also acts as the finishing line, a lap counter

is incremented. The winner is the driver whose car fin-
ished first a given number of laps.

A RARS controller is a C++ class with a single
method, which receives the current race situation and

determines the desired speed and wheel angle of the
car. The simulation engine queries the controller ap-
proximately 20 times per “game second”, and advances

the car according to the returned decisions and phys-
ical constraints. The situation argument provides the
agent (car controller) with detailed information about

the current race conditions, such as current speed and
direction, road curvature, fuel status, and nearby car
positions.

Controlling the car is done by two actuators: speed
and steering. The speed actuator specifies the desired

speed of the car, while the steering actuator specifies
the desired wheel angle. The simulation engine uses
both values to calculate the involved physical forces and

compute the car’s movement. Extreme values, such as
high speed or a steep steering angle, may result in slip-
page or skidding, and must be taken into consideration

when crafting a controller.

RARS controllers should be able to perform well on

a variety of tracks and scenarios. The basic RARS pack-
age contains several simple tracks of various shapes,
such as oval, round-rectangular, and figure 8-shaped

tracks. In addition, each of the RARS tournaments con-
tains several tracks of higher complexity, which are not
included in the basic package. Some of these are replicas

of real-world tracks (such as the Sepang International

Circuit4), while others are fictional tracks that were de-
signed by the tournament administrator.

RARS tournament rules divide the game-playing
controllers into two classes, differing in a single aspect:

pre-computation. Agents of the first class—planning
agents—are allowed to inspect the track prior to the
race, and apply a computational process to the track

data. This is usually used to produce a precise driv-
ing plan—a series of radii and speeds—according to
which the car should drive. The second class of agents—

reactive agents—are not given the track plan, and their
actions rely only on the road conditions observable by
the driver in accordance with its physical position at

any given time.

Since pure planning agents do not take stochastic

factors (such as nearby cars or random friction fac-
tors) into consideration, they are rendered useless in
many situations; therefore, most of this class’s agents

employ some degree of reactive behavior in addition
to the pre-calculated driving plan. By and large, plan-
ning agents outperform reactive agents, because they

are better prepared to handle the road conditions, and
their precise knowledge regarding the road curvature
for any track segment allows them to be prepared for

unexpected road features.

Both problems—reactive driving and optimal path

planning—are of interest to the AI community. In this
paper we focus on reactive agents.

4 Evolving a race-car controller

We chose to focus on the task of creating purely reactive

agents for single-car, single-lap races. In this game vari-
ant, each race includes one car, attempting to achieve
the best lap time.

We used Koza-style GP [11], in which a population
of LISP expressions is evolved (Figure 1). Each agent is

controlled by two LISP expressions—one for the speed
actuator and the other for the steering actuator. When-
ever the controller is queried by the RARS simulation

engine, both expressions are evaluated and their results
are passed back as the desired speed and steering val-
ues.

4.1 Functions and terminals

The LISP expressions are defined over the set of func-
tions and terminals described in Table 1 and Figure 2.
These are divided into several groups:

4 http://malaysiangp.com.my

4

END

Select genetic

operation

probabilistically

Select one

individual based

on fitness

Perform reproduction

Individuals =

individuals + 1

Copy into new

population

Select two

individuals based

on fitness

Perform crossover

Insert two offspring

into new population

Individuals =

individuals + 2

Select one

individual based

on fitness

Perform mutation

Insert mutant into

new population

Individuals =

individuals + 1

Crossover

MutationReproduction

Gen=0

Termination

criterion

satisfied?

Evaluate fitness of

each individual

in population

Individuals = 0

Individuals

=

M?

Create initial

random population

Gen = Gen + 1

Yes

No

Yes

No

Designate

results

Fig. 1 Generic genetic programming flowchart (based on
Koza [11]). M is the population size and Gen is the generation

counter. The termination criterion can be the completion of a
fixed number of generations or the discovery of a good-enough

individual. (Note that the above generic flowchart shows one mu-
tation operator whereas we use two: structural mutation and ERC

mutation—see Section 4.3).

– Basic game status indicators, which return real-time
information regarding the status of the car, as pro-

vided by the RARS simulation engine.
– Complex game status indicators, which also return

real-time information. This indicator set expands

the basic set with indicators that are not provided
directly by the game engine, but instead are calcu-
lated by our software. These indicators, such as dis-

tance to the next obstacle, require complex trigono-
metric functions and code loops, which are beyond
the complexity capabilities of the GP code model

we used, and hence are impossible to develop by
means of evolution. These building blocks are ac-
tually human-made functions, driven by intuition,

and can be very powerful when introduced into the
evolutionary process.

– Numerical constants, which include the constants 0,

1, and ERC (Ephemeral Random Constant) [11].

����

�������

	

		

��

�

��

��
��

Fig. 2 RARS game indicators (basic and complex).

An ERC is initialized to a random number during
the creation of the initial population, and retains its
value throughout the evolutionary run unless mod-

ified by mutation.
– Mathematical functions.
– Conditional statements.

Some additional technical points:

– Game indicators, both basic and complex, were nor-
malized to fit a common scale.

– Distance values TE, NL, TL, TR, TW, AH, CR,
and NR are in feet, divided by 400.

– Velocity values V and NV are in feet per second,
divided by 100.

– The angle indicator AA is specified in radians.
– Radii values specify both the radius and the direc-

tion of the track segment: positive values indicate

a counter-clockwise turn, negative values indicate
a clockwise turn, and a value of zero represents a
straight track segment.

4.2 Fitness function

The fitness function performs a crucial role in evolu-
tion, as it should reflect the quality of the inspected
individual. Two aspects were taken into consideration

when defining fitness—track selection and fitness-value
calculation:

4.2.1 Track selection

The track on which the individuals are evaluated should
be as diverse as possible. A homogeneous track (an
oval one, for example) might yield specialized agents,

which perform well on the given track but show poor
performance on other tracks. A heterogeneous track,
which contains many distinct features, is likely to yield

more generalized drivers, able to drive well on any given
track.

We inspected the RARS track library and chose

the Sepang International Circuit. This track exhibits

5

Table 1 Functions and terminals used to evolve race cars.

Basic Game Status Indicators

CR Current Radius: Radius of current track seg-

ment
NR Next Radius: Radius of next track segment
TE To End: Distance to end of current track seg-

ment
NL Next Length: Length of next track segment

V Velocity: Current velocity of car
NV Normal Velocity: Drift speed towards road

shoulder
TL To Left: Distance to left road shoulder

TR To Right: Distance to right road shoulder
TW Track Width

Complex Game Status Indicators

AH AHead: Distance car can move in its current

heading without veering off road
AA Ahead Angle: Angle of road shoulder, rela-

tive to car’s heading, found by AH terminal

Numerical Constants

ERC ephemeral random constant
0 zero constant

1 one constant

Mathematical Functions

+(x, y) adds x and y
-(x, y) subtracts y from x
*(x, y) multiplies x by y

%(x, y) ‘safe-divide’ x by y: if y = 0, returns 0 oth-
erwise returns the division of x by y

abs(x) absolute value of x
neg(x) negative value of x

tan(x) tangent of x

Conditional Statements

IFG(x, y, α, β) if x > y, returns α, otherwise returns β
IFP(x, α, β) if x is positive, returns α, otherwise returns

β

many common track features, such as sharp and mod-

erate curves, U-turns, and straight segments of varying
lengths.

4.2.2 Fitness calculation

Two related fitness functions were used in order to mea-
sure the quality of a driver: Race Distance and Modified
Race Time:

– Race Distance is the distance, in feet, which the car
traverses during a 250-game-second period. When

this function is used during evolution, the goal is to
maximize the fitness value of the individuals.

– Modified Race Time is the time, in game seconds,

required by the car to complete the race. Because
some agents fail to complete a single lap (due to
extremely slow driving or suffering a fatal crash—

a phenomenon not uncommon in early generations),
we amended this simple measure. The modified mea-
sure is a comparison-based fitness measure, which

does not produce a quantitative fitness value, but

instead compares two (or more) individuals and de-
termines the fitter of the lot.5

Such a measure can be used only with comparison-
based selection methods, such as tournament selec-
tion. Specifically, when comparing two controllers

that finished a single lap, the one with the short-
est lap time is considered to be fitter. If one of the
controllers was not able to complete the lap, it is

considered less fit than the one that did finish. If
both controllers were not able to finish the lap, the
one that traveled the farthest is considered to be the

fittest.
Using Modified Race Time we were able to directly
address the challenge at hand—evolving controllers

with the shortest lap time—while maintaining a di-
verse population in early generations, wherein no
controller is able to complete a single lap.

4.3 Evolutionary parameters

The evolutionary parameters were carefully chosen through

a long calibration process. In this process, various evo-
lutionary runs were executed in an attempt to measure
the influence of each evolutionary parameter. The final

set of parameters was as follows:

– Population size: 250 individuals. Using larger popu-

lations did not yield significantly better results, but
smaller populations were not able to produce good
results.

– Generation limit : A value of 255 generations was
used. Usually, the population reached an observed
peak performance between generations 150 and 200,

so best-of-run individuals often emerged before the
limit was reached.

– Selection method : Tournament of 3 individuals. In

this method, the selection of a single individual is
done by randomly choosing three individuals, and
returning the fittest among them.

Different tournament group sizes were tested dur-
ing the calibration process; groups larger than 4 in-
dividuals yielded faster convergence to non-optimal

solutions, while groups of 2 individuals resulted in
slow convergence to non-optimal solutions.

– Breeding operators: Breeding operators are used in

order to create a new generation from an existing
one. The resulting individuals should resemble their
parents, yet differ in some characteristics. We used

four breeding operators, applied with various prob-
abilities:

5 We consider this fitness function to be “semi-quantitative”
because it does not produce a single numerical value but instead

decides which individual of the given candidates is the fittest.

6

– Reproduction (40%): Selects one individual, us-
ing the selection method described above, and

passes it onto the next generation as is. Other
reproduction probabilities, including no repro-
duction at all, were tested during the calibration

phase. We found that a lower reproduction rate
resulted in faster convergence, but not necessar-
ily to optimal solutions. We surmise that a high

reproduction rate allowed enough good individu-
als to move unmodified into the next generation,
thus affording the preservation of their proper-

ties without incurring the risk of damaging them
by mutation or crossover.

– Crossover (50%): Selects two individuals, using

the selection method described above, and cre-
ates two new individuals by substituting random
subtrees between them. Bloat [12] is controlled

by setting a tree depth limit of 8 and choosing
subtrees such that the resulting trees will not
exceed this limit. This operator is used in order

to introduce new individuals that are based on
existing individuals’ characteristics.

– Structural mutation (5%): Randomly selects one

individual and creates a new one by choosing a
random tree node, discarding its rooted subtree,
and growing a new subtree instead. Bloat control
is achieved through the same mechanism that is

used in crossover. Structural mutation is used in
order to introduce variants of existing individu-
als; however, due to its destructive potential, it

is used in small doses.
– ERC mutation (5%): Randomly selects one in-

dividual and modifies its ERCs. This is done by

randomly choosing an ERC node within the in-
dividual and modifying its numerical value. This
operator is used to fine-tune the constant values

that are used as evolutionary building blocks.
– Creation of initial population was done according to

Koza’s ramped-half-and-half method [11]. For each

tree depth between 4 and 8, an equal number of
trees is created. Half the trees are grown to the ex-
act given depth, while the other half is grown to a

depth up to the given depth. Trees are grown using
random functions from the function set such that
the resulting tree is a legal LISP expression.

5 Results and analysis of an evolved driver

We executed ten evolutionary runs with the Race Dis-

tance fitness function, and ten runs with the Modified
Race Time fitness function. An individual’s fitness was
calculated on the Sepang International Circuit. The

progress of the two best evolutionary runs is shown in

Fig. 3 Fitness vs. Time plot of the best evolutionary run using
the Race Distance fitness measure. The thick line denotes the

best fitness of each generation, while the thin line denotes the
average fitness of the population in each generation.

Fig. 4 Fitness vs. Time plot of the best evolutionary run using
the Modified Race Time fitness measure. Since this fitness mea-

sure does not produce a numerical value (but uses a comparative
model instead), it cannot be plotted straightforwardly. Hence, to
properly plot this run we used the following method: drivers that

were able to complete a single lap were plotted using their lap
time, while drivers that were not able to complete a single lap

were assigned an arbitrary lap time value of 1000 seconds.

Figures 3 and 4. We extracted one individual from each
of these runs: GP-Single-1 (evolved using Race Distance

fitness) and GP-Single-2 (evolved using Modified Race
Time), both found by performing ten independent races
per each individual in the last generation, and choosing

the individual with the best average lap time.

Figure 5 shows the performance of the GP-Single-2
driver on several tracks from the RARS library, clearly

exhibiting advanced driving features. The car slows down
before curves in proportion to their sharpness, to elim-
inate the risk of losing control; moreover, the controller

attempts to increase the path radius by entering and ex-
iting the curve from the outer shoulders and touching
the inner shoulder at mid-curve, thus enabling the car

to travel at higher speeds without the risk of skidding.

7

Table 2 Comparison of evolved drivers on the sepang track. The

entire set of reactive human-crafted controllers from the latest
RARS distribution was tested. Results vary slightly from race to
race due to the simulation’s stochastic nature; therefore, each race

was performed 100 times per driver, and the results were used to
calculate the average timings, as well as standard deviation values

and standard error values (in parentheses).

Rank Driver Lap Time (seconds)

1 GP-Single-2 159.8 ± 0.6 (std. error: 0.06)

2 Vector 160.9 ± 0.1 (0.01)
- GP-Single-1 160.9 ± 0.3 (0.03)

4 WappuCar 161.7 ± 0.1 (0.01)
5 Apex8 162.5 ± 0.2 (0.02)
6 Djoefe 163.7 ± 0.1 (0.01)

7 Ali2 163.9 ± 0.1 (0.01)
8 Mafanja 164.3 ± 0.2 (0.02)

9 SBv1r4 165.6 ± 0.1 (0.01)
10 Burns 167.8 ± 5.6 (0.56)

11 Eagle 169.3 ± 0.6 (0.06)
12 Bulle 169.4 ± 0.3 (0.03)

13 Magic 173.9 ± 0.1 (0.01)
14 JR001 178.3 ± 0.2 (0.02)

A comparison with human-crafted reactive drivers
on the sepang track is shown in Table 2. Note that
lap times vary from race to race due to random fac-

tors in the friction coefficient formula aimed at simu-
lating real-world conditions, such as dirt and debris on
the race track. Therefore, each race was performed 100

times per driver, and the results were used to calculate
the average timings, as well as standard deviation and
standard error values. Our top evolved drivers were able

to rank first and second out of 14 contestants.

Both evolved drivers exhibit shorter lap times than

any human-crafted driver in their class (excluding Vec-
tor, which shares the second-best result with GP-Single-
1). However, since many machine-learning techniques

tend to prefer specialization over generalization, the
performance of our evolved drivers should be checked
on tracks other than sepang—which was used for fit-

ness calculation in the evolutionary process. In order to
perform such a comparison we evaluated each human-
crafted driver along with our own evolved drivers on 16

tracks, taken from the August 2004 RARS tournament.
This tournament is the most recent one for which the
source code of human-crafted drivers is available on-

line, thus allowing us to compare the results between
our drivers and the human-crafted ones. The results
are shown in Table 3.

Out of 14 drivers (all but ours designed by humans),
the evolved drivers ranked second and third. These re-

sults show that the evolved solutions exhibit a high de-
gree of generalization, and are able to successfully solve
instances of the problem that were not included in their

original training set.

To further inspect the evolved drivers and their gen-
eralization capabilities, we tested their performance on

the Aug. 2004 season with two scenarios that were not
targeted in the training phase: multiple-lap races and
multiple-car races. These scenarios require different be-

haviors than single-lap races, as well as several indica-
tors that are not available to our evolved drivers, such
as damage levels and information about nearby cars.

The performance on multiple-lap scenarios was rather

poor. Our controllers were unable to complete a single
race because they reached a critical damage level and
broke down after a few laps. It appears that the evolved

drivers gain a small amount of damage per lap—a harm-
less phenomenon in single-lap races— but after several
laps the accumulated damage level reaches a critical

level and prevents the drivers from finishing the race.
This problem will probably be alleviated by evolving
multiple-lap drivers.

Multiple-car scenarios, however, proved surprisingly

good, as seen in Table 4. Our controllers reached the
first and fourth places, scoring better than Vector—
the winner of the single-lap challenge, and Mafanja—

the winner of the original Aug. 2004 season. Consid-
ering the fact that the evolved controllers do not have
information regarding their surrounding cars we con-

clude that multiple-car behaviors—such as overtaking
and collision avoidance—are of less importance in this
game, compared to the task of driving as fast as pos-

sible. If damage control is not a consideration a bru-
tal drive-through strategy is apparently sufficient for
our controllers to gain the leading position, and, once

gained, the expected behavior is similar to the single-
car scenario behavior. It appears that Vector is less suc-
cessful in multi-car scenarios (as seen in Table 4), and

Mafanja is less successful in the fast-driving challenge
(as seen in Table 3), hence GP-Single-2 was able to rank
first in this challenge.

Comparison with machine-generated solutions dis-

cussed in Section 2 was done by recording the perfor-
mance of our evolved drivers on each track for which
machine-generated results were reported. Table 5 lists

the results of the evolved drivers in comparison with
other machine-generated solutions.

Again, due to the stochastic nature of the simu-
lation, each race was performed 100 times per driver

and average results were noted along with standard de-
viation and standard error values. However, since we
had only the reported results for the machine-generated

drivers—rather than an executable version—no statis-
tical information was available for them.

The evolved drivers perform better than any machine-
generated reactive solution. Furthermore, the tracks used

for these comparisons were not included in the training

8

Table 3 Comparison of evolved drivers with human-crafted drivers on 16 tracks from the August 2004 season, based on 10 races per

controller and using the IndyCar points system, wherein the twelve fastest drivers receive 20 points (best driver), 16, 14, 12, 10, 8, 6,
5, 4, 3, 2, and 1 point (worst driver), respectively; in addition the driver that leads the most laps receives an additional bonus point,
and the winner of the qualifications round—if one is held—receives an additional point. We held no qualification round and the race

consisted of a single lap, hence the fastest driver received 21 points. The total score of each driver is simply the sum of its single race
scores. Each driver’s rank per race is listed along with its total seasonal score (rightmost ‘Total’ column).

Rank Driver R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 Total
1 Vector 1 1 6 5 13 1 8 1 1 1 3 9 3 2 2 2 229
2 GP-Single-2 3 4 10 7 1 3 3 3 2 2 1 5 1 5 11 1 215
3 GP-Single-1 4 3 12 1 5 2 1 9 4 7 4 1 13 4 3 5 186
4 Mafanja 2 5 8 3 2 7 4 7 5 4 6 4 4 3 4 4 177
5 SBv1r4 9 6 11 6 6 4 5 2 3 5 5 2 2 8 9 6 151
6 Eagle 10 2 1 13 11 13 6 8 7 3 2 8 12 1 1 8 144
7 WappuCar 8 7 9 4 8 5 2 5 9 6 7 3 7 11 6 10 119
8 Djoefe 6 10 3 9 4 9 9 4 10 9 9 10 5 6 5 3 117
9 Burns 5 8 7 8 3 8 7 6 6 8 10 6 6 7 7 7 109
10 Magic 11 9 2 2 10 6 10 12 8 11 11 7 10 10 8 11 81
11 Ali2 7 11 4 10 7 11 11 11 11 10 8 11 8 9 10 9 63
12 Apex8 12 12 5 11 9 10 13 10 12 12 12 12 9 12 12 12 35
13 JR001 13 13 13 12 12 12 12 13 13 13 13 13 11 13 13 13 6
14 Bulle 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 0

Table 4 Comparison of evolved drivers with human-crafted drivers on 16 tracks from the Aug. 2004 season, based on 10 races per
controller and using the IndyCar points system, on a 3-lap, multiple-car scenario. Each driver’s average score per race and total

seasonal score is listed. The rightmost ‘Orig.’ column shows the original score of the Aug. 2004 season.

Rank Driver R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 Total Orig.

1 GP-Single-2 11 15.1 2.5 13.4 20.3 17.8 19.5 16.3 16.6 16.7 20.9 17.3 16.9 11.1 6.6 20.4 242.4 -
2 Mafanja 14.9 11.5 13 13 13.2 10.8 12 11.9 10.6 15.6 8.6 13.1 11.5 16.9 12.9 10.3 199.8 236
3 Vector 14.9 16.3 8.3 2.9 0 8.1 9.5 14.6 17.3 14.7 14.2 2.6 13.1 13.2 14.8 6.4 170.9 190
4 GP-Single-1 16.8 12 2 15.6 4.1 14.3 17.1 7.8 10.4 11.2 11 11.1 1.6 11.7 12.4 9.1 168.2 -
5 Djoefe 10.4 5.4 20.1 7.4 13 6.1 6.7 14.6 7.9 6.4 7.5 5.9 13.3 8.5 14.4 15.2 162.8 139
6 Burns 8.5 8.3 8.7 10 12.4 7.9 6.6 7.6 8.5 7.6 6.4 7.6 10.7 8.6 9.8 11.4 140.6 144
7 WappuCar 7.3 4.7 5.9 9 7.6 9.6 10.8 6.7 5.4 6.4 9 11 8.2 5.3 6.6 4.5 118 160
8 Bulle 3.4 9.7 4.8 11.6 3.1 4.7 9.1 4.4 6 8.9 3.2 14.6 5.8 4.4 2.6 3.8 100.1 137
9 Ali2 7.5 3.3 12.6 3.7 8.4 4.9 3 4.9 4.3 3.1 8.8 2.8 7.3 5.4 8.9 6.7 95.6 100
10 Magic 3.4 5.5 7.2 10.4 4.2 11.4 3 1.3 4.1 2.7 3.1 5.7 4.9 7.7 5.3 6.6 86.5 60
11 SBv1r4-1 1.6 4.1 1.1 2.5 3.5 2.7 2.9 7.7 1.8 3.9 4 7.1 3.8 1.8 2.2 4.3 55 85
12 Eagle 0.2 5 6.2 0.2 9.1 0 0.4 1.1 7.5 4.4 4.8 0.3 0.7 5.8 1.5 1.7 48.9 51
13 Apex8 2.3 0.8 9.6 1.3 3 3.8 0.9 2.9 1.4 0.4 0.4 2.2 3.8 1.1 3.9 1.5 39.3 67
14 JR001 0 0.3 0 1 0.1 0.3 0.5 0.4 0.2 0 0.1 0.9 0.4 0.5 0.1 0.1 4.9 28

Table 5 Comparison of evolved drivers with machine-generated drivers.

Author Track Lap Time (seconds)
Reported GP-Single-1 GP-Single-2

Ng et al. v03 59.4 55.5 ± 1.4 (std. error: 0.14) 49.3 ± 0.1 (0.01)
oval 33.0 31.0 ± 0.1 (0.01) 30.7 ± 0.1 (0.01)

complex 209.0 199.4 ± 5.9 (0.59) 204.4 ± 1.3 (0.13)

Coulom clkwis 38.0 37.7 ± 0.1 (0.01) 36.5 ± 0.1 (0.01)

Cleland v01 37.4 37.9 ± 1.6 (0.16) 35.0 ± 0.1 (0.01)

set of the evolved drivers, but were used to train most
of the machine-generated solutions.

The human-crafted controllers described in Tables 2

and 3 were built for multiple-lap, multiple-car scenar-
ios, in which additional behavioral patterns—such as
overtaking slow opponents, damage control, and fuel

consumption monitoring—might be required. However,
we assume that most human-crafted controllers would
attempt to drive as fast as possible when no opponents

are nearby, which is the case in the single-car scenario.
Each of the machine-generated controllers was designed
for the single-car scenario, differing only in the race-

length parameter: Ng et al.’s controllers were trained
on 60-lap races, Coulom’s controllers were trained on
a single-lap scenario, and Cleland’s incorporated very

long training phases during a single race, usually fea-

turing hundreds of laps. All three controllers, however,
aimed at reducing the average time of a single lap.

As over-specialization is a common phenomenon in
many machine-learning approaches, the emergence of

generalized solutions is nontrivial. We surmised that
our choice of a complex track for fitness evaluation,
combined with a sound yet simple set of genetic build-

ing blocks, contributed greatly to the generalization ca-
pabilities.

To further explore this hypothesis, we executed sev-

eral evolutionary runs using track v01, which is a fairly
simple one (compare Figure 5c, depicting v01, with Fig-
ure 5f, depicting sepang—which we used during evolu-

tion). The individuals evolved in these runs were highly
competitive when driving on their training track (v01):
the best-of-run was able to complete a lap in 34.1 (±
0.6) seconds (averaged over 100 runs), a result which

9

Fig. 6 GP-Single-2: Expression for wheel angle, α.

(% (% (% (% (IFG 0.702 AH AA (* NV -0.985))

(- AH (neg AH))) (- (% 1.0 (% V AH)) (neg AH)))
(- (- (* NV (neg NV)) (neg AH)) (neg AH))) (- (% 1.0
(% V AH)) (neg (% (% 1.0 (% V AH)) (% V AH)))))

Fig. 7 GP-Single-2: Expression for speed, v.

(IFP (abs (% V AH)) (- (% 1.0 (% V AH)) (neg (-

(* NV (* NV -0.868)) (neg AH)))) (% (neg (- (-
(* NV (neg TR)) (neg AH)) (neg AH))) (- (% 1.0

(% V AH)) (neg (% (* NV (neg NV)) (% V AH))))))

is 3.8 seconds better than GP-Single-1 and 0.9 seconds

better than GP-Single-2 on average. However, on un-
seen tracks, taken from Table 5, this controller’s per-
formance was rather poor: on v03 it completed a lap

in 90.0 (± 19.2) seconds on average, on clkwis it com-
pleted a lap in 71.7 (± 17.9) seconds on average, and
on sepang it failed altogether, having reached a critical

damage level before completing a single lap.
The large error margins also suggest that the con-

troller behavior was inconsistent on unseen tracks; it
was probably intolerant to subtle random factors on

such tracks, since its behavior was specialized to the
simple track on which it was trained. Hence, we con-
clude that our choice of a complex track contributed

greatly to the generalized nature of the evolved con-
trollers.

In an attempt to further understand the evolved

controllers we analyzed their code (refer to Table 1 for
definitions of functions and terminals used in code).
As explained in Section 4, each driver comprises two

LISP expressions: one provides the desired wheel angle
α, while the other provides the desired speed v. Both
expressions for GP-Single-2 are shown, respectively, in

Figures 6 and 7. Although seemingly complex, these
expressions can be simplified manually:

α = Ψ · (1
2AH · 1

AH
V +AH

· 1
2AH−NV 2 · 1

AH
V −(AHV)2), (1)

where:

Ψ =

{
AA AH < 0.7

−0.98 ·NV AH ≥ 0.7,

and

v = |AH · (1

V
− 1) + 0.87 ·NV 2|. (2)

These equations intimate at the logic behind the
evolved controller’s decisions. The Ψ element in Equa-

tion 1 shows that the steering behavior depends on

the distance, AH, to the upcoming curve: when the
next turn is far enough, the controller slightly adjusts

the wheel angle to prevent drifting off track; when ap-
proaching a curve, however, the controller steers accord-
ing to the relative curve angle—steep curves will result

in extreme wheel angle values.

The AH indicator is used in Equation 2 too, and

we observe that the desired speed is also determined by
the distance to the next curve, among other factors.

It is evident that the expression AH/V is used quite
frequently: one instance is seen in the speed equation,

and three instances in the steering equation. Given that
AH is the distance to the upcoming road shoulder, and
V is the current velocity, this expression is simply the

time to crash indicator: when will the car veer off-road if
it keeps its current speed and heading. As this indicator
is undoubtedly important for a race-car controller, and

wasn’t provided as a genetic building block, evolution
found a way of expressing it—and used it extensively.

6 Concluding remarks and future work

In this work we used GP to create RARS controllers,
finding that the evolutionary approach yields high-
performance controllers, able to compete successfully

both with human-crafted and machine-generated con-
trollers.

The evolved drivers demonstrate a high degree of
generalization, enabling them to perform well on most

tracks—including ones that were not used during the
evolutionary process. We noted that using a complex
track for fitness evaluation, coupled with a compre-
hensive yet simple set of genetic building blocks, con-

tributed greatly to our controllers’ generalization capa-
bilities. We also observed the emergence of useful code
patterns, such as the time to crash indicator. Such pat-

terns were repeatedly used in the evolved individuals’
code, acting as evolution-made genetic building blocks.

Having focused on single-car, single-lap races, we
can expand our research to more complex scenarios,

including multiple cars, multiple laps, damage control
and pit stops for repairs and refueling. This can be done
during evolution, with the guidance of an appropriate

fitness function, and not just post-evolutionarily, as we
did.

Another approach might use genetic algorithms to
pre-compute an optimal path, to be combined with a
GP-evolved controller in charge of following the path,

for either single-car or multiple-car scenarios. Using GAs
for path optimization has been done before (e.g., Eleveld’s
DougE1 [9]) but never in combination with a machine-

learning approach to the path-following behavior.

10

In addition, the RARS engine may be replaced with
its successor, TORCS. This latter has, among others,

the option of racing against human-controlled (as op-
posed to human-crafted) drivers, which is another in-
teresting challenge.

References

1. Butz, M.V., Lönneker, T.D.: Optimized sensory-

motor couplings plus strategy extensions for the
TORCS car racing challenge. In: CIG’09: Proceed-
ings of the 5th International Conference on Compu-

tational Intelligence and Games, pp. 317–324. IEEE
Press, Piscataway, NJ, USA (2009)

2. Cardamone, L., Loiacono, D., Lanzi, P.L.: Learning

drivers for TORCS through imitation using super-
vised methods. In: CIG’09: Proceedings of the 5th
International Conference on Computational Intel-

ligence and Games, pp. 148–155. IEEE Press, Pis-
cataway, NJ, USA (2009)

3. Cardamone, L., Loiacono, D., Lanzi, P.L.: On-line

neuroevolution applied to the open racing car sim-
ulator. In: CEC’09: Proceedings of the Eleventh
Congress on Evolutionary Computation, pp. 2622–
2629. IEEE Press, Piscataway, NJ, USA (2009)

4. Chaperot, B.: Motocross and artificial neural net-
works. In: Game Design and Technology Workshop
(2005)

5. Chaperot, B., Fyfe, C.: Improving artificial intelli-
gence in a motocross game. In: IEEE Symposium
on Computational Intelligence and Games (2006)

6. Cleland, B.: Reinforcement learning for racecar
control. Master’s thesis, The University of Waikato
(2006)

7. Coulom, R.: Reinforcement learning using neural
networks, with applications to motor control. Ph.D.
thesis, Institut National Polytechnique de Grenoble

(2002)
8. Ebner, M., Tiede, T.: Evolving driving controllers

using genetic programming. In: CIG’09: Proceed-

ings of the 5th International Conference on Compu-
tational Intelligence and Games, pp. 279–286. IEEE
Press, Piscataway, NJ, USA (2009)

9. Eleveld, D.: Douge1 (2003). URL
http://rars.sourceforge.net/selection/douge1.txt

10. Floreano, D., Kato, T., Marocco, D., Sauser, E.:

Co-evolution of active vision and feature selection.
Biological Cybernetics 90(3), 218–228 (2004)

11. Koza, J.R.: Genetic Programming: On the Pro-

gramming of Computers by Natural Selection. MIT
Press, Cambridge, Mass. (1992)

12. Langdon, W.B.: Size fair and homologous tree

genetic programming crossovers. Genetic Pro-

gramming and Evolvable Machines 1(1/2), 95–119
(2000)

13. Muñoz, J., Gutierrez, G., Sanchis, A.: Controller for
TORCS created by imitation. In: CIG’09: Proceed-
ings of the 5th International Conference on Compu-

tational Intelligence and Games, pp. 271–278. IEEE
Press, Piscataway, NJ, USA (2009)

14. Ng, K.C., Scorcioni, R., Trivedi, M.M., Lassiter, N.:

Monif: A modular neuro-fuzzy controller for race
car navigation. IEEE International Symposium on
Computational Intelligence in Robotics and Au-

tomation 0, 74 (1997)
15. Onieva, E., Pelta, D.A., Alonso, J., Milanés, V.,

Pérez, J.: A modular parametric architecture for

the TORCS racing engine. In: CIG’09: Proceedings
of the 5th International Conference on Computa-
tional Intelligence and Games, pp. 256–262. IEEE

Press, Piscataway, NJ, USA (2009)
16. Perez, D., Recio, G., Saez, Y., Isasi, P.: Evolving

a fuzzy controller for a car racing competition. In:

CIG’09: Proceedings of the 5th International Con-
ference on Computational Intelligence and Games,
pp. 263–270. IEEE Press, Piscataway, NJ, USA

(2009)
17. Pyeatt, L.D., Howe, A.E.: Learning to race: Experi-

ments with a simulated race car. In: Proceedings of
the Eleventh International Florida Artificial Intel-

ligence Research Society Conference, pp. 357–361.
AAAI Press (1998)

18. Sáez, Y., Perez, D., Sanjuan, O., Isasi, P.: Driv-

ing cars by means of genetic algorithms. In:
Rudolph, G., Jansen, T., Lucas, S.M., Poloni,
C., Beume, N. (eds.) Proceedings of the 10th

International Conference on Parallel Problem
Solving from Nature (PPSN X), Lecture Notes
in Computer Science, vol. 5199, pp. 1101–

1110. Springer (2008). URL http://dblp.uni-
trier.de/db/conf/ppsn/ppsn2008.html

19. Sipper, M.: On the origin of environments by means

of natural selection. AI Magazine 22(4), 133–140
(2001)

20. Stanley, K., Kohl, N., Sherony, R., Miikkulainen,

R.: Neuroevolution of an automobile crash warning
system. In: GECCO’05: Proceedings of the 2005
Conference on Genetic and Evolutionary Compu-

tation, pp. 1977–1984. ACM, New York, NY, USA
(2005)

21. Tanev, I., Joachimczak, M., Shimohara, K.: Evo-

lution of driving agent, remotely operating a scale
model of a car with obstacle avoidance capabilities.
In: GECCO ’06: Proceedings of the 8th Annual

Conference on Genetic and Evolutionary Compu-
tation, pp. 1785–1792. ACM, New York, NY, USA

11

(2006)
22. Togelius, J., Lucas, S.M.: Evolving controllers for

simulated car racing. In: Proceedings of the
Congress on Evolutionary Computation (2005)

23. Togelius, J., Nardi, R.D., Lucas, S.M.: Towards

automatic personalised content creation in racing
games. In: Proceedings of the IEEE Symposium on
Computational Intelligence and Games (2007)

24. Wloch, K., Bentley, P.J.: Optimising the perfor-
mance of a formula one car using a genetic algo-
rithm. In: In Proceedings of Eighth International

Conference on Parallel Problem Solving From Na-
ture, pp. 702–711 (2004)

12

(a) oval [30.8 seconds] (b) clkwis [36.5 seconds]

(c) v01 [35.0 seconds] (d) aug04/race13 [50.8 seconds]

(e) aug04/race5 [83.1 seconds] (f) sepang [159.5 seconds]

Fig. 5 Performance of GP-Single-2 on six tracks. Black dots represent one-second intervals, while white dots represent ten-second
intervals. The large white dot is the starting point, from which the car starts moving. Some advanced driving techniques can be
observed from these figures by examining the path line and the density of the time marker dots—which implicitly indicate the car’s

speed at any given time. The car slows down when approaching sharp curves, thus reducing the risk of skidding (tracks (c), (d), and
(f)). Tracks (b) and (d) exhibit a special slalom behavior, where the controller doesn’t follow the curvature of the road, but drives

straight through the slalom instead. Finally, tracks (b), (c), (d), and (f) depict the controller’s attempt to maximize the path radius
by touching the inner shoulder at mid-curve, thus allowing the car to travel faster within the curve.

