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Protein structure prediction
From 1D sequence to 3D structure

LFSKELRCMMYGFGDDQNPYTESVDILEDLVIEFITEMTHKAMSIFSEEQLNRYEMYRRSAFPKAA
IKRLIQSITGTSVSQNVVIAMSGISKVFVGEVVEEALDVCEKWGEMPPLQPKHMREAVRRLKSKGQIP

Protein basics
20 amino acid alphabet
sequence encodes
structure
structure determines
activity
ratio structures

sequences = 0.2%
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The algorithm of folding
Anfinsen’s thermodynamic hypothesis [Anfinsen, 1973]

[Dill and Chan, 1997]

Refolding experiment
folds to the same
native state
native state is
energetically stable

Energy funnel
roll down free
energy hill
avoid local minima
traps
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The two aspects of folding
Towards practical prediction

[Dill and Chan, 1997]

Energy landscape
all-atom force field
statistical potential

Search method
random walk
structure
optimisation

Folding@home
8.5 peta FLOPS

10 000 CPU days
for 10µs of folding
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Community wide prediction experiment
Critical Assessment of techniques for protein Structure Prediction

CASP facts
biannual competition started in 1994
parallel prediction and experimental verification
model assessment by human experts

9th edition of CASP
150 human groups
140 server groups
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How to find good quality models?
Correlation between energy and distance to the native structure

distance

energy

native state

Requirements
energy reflects
distance
distance reflects
similarity
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How the best of CASP do it?
Energy of models vs. distance to a target structure

Similarity measure

RMSD =

√√√√ 1
N

i=N∑
i=1

δ2
i

Decoys generated by
I-TASSER
[Wu et al., 2007]

Robetta
[Rohl et al., 2004]
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How the energy function is designed?
Weighted sum vs. free combination of terms

F (~T ) = w1 ∗ T1 + . . .wn ∗ Tn
[Zhang et al., 2003]

F (~T ) =
T1∗T3

w1∗log(T2)
+ sin

„
T4−w2∗T1

T5∗exp(cos(w1∗T3))

«

[Widera et al., 2010]

Decision support
local numerical
approximation

GP input
terminals:
T1, . . . ,T8

functions:
add sub mul div
sin cos exp log
random ephemerals
in range [0,1]
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Can GP improve over a weighted sum of terms?
Nelder-Mead downhill simplex optimisation

spearman-sigmoid correlation

method d-100 all d-100 all

simplex 0.734 0.638 0.650 0.166
GP 0.835 0.714 *0.740 *0.200
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Criteria for human-competitivness

CRITERION F
result >= past achievement in the field

CRITERION E
result >= most recent human-created

solution to a long-standing problem

CRITERION H
result holds its own in a competition

involving human contestants

Natalio Krasnogor Evolutionary design of energy functions for PSP HUMIES 2010 10 / 14



Criteria for human-competitivness

CRITERION F
result >= past achievement in the field

CRITERION E
result >= most recent human-created

solution to a long-standing problem

CRITERION H
result holds its own in a competition

involving human contestants

Natalio Krasnogor Evolutionary design of energy functions for PSP HUMIES 2010 10 / 14



Criteria for human-competitivness

CRITERION F
result >= past achievement in the field

CRITERION E
result >= most recent human-created

solution to a long-standing problem

CRITERION H
result holds its own in a competition

involving human contestants

Natalio Krasnogor Evolutionary design of energy functions for PSP HUMIES 2010 10 / 14



Comparison to the human made solution

1 automated method to discover the best combination
of the energy terms

2 human-competitive improvement to the solution of a
long-standing problem

3 challenge weighted sum of terms with expert-picked
weights
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Potential impact

1 automated energy design using a free functional
combination of terms haven’t been used before

2 energy functions determines the search landscape
and its smoothness is a key to the efficient
prediction

3 long-term effects in protein science that the
improvement in prediction quality could bring
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Why this is the best entry?

1 innovates the field with a novel approach to a
long-standing problem

2 could be a step towards more accurate prediction and
in a long-term improve drug design and identification of
disease-causing mutations

3 represent a new and difficult challange for GP
http://www.infobiotics.org/gpchallenge/
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