Thisis an author-created accepted version of the paper:

Vasicek Z., SekaninaL.: Formal Verification of Candidate Solutions for Post-
Synthesis Evolutionary Optimization in Evolvable Hardware. Genetic
Programming and Evolvable Machines, Spec. Issue on Evolvable Hardware
Challenges, Voal. 12, 2011, in press, accepted on Feb 21, 2011.

Thefina publication is available at www.springerlink.com.
See Online First Articles
http://www.springerlink.com/content/h793322n202p0744/

Genetic Programming and Evolvable Machines manuscript No.
(will be inserted by the editor)

Formal Verification of Candidate Solutions for Post-Synthesis
Evolutionary Optimization in Evolvable Hardware

Zdenek Vasicek - Lukas Sekanina

Received: date / Accepted: date

Abstract We propose to utilize a formal verification algorithm to reduhe fitness
evaluation time for evolutionary post-synthesis optirti@ain evolvable hardware.
The proposed method assumes that a fully functional digitalit is available. A
post-synthesis optimization is then conducted using GmneGenetic Programming
(CGP) which utilizes a satisfiability problem solver to dkeiwhether a candidate
solution is functionally correct or not. It is demonstratiedt the method can optimize
digital circuits of tens of inputs and thousands of gatestifeumore, the number of
gates was reduced for the LGSynth93 benchmark circuits 828 6n average with
respect to results of the conventional SIS tool.

Keywords Cartesian genetic programmingircuit optimization- SAT solver-
evolvable hardware

1 Introduction

In the evolvable hardware field, evolutionary algorithmed ather bio-inspired algo-
rithms) are applied either for automated hardware desiglyoamic hardware adap-
tation or repair [53,20, 16,54, 39, 30]. According to Goraam Bentley, the field of
evolvable hardware originates from the intersection of potar science, electronic
engineering and biology and typically includes aspectsastitvare design and op-
timization techniques, particularly logic synthesis hiealogy mapping, placing and
routing [14].
In this article we will only deal with evolvable hardware asnathod for auto-

mated design, i.e. with a scenario in which the evolutiorsgprithm is used only

Zdenek Vasicek
Faculty of Information Technology, Brno University of Terlogy, Czech Republic
E-mail: vasicek@fit.vutbr.cz

Lukas Sekanina
Faculty of Information Technology, Brno University of Temlogy, Czech Republic
E-mail: sekanina@fit.vutbr.cz

in design and optimization phase of a product. In this canevolvable hardware
potentially offers promising solutions to logic syntheaisl optimization where new
problems have recently been identified. It was shown thaneonty used logic syn-
thesis algorithms are not capable of efficient synthesisapinhization for some
circuit classes, especially for large circuits and cirggibntaining hard-to-synthesize
substructures [5,10]. In some cases the size of synthesiraudlts is of orders of
magnitude greater than the optimum.

Thescalability problem has been identified as one of the most difficult problems
the researchers are faced with in the evolvable hardwade Tigke scalability problem
means such situation in which the evolutionary algorithatike to provide a solution
to a small problem instance; however, only unsatisfactolyt®ns can be generated
for larger problem instances. Although various methodetmeen proposed to elim-
inate the scalability problem (see Section 2), only a plestiacess has been achieved
in some domains.

We will consider a subarea of the scalability problem —dtetability of evalua-
tion, in the context of optimization problems. We will show thiatan reasonably be
eliminated in a task ofjate-level post-synthesis optimization of complex combina-
tional circuits consisting of thousands of gates and haténg of inputs and outputs.
The method assumes that a fully functional circuit is atdddn a standard netlist
format which can be obtained using a conventional synthedgisrithm. The main
goal is to reduce the number of gates.

We propose to use modern formal verification methods that haen overlooked
by the evolvable hardware community so far. The proposedhodetitilizes equiv-
alence checking algorithms (those used by conventionahegis algorithms) that
allow a significant acceleration of the fithess evaluatiorcpdure. Particularly, the
method is based on a post-synthesis optimization of cortibimel circuit conducted
using Cartesian genetic programming (CGP) [34] which eatalsl candidate solu-
tions using the satisfiability (SAT) solver [9]. The techumiyelies on functional cor-
rectness of an initial solution (a seed for CGP). Note thaallapplications of evolv-
able hardware fall into this category because such a seeut igemerally available.
We have also introduced some techniques that explore the r€@Bsentation and
operators to reduce the number of clauses for the SAT sohgethaus further shorten
the evaluation time.

Optimized circuits are compared with the most compact @sc¢bat we obtained
from iterative application of decomposition and re-systhgrocess which is con-
ducted by conventional synthesis tools such as ABC and SIS.

The plan for this article is as follows. Section 2 introduttess concept of evolv-
able hardware and surveys the scalability problems. In@e8f the proposed method
is explained. The key contribution of this article, the donstion of the fitness func-
tion on the basis of formal verification techniques is introeld in Section 4. The
experimental evaluation of the proposed method represiemtsontent of Section 5.
Some practical aspects of the method are discussed in B&ctRection 7 gives our
conclusions from the experimental evaluation and also samgestions for further
work.

2 Evolvable Hardware and Its Scalability
2.1 Motivation for Circuit Evolution

Figure 1 explains the concept of evolvable hardware: Ed@@trcircuits that are en-
coded as finite strings of symbols are constructed and ageuirby the evolutionary
algorithm to obtain a circuit implementation satisfyinggeesification given by de-
signer. Since the introduction of evolvable hardware abéginning of nineties [21,
11], the main motivation for circuit evolution can be seethia fact that evolutionary
approach can lead to fully functional designs without bemsjructed how to con-
struct them. Hence one of the goals is to evolve as complenitas possible with a
minimum computational effort and domain knowledge supp|kl, 43,41]. A typi-
cal application could be a reactive robot controller whiglevolved in a sufficiently
large reconfigurable device where there is no need to opithie number of gates
and delay [27].

chromosome Gen.etlc E_nglne
genetic operations and

| population management

Decoding
fitness
configuration
mimininlaininin
Reconfigurable stimuli Fitness
O Device +— Unit
(Simulator)]

responses f

Fig. 1 The principle of evolvable hardware

In many applications a perfect circuit response must byinetsfor all requested
assignments to the inputs. The fitness function is usualhgtrocted in such a way
that all requested assignments are applied to the inputscahdidate circuit and
the fitness value is defined as the number of bits that the datedcircuit computes
correctly. When target functionality is obtained addiabaoriteria can be optimized.
Evolution of arithmetic circuits is a typical example of tittass [49, 32]. To give ex-
amples where partially imperfect solutions are acceptaklean mention evolution
of image filters, classifiers or predictors [19,38,12]. Inli¢idn to functionality, an-
other goal can be to obtain a solution which exhibits a bejtiedity in some aspects
with respect to existing designs of the same category. Famgle, a solution would
occupy a smaller area on a chip, compute faster, providetarlgecision, reduce
the energy consumption, increase the reliability etc.

2.2 Scalability of Fitness Evaluation

In case of combinational circuit evolution, the evaluatiiome of a candidate circuit
grows exponentially with the increasing number of inpuss(aming that all possible
input combinations are tested in the fithess function). Titriess calculation method
is currently applicable for circuits with up to 10-20 inp#epending on a particular
target function) [43,51,37,49,41]. In order to reduce theetof evaluation, various
techniques can be adopted:

— Only a subset of all possible input vectors is utilized. Tisdlpical for synthe-
sis of filters, classifiers or robot controllers. Unfortuglgt the approach is not
applicable for synthesis of arithmetic circuits as it doesansure that correct re-
sponses will be obtained for those input combinations whiefre not used during
evolution [23].

— In some cases it is sufficient to evaluate only some struiguogerties (not the
functionality!) of candidate circuits which can be donelw# reasonable time
overhead. For example, because testability of a candidatétcan be calculated
in the quadratic time complexity, very large benchmarkwitcwith predefined
testability properties (more than 1 million gates) werele2d [36].

— In case that a target system is linear, it is possible to p#yfevaluate a candi-
date circuit using a single input vector independently @f ¢ircuit complexity.
Multiple-constant multipliers composed of adders, sutitnss and shifters were
evolved for a 16-bit input and tens of 16-bit outputs [48].

An obvious conclusion is that the evaluation time becomesthin bottleneck
of the evolutionary approach when complex digital circwiish many inputs are
evolved or optimized.

2.3 Scalability of Representation

From the viewpoint of thescalability of representation, the problem is that long
chromosomes which are usually required to represent comsplations imply large
search spaces that are typically difficult to search. In otdevolve large designs
and simultaneously keep the size of chromosome small,ustechniques have been
proposed, including functional-level evolution [35, 3@ remental evolution [44, 45,
43], modularization [51,26] and their combinations [4]], T2espite the fact that a
new field of computational development has attracted a latttegition in this area
and brought some theoretical as well as practical resuf, 22,42,15,17,47,31,
55] the problem of scalability is still an open issue.

3 Proposed Method

The goal of proposed method is to minimize the number of gatasfunctionally
correct combinational circuit that is typically obtainesing a conventional synthesis
tool. The method consists of three main steps that will beritesd in detail in the
following sections:

1. Perform the synthesis/optimization using a conventisyrathesis algorithm.

2. Convert resulting circuit to the CGP representation aselitito seed the initial
population of CGP.

3. Run CGP that uses a formal verification method that will bscdbed in Sec-
tion 4 to reduce the number of gates. CGP is terminated iéeife maximum
allowed number of generations has been exhausted or acsothat fulfills the
requirements has been discovered.

3.1 Conventional Circuit Synthesis

Combinational logic functions are commonly specified by Plilds where PLA
stands for programmable logic array. The PLA file is an abibted truth table where
all inputs are specified. However, it does not list produatsivhich all the outputs are
zero or undefined combinations. A circuit can also be repteseas a netlist of gates
in BLIF (Berkeley Logic Interchange Format) format. BLIEt§ all interconnected
combinational gates (and latches in case of sequentialitsjc

Since proposed method is intended for a gate-level opttinizzother steps of the
circuit design process such as mapping, routing, placeametgubsequent technology-
specific optimizations are not considered in this papenriconventional and rou-
tinely used synthesis methods we have chosen the SIS [4D]version sis1.2)
which provided in most cases better results than other math as ABC [3] (ver-
sion abc70930) or Espresso [4].

Implementations of synthesis tools support various omratwith circuits, for
example, it is possible to convert PLA to BLIF and vice verSacuits specified
in BLIF can also be mapped on a chosen set of gates or lookhlgstarhe ABC
and SIS tools are deterministic. They attempt to apply varigircuit decomposition
and re-synthesis techniques to transform a circuit undémdagation and generate
optimized netlist. We have used them with recommendeddatal) setting which is
represented by synthesis scripts given in Table 1. In ordienprove their results we
applied them on their own results iteratively as suggest4d]i That technique will
be discussed in Section 5.5.

3.2 Cartesian Genetic Programming

Cartesian Genetic Programming is a widely-used methodvidugon of digital cir-
cuits [34,32]. CGP was originally defined for gate-level levion; however, it can
easily be extended for functional level evolution [38]. i basic version, candidate
circuits are directly represented in the chromosome. THeviing paragraphs de-
scribe how we have used CGP in the proposed method.

3.2.1 Representation

A candidate entity (circuit) is modeled as an arrayngf(columns)x n, (rows) of
programmable nodes (gates). The number of inpytand outputsn,, is fixed. Each

Table 1 Synthesis scripts for the SIS and ABC method

[SIS | ABC
read PLA file read PLA file
scriptrugged scriptchoice
map map
script_rugged: script_choice:
sweep; eliminate -1 fraig_store;

simplify -m nocomp
eliminate -1
sweep; eliminate 5
simplify -m nocomp
resub -a

resyn; fraigstore;
resyn2; fraigstore;
resyn2rs; fraigstore;
share; fraigstore;
fraig_restore

fx

resub -a; sweep
eliminate -1; sweep

full _simplify -m nocomp

node input can be connected either to the output of a nodegliacthe previous
columns or to one of the circuit inputs. Théack parameter, in fact, defines the
level of connectivity and thus reduces/extends the segrabes For example, IE1
only neighboring columns may be connectedyif= 1 andn. = I, full connectivity

is enabled. Feedback is not allowed. Each node is prograntonpdrform one of
na-input functions defined in the sEt(ns denotesl”|). As Figure 2 shows, while the
size of chromosome is fixed, the size of phenotype is varigldesome nodes are
not used). Every individual is encoded usmgx n; x (na+ 1) + ng integers.

1 OR 1] OR 1| AND 1| AND
00—] s ’ g

2| Pl B e N f—_o
10—

2— AND | 4 AND | ¢ 14 OR|g 24 OR |10 —Q
20—, | F—___] —_ |

Fig. 2 Example of a candidate circuit. CGP parameters are as fellow3,n. =4,nj =3,n, =2,n, =2,
" = {AND (0), OR (1)}. Nodes 5,7 and 9 are not utilized. Chromosome:11,2,00, 1,31, 3,40 1,60,
1,61, 1,70, 2,81, 6, 10. The last two integers indicate the outputs of circliite function of a gate is
typed in bold.

3.2.2 Search Algorithm

CGP operates with the population of-1A individuals (typically,A = 4). The initial
solution (the seed) is constructed by means of mapping ofitbait obtained from
conventional synthesis and specified in the BLIF format ®@GP representation.
The mapping is straightforward since the CGP represemtéiin fact a netlist. If
the initial circuit consists ofn gates, each of them possessing upy toputs, then

CGP will operate with parameteng = m,n; = 1,1 = n¢,n3 = y. The circuit is also
transformed into the conjunctive normal form in order toateea reference solution
for the formal verification (see the method in Section 4 argiFé 5).

The seed together with offspring created using a point mutation operator form
the initial population which has to be evaluated. Every nepgation consists of the
best individual of the previous population and Asoffspring. In case when two or
more individuals have received the same highest fitnesg sttine previous genera-
tion, one of individuals which have not served as a parerttérprevious population
will be selected as a new parent. This strategy is importacabse it contributes to
ensuring the diversity of population [33].

3.2.3 Fitness function

When the objective is to minimize the number of gates thedgnalue of a candidate
circuit may be defined in CGP as [24]:

fitness= B+ (ncny — 2) (1)

whereB is the number of correct output bits obtained as responsalifqrossible
assignments to the inputsdenotes the number of gates utilized in a particular can-
didate circuit andh.n, is the total number of gates available. The last tegm — z
is considered only if the circuit behavior is perfect, Be= n,2™.

The fitness calculation carried out by the proposed methitetslifrom equation
1. Instead of evaluating all possible assignments to that@y@ candidate circuit
is verified against a reference circuit as described in 8ecti The result of the
verification algorithm is a Boolean value. If the value is atp then the fithess
score is the worst-possible value. If the value is positiwe,fitness value is just the
number of utilized gates (assuming that the goal is to minérhiere) which can easily
be obtained from the CGP representation of a candidateé@olut

3.2.4 Acceleration Techniques for Standard CGP

We will also utilize fitness calculation according to eqaatil) in order to compare
the results with the formal verification-based fitness datoen. However, two mod-
ifications are incorporated to the implementation of equmati to reduce the compu-
tational overhead:

(i) Because the initial population already contains a félligctional solution and
the elitism is implicit for CGP, there will be at least onefeetly working solution in
each population. Hence we can now consider CGP as a cirdirtiapr rather than
a tool for discovering new circuit implementations from adamly generated initial
population. The fitness evaluation procedure which probesyeassignment to the
inputs (i.e., 0..2"% — 1 test cases) is time consuming. In order to make the evalua-
tion of a candidate circuit as short as possible, it is ondye@ whether a candidate
circuit is working correctly or incorrectly. In case that anclidate circuit does not
produce a correct output value for theh input vector,j € {0...2"% — 1}, during the
evaluation, the remaining™2— j — 1 vectors are not evaluated and the circuit gets

the worst possible score (0). Experimental results showtttia technique reduces
the computational overhead (see Table 3), but it does noifisigntly contribute to
solving the scalability problems. Note that this technigaanot be applied for the
randomly initialized CGP because we have to know the fitheseesas precisely as
possible (i.e. the exact number of bits has to be calcul&igidan be generated by a
particular candidate circuit) in order to obtain a reasdyaimooth fitness landscape.

i fitness =

: 6/8 +7/8
00— 1] or|, 1 Or|s i_{anp|, i AND o §
x0 = 10101010 § 2— — [;
: i y0 = 10100000
1 O— 11111100 10100000 r0 = 10111000
x1 = 11001100 } i 00011000
{2 AND | 4 AND | ¢ 11 OR|s 21 OR 10, +—0
20—, [] P y1= 11101100
X2 = 11110000 10100000 11101100 {11 = 11111100

00010000

Fig. 3 Parallel simulation of a combinational circuit. The valygsndy; are the results of simulatiomg
andr are the required outputs

(i) Parallel simulation is another technique that can bedus accelerate circuit
evaluation [32,37]. The idea of parallel simulation is tdize bitwise operators op-
erating on multiple bits in a high-level language (such al@gerform more than one
evaluation of a gate in a single step. For example, when a ic@tidnal circuit under
simulation has three inputs and it is possible to conculrgr@rform bitwise oper-
ations over 3 = 8 bits in a simulator then the circuit can completely be sated
by applying a single 8-bit test vector at each input (see tittwéing in Figure 3).
In contrast, when it is impossible then eight three-bit testtors must be applied
sequentially. Current processors allow us to operate wittpi6 operands, i.e. it is
possible to evaluate a truth table of a six-input circuit pplgiing a single 64-bit test
vector at each input. Therefore, the obtained speedup ig&idst the sequential sim-
ulation. In case that the circuit has more than 6 inputs therspeedup is constant,
i.e. 64.

4 Formal Verification Approach in the Fitness Function

We propose to replace the fitness calculation approach loastedting of all possible
assignments to the inputs by a functional equivalence ¢hgagorithm. In order

to specify the problem, a set of Boolean functiéhs- {f1, f»,..., fn} can be used.

Let each functionf; represent Boolean function of theh output of a candidate
circuit. Then the seff can be used to check whether a candidate solution meets the
specification or not.

4.1 Functional Equivalence Checking

Determining whether two Boolean functions are functionalfjuivalent represents
a fundamental problem in formal verification. Although thumétional equivalence
checking is an NP-complete problem, several approachesligen proposed so far
to reduce the computational requirement for practicaldiriostances.

Most of proposed techniques are based on representinguat digcmeans of its
canonical representation. Generally, two Boolean funstare equivalent if and only
if canonical representations of their output functions egeivalent. The Reduced
Ordered Binary Decision Diagrams (ROBDD) represent a wideded canonical
representation in formal verification [52]. ROBDD is a diit acyclic graph that
can be obtained by applying certain transformations on tdered binary decision
diagram. Determining whether two circuits represent thmes8oolean function is
equivalent to determining whether two ROBDDS are isomarpBome of methods
developed to determine whether two ROBDDS are isomorpleidased on graph-
based algorithms. Other methods are based on the comimmdtROBDDs with the
XOR operation (see Fig. 4) and checking whether the reguR@BDD is a constant
node (zero). And-or-invert graphs represent another damepresentation with sim-
ilar properties. All these graph-based approaches relpeffetct, that the number of
nodes in the resulting graph will be relative small, othesythe time of the ROBDD
construction as well as the time of comparison will be enarsadn practice, these
methods are rarely implemented directly without any furttiecuit preprocessing.
The main problems are the need for high memory resourcedubuge number of
BDD nodes and significant time requirements. Although mamgfions in practice
can be represented by polynomial number of BDD nodes withestdo the number
of inputs, there are functions (e.g. multipliers) that afashave the number of nodes
exponentially related to the number of inputs [7]. The veaifion of such functions
still represents a challenge.

High consumption of memory resources has motivated relsees¢o look for al-
ternative methods. Since the satisfiability (SAT) solveesensignificantly improved
during the last few years, the SAT-based equivalence chgdiecomes to be a
promising alternative to the BDD-based checking. In thisecaircuits to be checked
are transformed into one Boolean formula which is satiséigband only if the cir-
cuits are functionally equivalent [13]. In this article wdlwse the SAT-based equiv-
alence checking because: (i) combinational circuits regmmed by CGP can be con-
verted to Boolean formula in linear time with respect to thenber of CGP nodes,
(ii) several optimization techniques specific for the etioloary design can be applied
and (iii) the SAT-based checking becomes to be a preferrédodes it outperforms
the BDD-based approaches.

SAT solvers assume that the equivalence checking problempeessed using
Boolean formula in conjunctive normal form (CNF). CNF forlag consists of a
conjunction of clauses denoted as Each clause contains a disjunction of literals.
A literal is either variable or its complement.x;. Each clause can contain uprio
literals providing there exists exacthyariables.

For our purposes, the most suitable transformation of tleaiitito CNF is repre-
sented by Tseitin's algorithm proposed in [46] that workéadisws: Let us consider

10

a combinational circui€a with k inputs that is composed ofinterconnected logic
gates. Without loss of generality, let us restrict the setligbossible gates to the fol-
lowing one-input and two-input gates: NOT, AND, OR, XOR, NBNand NOR only.
Lety; = Q(x1,X2) denote a gateof C with function Q, outputy; and two inputs
X1 andxiz (1 <il,i2 < k+n). The Tseitin transformation is based on the fact that the
CNF representatio$ captures the valid assignments between the primary inpdits a
outputs of a given circuit. This can be expressed using afsetlid assignments for
every gate. In particulag) = w; A @ A - -+ A an Wherea (i, Xi1,Xi2) = 1 if and only

if the corresponding predicaye= Q(x1,X2) holds true. During the transformation a
new auxiliary variable is introduced for every signal®f. Hence CNF contains ex-
actlyk+ nvariables and the size of the resulting CNF is linear witpegsto the size
of Ca. Table 2 contains the CNF representation for the gategedilin this article.

Table 2 CNF representation of some common gates

[Gate | Corresponding CNF representation |
y=NOT(x1) (CyV X)) AyVxa)

y = AND (x1,%) YV =Xy VX)) A (2YV X)) A (Y VXo)
y = OR(x1,X2) YV X1 VX)) A (YV X)) A (YV —Xo)
y = XOR(X1,X2) YV X VX)) A (my VXV Xg)A
yV =X VX2) A (YV X1V —X2)

=YV X VX)) A(YV X) A(YVXo)
YV X1 VX2) A (Y V=X) A (DY V —Xo)

y = NAND (x1,X2)
y = NOR(xq,X2)

Y [R iy

In order to check whether two circuits are functionally eglent, the following
scheme is usually used. L& andCg be combinational circuits, both witkhinputs
denoted ag; ...xc andm outputs denoted as ...ym andy; ...y, respectively. For
SAT based equivalence checking of two circuits, correspangdrimary outputsy;
andy! are connected using the XOR-gate. This gate is denotednitsra The corre-
sponding primary inputs are connected as well. The goaldbtain one circuit that
has onlyk primary inputsx; . .. X andm primary outputg; . .. zm, z = XOR(y;, Y;). In
order to disprove the equivalence, it is necessary to ifjeatieast one miter which
evaluates to 1 for an input assignment, i.e. it is necessafind an input assign-
ment for which the corresponding outpytsandy, provide different values and thus
z = 1. This can be done by checking one miter after another (iGNB is created
and solved for each miter output separately) or by the appatstapproach (all miter
outputs are connected using thenput OR gate; thus one CNF is created and solved
only). Note that both approaches are used in practice. €igwhows the all output
approach adopted in this article.

4.2 Proposed Fitness Function

Assume thaC is ak-input/m-output circuit composed af logic gates and the goal
is to reduce the number of gates. The first step involvesiogeatreference solution
by convertingC to the corresponding CNB; using the approach described above.
Let X = {x1,%2,...,Xn } be a set containing the variables used witfinand |X| =

11

hll : Circuit A DA
ym >
Z1
Circuit B L
L- O

T
ym

Fig. 4 Equivalence checking of two combinational circuits using all outputs approach

N = k+ n. The variables corresponding with the primary inputs wéldenoted as
X1,...,X and the auxiliary variables generated during the transfition process will
be denoted a%. 1,...,X. n- Let the lasmvariablesq_m1, ..., XN correspond with
the primary outputs of (see Fig. 5a).

The fitness calculation consists of the following steps:

1. A new instance of the SAT solver is created and initialinéth the reference
circuit. This comprises creating 6f new variables and submitting all clauses of
¢, into the SAT solver.

2. A candidate solution is transformed to a list of clauses #re submitted into
the SAT solver (see Fig. 5b). The transformation includeslirgg the CGP rep-
resentation according to the indexes of the nodes. If a CGIe nontributes to
the phenotype, it is converted to the corresponding CNF rdaog to Table 2,
otherwise it is skipped. In particular, for each node a neriatde is created and
a list of corresponding CNF clauses is submitted into the SélVer. The fol-
lowing input mapping is used in order to form a CNF: If an inpfithe node
situated in rowi; and columric is connected to the primary inpitvariablex; is
used; otherwise variablgy,; is used wheré= (ic — 1).n; + i, denotes the index
of the corresponding node. Let variables correspondinig thi¢ primary outputs
of a candidate solution be denot&g _n.1,...,Xy WhereN’ is the number of
converted CGP nodes.

Note that although it is possible to include unused gated\B ®ithout affecting
the reasoning, it is preferred to minimize the number of edsuand variables of
the resulting CNF since it can decrease the decision time.

3. Miters are created. The XOR gates are applied to each op#auwvhich means
thatm new variables denoted &g, .. .,ym have to be created and CNFs of XOR
gates; = XOR(Xn—i,Xn—i), i =0...m—1 have to be submitted to the SAT solver
(see Fig. 5¢).

4. In order to guarantee that the resulting CNF will be satidé if and only if at
least one miter is evaluated to 1, the outputs of the mitersigeed in the previous
step have to be combined together. The solution is basedobinmg the outputs
by mrinput OR gatez = OR(ys,...,Ym). The corresponding CNF representation
has the form of~zV x; V--- V x) A AK; (=% V 2). In order to provide a CNF

12

a1 . CNF
b — AND AND o x (z1 V —xs) (@2 V —ws)(—xy V —xg V as)
(mza Vx6)(—23 V 36) (T2 V 23 V ~T6)
(z3V ﬁI7)(Z4 V owr)(og V oz Vo ay)
y (x5 V ~x8)(z7 V ~a8)(—T5 V ~27 V T8)
c 3 7 (‘\16 \ Tg)(“lﬁ \Y Ig)("t@ Y T V "Tg)
g 2 AND
a) reference circuit
a ! n.c.
2 AND 12
b W x (_‘,’L‘Q Vv IL‘]Q)(_\.'L'g \Y .’L‘lg)(.’EQ \Y T3 Vv _\iL‘lo)
10 (x3 V —@11)(2a V ~211) (m23 V 2y V 211)
b 13 (x11 V 212) (211 V "T12)
3 » 4 (—~z10 V @13) (11 V @13)(T10 V @11 V 1213)
c 11
4 AND
d
b) candidate circuit
a 1
2 AND)= 8 (mxg V12 Vyr)(zs V ~z12 V y1)
b AND ! 1
(mwg V —w1a Vo) (28 V 12 V)
6
(=9 V213 V y2) (9 V =213 V o)
9
s (mz9 V mz13 V mw2) (T V 213 V —y2)
¢ 7
o] o (11 V 1)
Do o>) >

' 12
CNF is satisfiable if

AND 1 =0,29 =0,23 =0,24 =0

c) miter

Fig. 5 Example of transformation of reference circuit, candidateuit and miter to CNF

instance capable of the equivalence checking, it is negessappend the clause
(2) thatimpliesz= 1, thus(—=zVy1 V- - VYi) AAK 1 (=i VZ) A (2) = (Y1 V- - Vi)
So, in order to finish the CNF, clauég V - - - VVyi) has to be submitted to the SAT
solver (see last clause in Fig. 5c).

5. The SAT solver determines whether the submitted set okekis satisfiable or
not. If the CNF is satisfiable, the fithess function returngh@ candidate circuit
and the reference circuit are not equivalent); otherwisenthmber of utilized
gates is returned.

13

4.3 Time of Candidate Circuit Evaluation

In order to compare the time of evaluation for the common$igrfanction (eq. 1) and
the proposed SAT based fitness function, the parity cirqtingzation problem has
been chosen. The design of a parity circuit consisting of ARR and NOT gates
only is considered as a standard benchmark problem for igggregramming [28].
The relevant CGP parameters are as follows: 4, = {AND, OR,NOT, Identity},

I = Ng, nc = Ng andn; = 1 whereNy is the number of gates of the reference circuit.
One gene of the chromosome undergoes the mutation only. GiRei@plementation
uses the parallel evaluation described in Section 3.2.d.ifiitial circuit (seed) has
been obtained by mapping a parity circuit consisting of X@iReg (parity tree) to the
2-inputs gates using ABC. Table 3 gives the mean evaluatios fout of 100 runs)
for three fitness functions — the standard fitness functidd®® {.yp), the optimized
and accelerated evaluatidgcgp, see Section 3.2.4) and the SAT-based methad.(
Last two columns contain the achieved speedup of proposgagh against the
common and accelerated CGP. The experiments were carrteanolntel Core 2
Duo 2.26 GHz processor. Far > 26 only extrapolated values are given as running
the experiments is not practical. The MiniSAT 2 (version DZD) has been used as a
SAT solver [9] because it can be effectively embedded intosdcm application.

Table 3 The mean evaluation time for the standard fitness functidd@®t.gp, CGP with optimized and
accelerated evaluatidpgp and the SAT-based CGE;. Symbol ** denotes extrapolated values.

seed tegp tocgp tear tegpltsat | tocgp:tsat
n; [gates] | [ms] [ms] [ms] speedup| speedup
12 | 69 0.13 0.04 0.348 | 0.3 0.1
14 | 87 0.54 0.16 0.438 | 1.2 0.4
16 | 103 2.54 0.27 0531 | 4.8 0.5
18 | 115 11.45 1.20 0.722 | 15.9 1.7
20 | 125 51.44 5.17 0.776 | 66.3 6.7
22 | 135 220 25.11 0.804 | 273.6 31.2
24 | 145 1328 139 0.903 | 1471 153.9
26 | 171 5962* 626* 1.028 | 5799 608
28 | 181 26748* 2820* 1.195 | 22383 2359
30 | 199 119996* | 12703* | 1.211 | 99088 10489
32 | 215 538327* | 57207* | 1.348 | 399352 | 42438

Sincetegp increases exponentially with the increasing number ofudiioputs,
the standard CGP approach provides a reasonable evaltiat®ifor parity circuits
that contain up to 22 inputs. The optimized evaluation isliapple for up to 24
inputs. In case of the SAT-based approach the evaluatianisralmost similar inde-
pendently of the number of candidate circuit inputs.

14

4.4 CGP-Specific Performance Improvement Techniques

Although the system can be used directly as it was propostiprevious section,
we have introduced some techniques allowing the SAT solwen ¢o increase the
performance.

The speed of the SAT-based equivalence checking depend/roaithe number
of paths that have to be traversed in order to prove or digpttow satisfiability. The
number of paths increases with the increasing number olitsitp be compared, i.e.
more outputs to be compared more time the SAT-solver neagdfidodecision. In
order to simplify the decision problem and increase thegrar&nce, CNF reduction
based on finding structural similarities were proposedérditure.

In our case we can apply a very elegant and simple solutioteSivery fithess
evaluation is preceded by a mutation, a list of nodes thatliffierent for the parent
and its offspring can be calculated. This list can be usectterthine the set of out-
puts that have to be compared with the reference circuit ahdtbese outputs are
included into CNF. This can be achieved by omitting the uessary outputs during
the miter creation phase.

In order to decrease the number of variables as well as théauof clauses
in NOT-intensive circuits, the following approach is prepd. Lety; = NOT (),
then the NOT gate can be subsumed to CNF of every gate thamisected directly
to outputy;. Using literal—x; instead ofy; and literalx; instead of-y; respectively
solves the problem.

Note that proposed approach can easily be combined with miiinods designed
to speedup the SAT-based equivalence checking, e.g.fgireygrocessing, incremen-
tal approach or improved CNF transformation [6, 8, 2,50].

Table 4 The mean time needed to evaluate a candidate solution forgna optimized SAT-based fitness
method

seed tsat tosat tsat - tosat
circuit | n n, | [gates] | [ms] [ms] speedup
apexl | 45 45 | 1408 49.80 | 15.52 | 3.21
apex2 | 39 3 235 3.54 2.52 1.40
apex3 | 54 50 | 1407 34.56 | 13.93 | 2.48
apex5 | 117 | 87 | 784 17.45 | 5.07 3.44

In order to evaluate the impact of proposed improvements,domplex circuits
have been selected for experiments from the LGSynth93 eaidhset. This bench-
mark set includes nontrivial circuits specified in BLIF faatrthat are traditionally
used by engineers to evaluate quality of synthesis algosthThe benchmark cir-
cuits were mapped to 2-input gates using SIS. Parameteetanted circuits as well
as obtained results are summarized in Table 4. It can be Bataven if the circuits
exhibit higher level of complexity in comparison with pgréircuits, the average time
needed to perform the fithess evaluation remains still rede. Note that the same
experimental setup mentioned in Section 4.3 has beenadil@btained results show
that the average time needed to evaluate a candidate sohafbeen reduced three

15

times in average by means of applying the proposed stepsgiilné transformation
of a candidate solution to corresponding CNF.

5 Results

This section surveys experiments performed to furtheustalthe proposed method.
In particular, the effect of population sizing, CGP gridist, mutation rate and time

allowed to evolution are analyzed for benchmark circuitsall experiments we used
the optimized SAT-based fitness function.

5.1 Population Size

Table 5 surveys the best (minimum) and mean number of gatameh forA =1 and

A =4 outof 100 independentruns. The number of evaluationsimégdt to 400,000
which corresponds with 100,000 generations for ES(1+4)40@000 generations
for ES(1+1). The mutation operator modified 1 gene of the wlm®ome| = n; and

" = {ldentity, AND,OR,NOT, XOR,NAND, NOR}. The best values as well as mean
values indicate that ES(1+1) performs better than ES(1+4d¢twcorresponds with
our intuitive assumption of very rugged fithess landscape.

Table 5 The best and mean number of gates for different populat@ngsi

seed ES 1+4 ES 1+1
circuit | n N, | [gates] | best mean| best mean

apexl | 45 45 | 1408 1240 1267 | 1201 1255
apex2 | 39 3 235 138 155 132 146
apex3 | 54 50 | 1407 1336 1350 | 1331 1347
apex5 | 117 | 87 | 784 736 746 730 743
mean 959 863 880 849 873

5.2 Mutation Rate and CGP Grid Size

Table 6 gives the best (minimum) and mean number of gatesnebitfor different
mutation rates (1, 2, 5, 10, 15 genes) and CGP grid setting { versuse x nE')). It
will be seen below that the number of romlg is variable. The number of evaluations
was limited to 400,000 and results were calculated out ofit@@pendent runs of
ES(1+1). Table 6 also includes the mean number of bits the¢ imeluded to create
miters and the mean time of a candidate circuit evaluation.

The best results were obtained for the lowest mutation dte.higher mutation
rate the higher mean number of gates in the final circuit. @/ttie mean number
of miters grows with increasing of the mutation rate, the mewaluation time is
reduced. This phenomenon can be explained by the fact tghehimutation rate
implies more changes that are performed in circuits and e miters have to be

16

considered. On the other hand, because of many (mostly bfrchiinges in a circuit
it is easier to disprove the equivalence for SAT solver andesinice the evaluation
time.

The settings: x 1 or ne X ny do not have a significant impact on the resulting
number of gates on average. Recall that the valuagafidn, are given by the circuit
topology which is created by the SIS tool. The nhumber of rcm{)%)ds considered as
variable for a given circuit in order to represent the citoptimally. For example, the
1408 gates of the apex1 benchmark is mapped on the array ®882%0des; however
only1,5,7,14,17, 26, 43,57, 84,117, 142, 177, 189, 187,83%1, 27, 40 gates
are utilized in columng=1...19. The advantage of usimg > 1 is that delay of the
circuit is implicitly controlled to be below a given maximuwalue.

Table 6 The best (minimum) and mean number of gates, the mean nurhbetess and the mean evalu-
ation time for different mutation rates (1-20 genes) and @@dPsetting (ic x 1 versusn; x n§'>)

mutated genes§ x 1) mutated genesg x nﬁ'))
1 J2][5 J10 [15 J20 |[1 2 [5 10 [15 20
apex1 - 1408x1 apex1 - 19x189
best 1240/ 1290{ 1351{1377|1382| 1393|| 1260[1290/ 1351| 1379| 1385| 1392
mean 1269/ 1313|1367|1387|1396| 1399|(1287| 1326/ 1369| 1390| 1395| 1399

mean (miters)||3.8 |5 8.2 |12.3|15.3|17.6||3.6 |4.8 |8 12.2115.2|17.6
meantys [Ms]||15.8|11.2|8.8 |7.7 |7.7 |7.2 |[{11.8|11.5(9.7 |7.8 |7.9 [6.7

apex2 - 235x1 apex2 - 22x23
best 164 |159 |166 |181 (195 |200 ([165 |167 |172 |186 |194 (201
mean 170 {172 |181 |195 |203 |209 ({171 |174 (182 [195 |205 209

mean (miters)||1.8 |2.1 |25 |2.7 |28 |29 |[1.8 |2 25 2.7 |2.8 |29
meantes [Ms]|(1.7 (1.7 |1.4 |{1.2 |11 (09 ||1.7 |16 |14 |12 (1.0 |1.0

apex3 - 1407x1 apex3 - 24x193
best 13411 1358| 1383)1392] 1395| 1396|| 1345| 1362| 1383| 1392| 1396| 1398,
mean 13541 1369| 1389|1397| 1399| 1400|(1357| 1372| 1390| 1397| 1400| 1401

mean (miters)((2.6 (3.6 |6.2 (9.4 |12 |14 ||2.6 |35 (6.1 |9.4 (11.9|14.1
meantost [Ms]|{10.5/10.1|9.0 |11.4|8.3 [8.0 (|10.5|10.3|9.8 |8.8 [9.8 |7.2

apex5 - 784x1 apex5 - 34x117
best 740 | 741 |755 |765 |767 |774 ||741 |750 |757 |767 |768 |771
mean 748 |753 |764 773 |775 |779 ||751 |757 |766 |773 |775 |777

mean (miters)||4.6 |6.4 |11.1|18.1|23.7|28.4||4.6 |6.4 |11.2(18.1(23.7(28.4
meantes; [Ms]|(3.3 [3.1 |3.0 {29 |29 (2.7 ||3.1 |3.2 (29 |3.0 3.2 |29

5.3 Parity Benchmarks

In Section 4.3 we compared the evaluation time of the stahfitmess function and
the SAT-based fitness function in the task of parity circoipgimization. Table 7
shows concrete results - the minimum number of gates tha aletained for 12—38
input parity circuits by running the proposed method for,3 énd 12 hoursona 2.4
GHz processor. The results are averaged from 100 indepenaeof CGP with the
following setting: ES(1+1), 1 mutated gene/chromosadme,{ldentity, AND, OR NOT},

17

and CGP array afi. x 1 nodes wherg. is the number of gates in the seed — the initial
circuit created by SIS. Column TG denotes the number of gstdee optimal solu-
tion which is known in this case. It can be calculated aswvherew is the number
of XOR gates in the optimized parity tree and 4 denotes thebenof gates froni”
needed to form a single XOR gate.

We can observe that the proposed method provides an optingibs forn; < 20
and almost optimal solution for larger problem instancestlcolumn shows that the
proposed method improves the original solution of SIS by428%.

Table 7 The minimum number of gates that were obtained for parityudis by running the proposed
method for 3, 6, 9 and 12 hours. TG gives the optimum solution.

seed run-time TG relative
nj [gates] | 3h 6h 9h 12h| [gates] | improv.
12 | 69 45 44 44 44 | 44 36 %
14 | 87 54 53 52 52 | 52 40 %
16 | 103 64 61 60 60 | 60 42 %
18 | 115 74 70 69 69 68 40 %
20 | 125 82 79 7 76 76 39 %
22 | 135 95 91 88 87 | 84 36 %
24 | 145 110 101 98 96 | 92 34 %

26 | 171 134 120 114 111| 100 35%
28 | 181 151 132 124 121| 108 33%
30 | 199 165 140 132 129 116 35%
32 | 215 186 169 159 143| 124 33%
34 | 227 214 187 172 160| 132 30 %
36 | 237 220 192 168 162| 140 32%
38 | 247 235 219 193 177| 148 28 %

5.4 LGSynth93 Benchmarks

Table 8 shows the minimum and mean number of gates that wéaeet for real-
world benchmark circuits of the LGSynth93 suite (we haveaeld those with more
than 20 inputs) by running the proposed method for 3, 6, 9 &rttblirs on a 2.4 GHz
processor. The results are averaged from 100 independendflCGP with the fol-
lowing setting: ES(1+1), 1 mutated gate/chromosame,{ldentity, AND, OR,NOT,
XOR,NAND,NOR}, and CGP array afi; x 1 nodes where. is the number of gates
in the seed circuit. The initial circuit was obtained by certing the PLA files of
LGSynth93 circuits to the 2-input gates lofand optimizing them by SIS. Last col-
umn shows that the proposed method improves the originatisok obtained from
SIS by 22-58%.

5.5 Seeding the Initial Population

In order to investigate the role of seeding of the initial piaion we have used two
seeds obtained after 1 and 1000 iterations of the SIS sEiire 6 shows that con-

18

Table 8 The minimum (even rows) and mean number (odd rows) of gatdsG&ynth93 circuits obtained
from the proposed method after 3, 6, 9 and 12 hours.

seed run-time relative
circuit | n n, | [gates]| 3h 6h 9h 12h | improv.

apexl |45 |45 | 1408 | 1179 1083 1026 990| 30 %
1230 1108 1042 100129 %
apex2 [39 |3 235 104 101 99 98 | 58 %
119 102 100 98 |58%
apex3 | 54 |50 |1407 | 1280 1223 1189 116717 %
1333 1240 1202 117516 %
apex5 | 117| 87 | 784 675 649 640 633|19%
692 661 644 636|19%
cordic | 23 |2 67 32 32 32 32 [52%
33 32 32 32 | 52%
cps 24 | 1091128 | 870 788 737 698 38%
909 806 757 713|(37%
duke |22 |29 | 430 286 274 270 268|38%
296 279 272 269|37%
e64 65 | 65 | 192 133 130 129 129|33%
139 131 129 129|33%
exap 128 | 28 | 500 404 399 396 394|21%
414 401 397 395|21%
misex2| 25 | 18 | 111 76 73 72 70 | 37%
82 74 72 71 | 36%
vg2 25 |8 95 79 75 74 74 | 22%
83 77 74 74 | 22%

vergence curves for two selected benchmark circuits - ajellargest one) and
ex4p (the highest number of inputs) - are very similar forstheeeds. We can also
observe how the progress of evolution is influenced by riéstpg€GP (every 3 hours;
using the best solution out of 100 independent runs) whictbesalso considered as
a new seeding. Figure 6 shows that repeating the synthegits9SI1S and ABC are
compared) quickly lead to a small reduction of the circuiesihowever, no further
improvements have been observed in next 1 hour.

6 Discussion

Applying the SAT solver in the fitness function allowed us ign#ficantly reduce
the computational requirements of the fitness functiondiehssombinational circuit
optimization problems for which a fully functional initigblution exists before the
optimization is started. In this category of problems, weenable to optimize much
larger circuit instances than standard CGP. Furthermoggeduced the number of
gates in solutions that can be delivered by conventionahggis methods. However,
proposed method requires significantly more computatitimad in comparison to
conventional synthesis tools.

Although the results for LGSynth93 benchmarks are very eraging, the SAT-
based combinational equivalence checking can definitafippa unsatisfactory for
some problem instances, for example for multipliers wheeertumber of paths tra-
versed by the SAT solver grows enormously with the increaasimmber of inputs.

19

2200 T

2100 apexl — sis
2000} -
1900 ABC

1800 1
1700 1
1600 1
1500 1
1400
13000

#gates

1500 T T
apex1

1400 (1408 gates) CGP
1300 \ 1

1200 1

1100 T— i

\
1000 —

900

#gates

0 100 200 300 400 500 600 700

1500 T T T T
apex1l

1400\ (1394 gates) — cep l

1300

1200 ~=

1100} — 1
——————
1000 o

900

#gates

0 100 200 300 400 500 600 700

560 T T
ex4p

550 — SIS
5401 —— ABC
530

520 R
510 i

500
290| WM

#gates

500 T T T T
ex4p .
480 (500 gates) CGP l
460 R
440
420
400
380

#gates

0 100 200 300 400 500 600 700

500 T
ex4p
480 (488 gates)
460} g
4401 R
420 R
400 E
380

CGP

#gates

0 100 200 300 400 500 600 700
t [min]

Fig. 6 Convergence curves for the apex1 and ex4p benchmarks. Tdre méimum and maximum num-
ber of gates from 100 independent runs of CGP when seedeg th&inmesult of the 1st iteration and the
best result out of 1000 iterations of the SIS tool. ABC and 8é&8e repeated until stable results observed.

20

In order to improve performance of the SAT solver in this jgatar case, various
techniques have been proposed to reduce the equivalencleropéime [1,2]. The
proposed method is assumed to be able to handle large-sodtipli®rs optimiza-
tion if more advanced version of SAT solver is utilized. Qtkechniques exist that
can be employed to improve the proposed fitness functionGN§ preprocessing,
BDD-based checking, hierarchical equivalence checkiog[25].

7 Conclusions

We demonstrated that some applications of evolvable hasde@uld benefit from
formal verification techniques. The main advantage of outhoeis that the time of
evaluation can significantly be reduced in comparison tataedard fitness function
in cases when a fully functional solution exists before mjation is started. Con-
sequently, we demonstrated that the circuit post-syrgtogstimization conducted by
CGP is applicable on complex digital circuits. CGP redudedriiumber of gates for
the LGSynth93 benchmark circuits by 37.8% on average wiheet to the SIS tool.
Future research will be oriented towards improving the farerification module by
using more sophisticated verification algorithms and applyhe proposed method
in various domains, including software evolution, devetemtal CGP and numerous
real-world evolvable hardware problems.

Acknowledgements This work was partially supported by the Czech Science Fatiod under projects
Natural Computing on Unconventional Platforms P103/10/1517 antathematical and Engineering Ap-
proachesto Developing Reliable and Secure Concurrent and Distributed Computer Systems GD102/09/H042
and by the research program®eeurity-Oriented Research in Information Technology MSM 0021630528.

References

1. Andrade, F.V., Oliveira, M.C.M., Fernandes, A.O., Coell.J.N.: Sat-based equivalence checking
based on circuit partitioning and special approaches foflicoclause reuse. Design and Diagnostics
of Electronic Circuits and Systems pp. 1-6 (2007)

2. Andrade, F.V,, Silva, L.M., Fernandes, A.O.: Improvinglshased combinational equivalence check-
ing through circuit preprocessing. In: 26th Internatio@ainference on Computer Design, ICCD
2008, pp. 40-45 (2008)

3. Berkley Logic Synthesis and Verification Group: ABC: A &ys for Sequential Synthesis and veri-
fication. URL http://www.eecs.berkeley.edu/~ alanmifabc

4. Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiomaivincentelli, A.L.: Logic Minimization
Algorithms for VLSI Synthesis. Kluwer Academic PublisheBoston, MA, USA (1984)

5. Cong, J., Minkovich, K.: Optimality Study of Logic Syntie for LUT-Based FPGAs. IEEE Trans-
actions on Computer-aided Design of Integrated Circuits 3ystem=26(2), 230—239 (2007)

6. Disch, S., Schollm, C.: Combinational equivalence cherkising incremental SAT solving, output
ordering, and resets. Asia and South Pacific Design Autem&onference pp. 938—-943 (2007)

7. Ebendt, R., Fey, G., Drechsler, R.: Advanced BDD Optitiora Springer (2000)

8. Een, N., Mishchenko, A., Sorensson, N.: Applying logintiesis for speeding up SAT. Lecture notes
in computer science p. 272 (2007)

9. Een, N., Sorensson, N.: MiniSAT. URL http://minisat.se

10. Fiser, P., Schmidt, J.: Small but nasty logic synthezs@mples. In: Proc. 8th Int. Workshop on
Boolean Problems, pp. 183—-190 (2008)

21

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

de Garis, H.: Evolvable Hardware — Genetic Programming Barwin Machine. In: International
Conference on Atrtificial Neural Networks and Genetic Algaris ICANNGA'93. Innsbruck, Austria
(1993)

Glette, K., Torresen, J., Yasunaga, M.: An online EHWepatrecognition system applied to face
image recognition. In: Applications of Evolutinary Comimgt, EvoWorkshops 20071,NCS, vol.
4448, pp. 271-280. Springer (2007)

Goldberg, E., Prasad, M., Brayton, R.: Using SAT for corational equivalence checking. In: DATE
'01: Proceedings of the conference on Design, automatiahtest in Europe, pp. 114-121. IEEE
Press, Piscataway, NJ, USA (2001)

Gordon, T.G.H., Bentley, P.J.: Evolving hardware. loniaya, A.Y. (ed.) Handbook of Nature-
Inspired and Innovative Computing, pp. 387-432. Springén6)

Gordon, T.G.W., Bentley, P.J.: Towards developmentoivable hardware. In: Proc. of the 2002
NASA/DoD Conference on Evolvable Hardware, pp. 241-25@HE omputer Society Press, Wash-
ington D.C., US (2002)

Greenwood, G., Tyrrell, A.M.: Introduction to EvolvaliHardware. IEEE Press (2007)

Haddow, P.C., Tufte, G., van Remortel, P.: Shrinkinggbnotype: L-systems for EHW? In: Proc.
of the 4th Int. Conference on Evolvable Systems: From BiglttgHardware LNCS, vol. 2210, pp.
128-139. Springer (2001)

Harding, S., Miller, J.F., Banzhaf, W.: Self modifyingrtesian genetic programming: Parity. In: 2009
IEEE Congress on Evolutionary Computation, pp. 285—-29gHPress (2009)

Higuchi, T., Iwata, M., Keymeulen, D., Sakanashi, H.,rkkawa, M., Kajitani, |., Takahashi, E.,
Toda, K., Salami, M., Kajihara, N., Otsu., N.: Real-Worldgipations of Analog and Digital Evolv-
able Hardware. IEEE Transactions on Evolutionary Compna(3), 220-235 (1999)

Higuchi, T., Liu, Y., Yao, X.: Evolvable Hardware. Spger (2006)

Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, Hurliya, T.: Evolving Hardware with Ge-
netic Learning: A First Step Towards Building a Darwin Mawhi In: Proc. of the 2nd International
Conference on Simulated Adaptive Behaviour, pp. 417-42%. Rtess (1993)

Hornby, G., Globus, A., Linden, D., Lohn, J.: Automatedténna Design with Evolutionary Algo-
rithms. In: Proc. 2006 AIAA Space Conference, p. 8. AIAA, Sase, CA (2006)

Imamura, K., Foster, J.A., Krings, A.W.: The test veqiooblem and limitations to evolving digi-
tal circuits. In: Proc. of the 2nd NASA/DoD Workshop on Evaltve Hardware, pp. 75-79. |IEEE
Computer Society Press (2000)

Kalganova, T., Miller, J.F.: Evolving more efficient da circuits by allowing circuit layout evolution
and multi-objective fitness. In: The First NASA/DoD Workghon Evolvable Hardware, pp. 54—63.
IEEE Computer Society, Pasadena, California (1999)

Katebi, H., Markov, I.L.: Large-scale boolean matchiig Design, Automation and Test in Europe,
DATE 2010, pp. 771-776. |IEEE (2010)

Kaufmann, P., Platzner, M.: Advanced techniques forctieation and propagation of modules in
cartesian genetic programming. In: Proc. of Genetic andufiemary Computation Conference,
GECCO 2008, pp. 1219-1226. ACM (2008)

Keymeulen, D., Durantez, M., Konaka, K., Kuniyoshi, Miguchi, T.: An evolutionary robot naviga-
tion system using a gate-level evolvable hardware. In: Ehgur., lwata, M., Liu, W. (eds.) Proc. of
the 1st International Conference on Evolvable SystemsnBmlogy to Hardware ICES’96,NCS,
vol. 1259, pp. 195-209. Springer, Tsukuba, Japan (1997)

Koza, J.R.: Genetic Programming Il: Automatic Discgvef Reusable Programs. MIT Press, Cam-
bridge, MA (1994)

Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A.: Genetogramming Ill: Darwinian Invention
and Problem Solving. Morgan Kaufmann Publishers, San isemcCA (1999)

Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W, ¥,, Lanza, G.: Genetic Programming IV:
Routine Human-Competitive Machine Intelligence. Kluwearaélemic Publishers (2003)

Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Ta¥gaRobust Integrated Circuits: The Embry-
onics Approach. Proceedings of IEBB(4), 516-541 (2000)

Miller, J.F., Job, D., Vassilev, V.K.: Principles in tB@olutionary Design of Digital Circuits — Part I.
Genetic Programming and Evolvable Machiri¢s), 8-35 (2000)

Miller, J.F., Smith, S.L.: Redundancy and ComputatidEféiciency in Cartesian Genetic Program-
ming. IEEE Transactions on Evolutionary Computatid2), 167-174 (2006)

Miller, J.F., Thomson, P.: Cartesian Genetic Programymin: Proc. of the 3rd European Conference
on Genetic Programming EuroGP20Q0CS, vol. 1802, pp. 121-132. Springer (2000)

22

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Murakawa, M., Yoshizawa, S., Kajitani, I., Furuya, Wata, M., Higuchi, T.: Evolvable Hardware
at Function Level. In: Parallel Problem Solving from NatuP@®SN IV,LNCS, vol. 1141, pp. 62-71.
Springer (1996)

Pecenka, T., Sekanina, L., Kotasek, Z.: Evolution oftSstic RTL Benchmark Circuits with Pre-
defined Testability. ACM Transactions on Design AutomatirElectronic Systemd3(3), 1-21
(2008)

Poli, R., Page, J.: Solving high-order boolean parigbfgms with smooth uniform crossover, sub-
machine code gp and demes. Genetic Programming and EweMaithinesl(1-2), 37-56 (2000)
Sekanina, L.: Image Filter Design with Evolvable Hartevan: Applications of Evolutionary Com-
puting — Proc. of the 4th Workshop on Evolutionary Compotafn Image Analysis and Signal Pro-
cessing EVolASP’02.NCS, vol. 2279, pp. 255-266. Springer Verlag, Kinsale, Irel§2@02)
Sekanina, L.: Evolvable Components: From Theory to Ward Implementations. Natural Comput-
ing Series, Springer Verlag (2004)

Sentovich, E.M., Singh, K.J., Lavagno, L., Moon, C., bair R., Saldanha, A., Savoj, H., Stephan,
P.R., Brayton, R.K., Sangiovanni-vincentelli, A.: Sis: ystem for sequential circuit synthesis. Tech.
rep., University California, Berkeley (1992)

Shanthi, A.P., Parthasarathi, R.: Practical and sleakamlution of digital circuits. Applied Soft
Computing9(2), 618-624 (2009)

Stanley, K.O., Miikkulainen, R.: A taxonomy for artifitiembryogeny. Artificial Life9, 93—-130
(2003)

Stomeo, E., Kalganova, T., Lambert, C.: Generalizefimiition decomposition for evolvable hard-
ware. |[EEE Transaction Systems, Man and Cybernetics, P36, 1024-1043 (2006)

Torresen, J.: A Divide-and-Conquer Approach to Evdldtardware. In: Sipper, M., Mange, D.,
Perez-Uribe, A. (eds.) Proc. of the 2nd International Canfee on Evolvable Systems: From Biology
to Hardware ICES’98L.NCS vol. 1478, pp. 57-65. Springer, Lausanne, Switzerlan@g}9
Torresen, J.: A scalable approach to evolvable hardw@emetic Programming and Evolvable Ma-
chines3(3), 259-282 (2002)

Tseitin, G.S.: On the complexity of derivation in projiosal calculus. In: Studies in Constructive
Mathematics and Mathematical Logic, Part I, pp. 115-12Z%8)

Tufte, G., Haddow, P.C.: Towards development on a siticased cellular computing machine. Nat-
ural Computing4(4), 387-416 (2005)

Vasicek, Z., Zadnik, M., Sekanina, L., Tobola, J.: Onlationary synthesis of linear transforms in
FPGA. In: Proc. of the 8th Conference on Evolvable SystemsmPBiology to Hardware|.NCS
vol. 5216, pp. 141-152. Springer Verlag (2008)

Vassilev, V., Job, D., Miller, J.F.: Towards the Autoinddesign of More Efficient Digital Circuits.
In: Lohn, J., Stoica, A., Keymeulen, D., Colombano, S. (eésoc. of the 2nd NASA/DoD Workshop
on Evolvable Hardware, pp. 151-160. IEEE Computer Sodigty,Alamitos, CA, USA (2000)

Velev, M.N.: Efficient translation of boolean formulas@NF in formal verification of microproces-
sors. Asia and South Pacific Design Automation Conferenc8pp-315 (2004)

Walker, J.A., Miller, J.F.: The Automatic AcquisitioByolution and Re-use of Modules in Cartesian
Genetic Programming. |IEEE Transactions on Evolutionargn@atation12(4), 397-417 (2008)
Yanushkevich, S., Miller, D.M., Shmerko, V.P., Stankp\R.S.: Decision Diagram Techniques for
Micro- and Nanoelectronic Design Handbook. CRC (2006)

Yao, X., Higuchi, T.: Promises and Challenges of Evdlvdtardware. |IEEE Transactions on Sys-
tems, Man, and Cybernetics — Par2&1), 87-97 (1999)

Zebulum, R., Pacheco, M., Vellasco, M.: Evolutionargdionics — Automatic Design of Electronic
Circuits and Systems by Genetic Algorithms. The CRC Pregsriational Series on Computational
Intelligence (2002)

Zhan, S., Miller, J.F., Tyrrell, A.M.: A developmentame regulation network for constructing elec-
tronic circuits. In: Proc. of the 8th Int. Conference on Bratile Systems: ¢ From Biology to Hardware,
LNCS vol. 5216, pp. 177-188. Springer Verlag, Berlin (2008)

