Evolving Minimal-Size Sorting Networks

Vinod Valsalam Risto Miikkulainen

Department of Computer Sciences The University of Texas at Austin, USA {vkv,risto}@cs.utexas.edu

Human Competitive Results Genetic and Evolutionary Computation Conference 2011

Sorting Networks

 $a \rightarrow \min(a, b)$ $b \rightarrow \max(a, b)$

Nvidia GT200 GPU die

- ► Sequence of comparators for sorting *n* inputs
 - Data-independent sorting algorithm
- Used in parallel hardware
 - Fast sorting is crucial
 - ► Multi-core GPUs, switching, multi-access memories, ...

A Challenging Optimization Problem

- Minimize size (i.e. number of comparators)
- ▶ Provably minimal size networks known only for $n \le 8$
- Suboptimal heuristic methods for n > 8

Batcher's network for 8 inputs

- Provably optimal
- ► O'Conner and Nelson [1962], U.S. Patent 3029413
 - Hand-designed networks for $4 \le n \le 8$
 - 7-input network required two extra comparators
- Batcher's [1968] recursive merge algorithm
 - Optimal only for $n \le 8$

Human Designs for $8 < n \le 16$

Hand-designed 16-input network with 60 comparators [Green, 1969]

- Optimality not known
- Constructed using special techniques
 - ► Human designs (except for *n* = 13 [Juille, 1995])

Human Designs for n > 16

Hand-designed 16-input network with 60 comparators [Green, 1969]

Only merges of smaller networks are known

SENSO Approach Utilizing Symmetry and Evolution

- SENSO = Sorting ENSO method
- Add comparators greedily to build symmetry step-by-step
 - Focuses evolution on promising solutions
- Utilize an EDA (evolution) to improve greedy solutions
 - Evolution learns to anticipate minimal solutions

Results Evolved by SENSO

n	1	2	3	4	5	6	7	8	9	10	11	12
Prev best	0	1	3	5	9	12	16	19	25	29	35	39
SENSO	0	1	3	5	9	12	16	19	25	29	35	39

п	13	14	15	16	17	18	19	20	21	22	23	24
Prev best	45	51	56	60	73	80	88	93	103	110	118	123
SENSO	45	51	57	60	71	78	86	92	103	108	118	125

- Matched previous best results for $n < 24, n \neq 15$
- Improved previous best results for n = 17, 18, 19, 20, 22
- Potential for more: is still running!

Human-Competitiveness Criterion A: Patentability

A new minimal 22-input network evolved by SENSO

- Do the results match or improve upon patented inventions?
- ▶ U.S. Patent 3029413 for the simpler $4 \le n \le 8$ cases
- SENSO results therefore qualify as patentable inventions

Human-Competitiveness Criteria B, D: Publishability

A new minimal 20-input network evolved by SENSO

- Are the results equal to/better than published results? (B)
- ► Are the results publishable as new scientific results? (D)
- Many journal publications on minimal sorting networks
 - See Knuth [1998] and Koza et al. [1999] for surveys
- ► SENSO improved several upper bounds ⇒ publishable

Human-Competitiveness Criteria E, F, G: Difficulty

A new minimal 19-input network evolved by SENSO

- Equal to/better than a succession of human designs? (E)
- Equal to/better than an achievement in the field? (F)
- Solves a problem of indisputable difficulty? (G)
- Knuth [1998] and Koza et al. [1999] discuss the history
- SENSO scaled to larger networks and improved results

Why is this the Best Entry?

A new minimal 20-input network evolved by SENSO

Nvidia GT200 GPU die

- 1. Not only satisfies humies criteria A, B, D, E, F, and G
- 2. But also improves upon half-century of theoretical results
 - Published in patents, books, peer-reviewed literature
- 3. And has significant practical value
 - More efficient sorting, switching, memories ...

http://nn.cs.utexas.edu/?sorting-code