Human Strategy based Evolutionary Cube Solver

Nail El-Sourani Christian Grelle Sascha Hauke Markus Borschbach

FHDW

Faculty of Computer Science

Chair of Optimized Systems

Institution / Location

Chair of Optimized Systems

Faculty of Computer Science

University of Applied Sciences,

Germany, Hauptstr. 2,

51465 Bergisch Gladbach

www.fhdw.de

FFD/

Norwich

Lowestoft

Hull

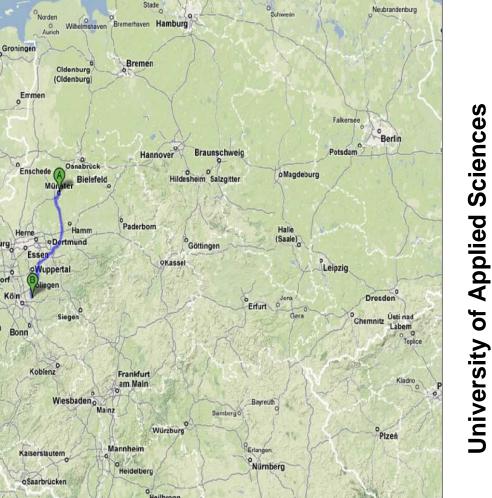
am

amptor

Grimsby

Peterborough

Cambridge


Institution / Location

Mehr.

Karte

Satellit Gelände

Verkehr

Alkmaaro

Den Haag

Amsterdam Almere

Utrecht

Zwolle

Deventer

Arnhem

Apeldoorn

0

Lelystad

1. Introduction

2. What exactly is the contribution ?

3. Why does the result qualify as being human-competitive ?

4. Conclusion:

Why is this the "best" entry in comparison to others ?

5. HuGO! "live"

• N. El-Sourani, S. Hauke, M. Borschbach, "An Evolutionary Approach for Solving the Rubik's Cube Incorporating Exact Methods", In C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 80–89, 2010, Springer-Verlag Berlin Heidelberg 2010.

• N. El-Sourani, M. Borschbach, "Design and Comparison of two Evolutionary Approaches for Solving the Rubik's Cube", to appear PPSN 2010.

• M. Borschbach, C. Grelle, "Empirical Benchmarks of a Genetic Algorithm Incorporating Human Strategies", Technical Report no. 2009/01, University of Applied Sciences, Bergisch Gladbach, April 2009. <u>http://www.fhdw.de/Borschbach.aspx</u>

✓ Satisfies regulation "D" of the humies award:

• D: The result is publishable in its own right as a new scientific result.

Cube Competition

www.youtube.com

- ✓ Satisfies regulation "E" of the humies award:
- E:equal or better than the most recent human-created .. a long-standing problem

for which there has been a succession of increasingly better human-created solutions.

Foundation

Contestants of cube competition use particular "human" strategies to

solve the cube

• Idea:

Take human strategies and incorporate them into an evolutionary approach.

Use group theoretical background to reduce complexity.

• Result:

A more powerful evolutionary algorithm adapting human strategies

and incorporating exact approaches.

\rightarrow Symbiotic Intelligence

7

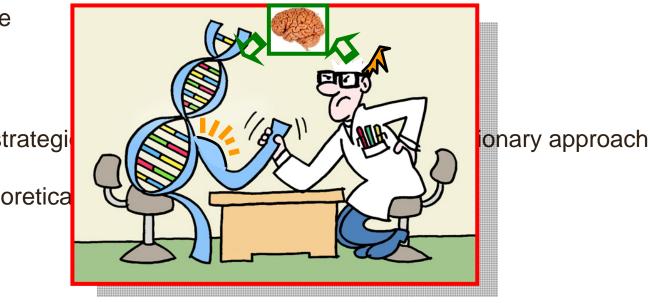
Double Loop: Incorporating Human Strategy and Exact Approach

Contestants of cube competition use particular "human" strategies to

solve the cube

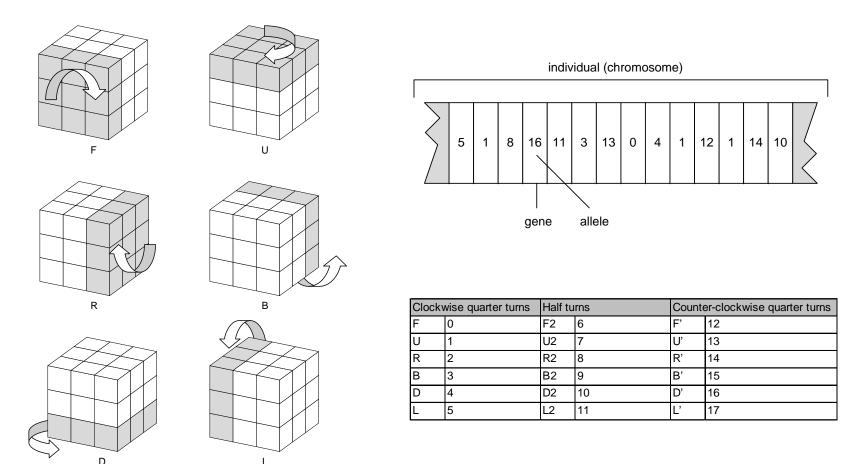
• Idea:

Take human strategi


Use group theoretica

• Result:

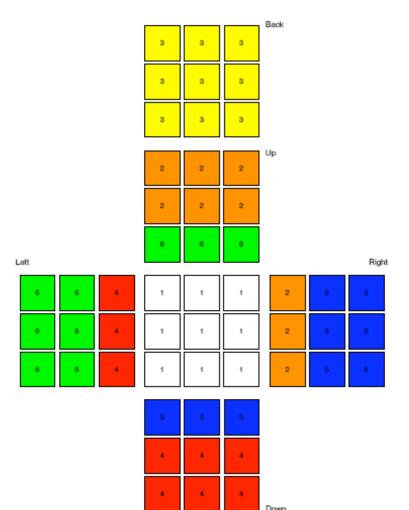
A more powerful evolutionary algorithm adapting human strategies


and incorporating exact approaches.

\rightarrow Symbiotic Intelligence

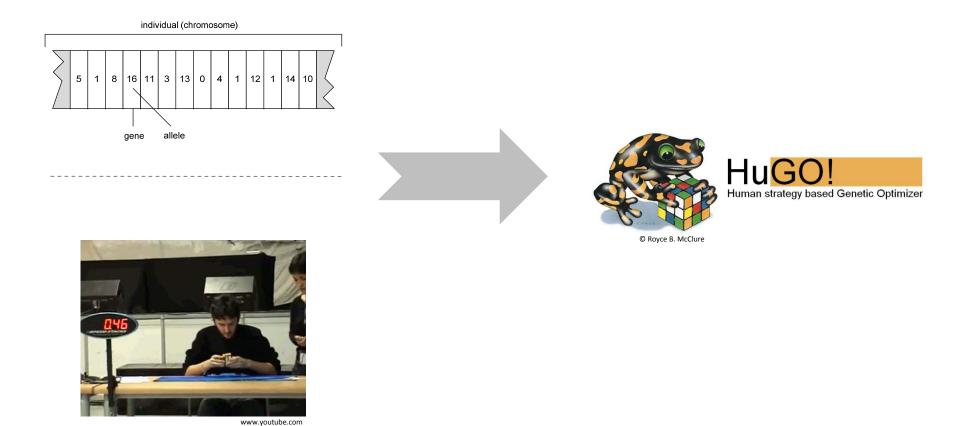
Exemplary application

• HuGO!: Human strategy based Genetic Optimizer

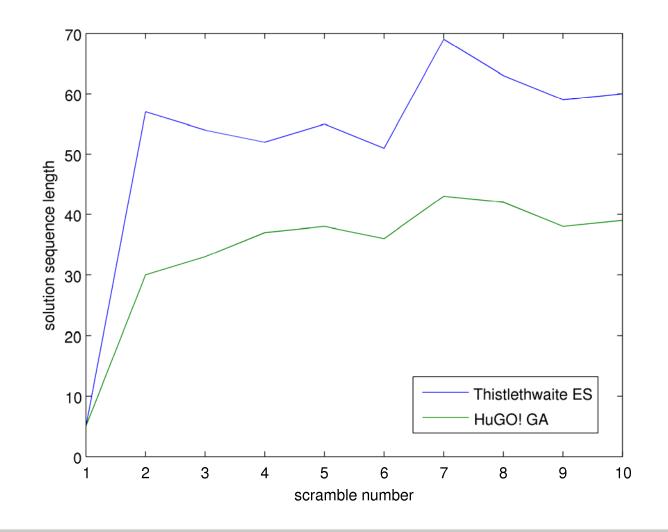


PD Dr. habil Markus Borschbach

2. HUGO Principles


Double Improved ES

- represented using 6 2D matrices
- can be mutated only by applying move sequences
- remembers all mutations it has undergone as a sequence list
- automatically removes redundant moves after each mutation
- remembers optimized sequence only
- Example: $F \cdot FRRiB = F2B$



Qualification for Humies

11

12

2. HuGO! Principles

Qualification for Humies: Time Consumption

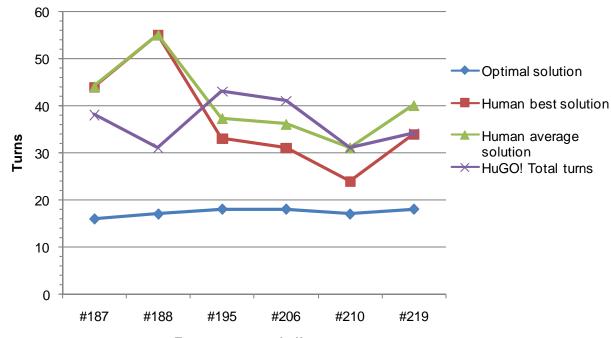
13

2. HuGO! Principles

Benchmark of the "Double Improved" ES

Some benchmark results:

	run 1	run 2	run 3	run 4	run 5
avg. Generations	95.72	100.63	92.71	99.66	92.22
avg. Moves	50.67	50.32	50.87	50.23	49.46
avg. Time(s)	321.78	381.68	393.99	312.98	287.93


solving 100 random scrambles of minimum length 10 and maximum length 50.

- A: The result would qualify today as a patentable new invention.
- B: The result is better than a result published in a reviewed scientific journal.
- D: The result is publishable in its own right as a new scientific result.
- E: The result is equal to or better than the most recent human-created solution to a long-standing problem for which there has been a succession of increasingly better human-created solutions.

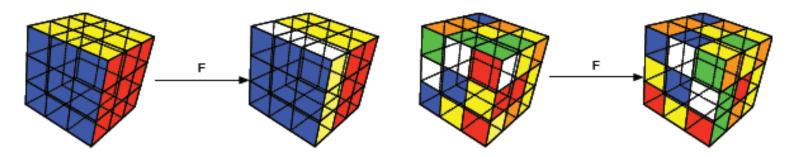
- F: The result is equal to or better than a result that was considered an achievement in its field at the time it was first discovered.
- **G**: The result solves a problem of indisputable difficulty in its field.
- H: The result holds its own competition involving human contestants.

HuGO! competes: HuGO!-Human Competition

17

Fewest moves challenge

#187: B F2 D2 L B2 D' L B R2 U' B' F' L B2 L' R B' U2 F B' R D R' D' F' L D' U L'
#188: D L' R D' U R F D2 R L' F2 B2 L' U' F2 D U B U B' L2 F U R U2 L' B2 U F' D'
#195: F R' F2 L' D' R' D' R F' L2 R' B2 L2 R' F2 U' D' R' D R F' B2 D B2 F' L2 R2 U' B' D2
#206: D' F2 B' L R' U F U' D2 B R2 L2 D' B2 F R2 L2 D U2 B2 L2 D R D2 U L D R2 U' R'
#210: L' F L B' L' B' R' L' D' R L B2 R' D2 F2 R' D2 B R' L D' R2 U B' U' B R L' B2 L'
#219: D' L2 R' F' R B2 R2 F B' R D2 R D B' L' R U2 D L' R2 U D B L' F L2 U D B2 L



- highly complex puzzle
- $4.3 \cdot 10^{19}$ unique configurations
- \blacksquare only 1 of these \rightarrow "solved state"
- smallest number of moves to solve ("God's Number") yet unkown
- only few exact approaches exist
- most (promising) based on group theory
- no valid evolutionary approach incorporating group theory until now

Main Conclusion: Facts

- each face is referred to by its position (relative to the users viewpoint)
- common notation is: F, R, U, B, L, D
- these also stand for a 90° clockwise turn

correspondingly Fi, Ri, Ui, Bi, Li, Di denote counter-clockwise
 90° turn

Main Conclusion: Existing Exact Algorithm

 \supset

 \supset

 \supset

 \supset

- developed by Morgan Thistlethwaite in 1984
- divides the problem of solving the Cube into 4 subproblems

Definition

 $\begin{array}{l} G_{0} = < F, R, U, B, L, D > \\ G_{1} = < F, U, B, D, R2, L2 > \\ G_{2} = < U, D, R2, L2, F2, B2 > \\ G_{3} = < F2, R2, U2, B2, L2, D2 > \\ G_{4} = I \\ \\ \text{with } |G_{0}| > |G_{1}| > |G_{2}| > |G_{3}| > |G_{4}|. \end{array}$

transition Cube from $G_i \rightarrow G_{i+1}$ only using moves from G_i

pre-calculated lookup-tables, solves in max. 52 moves

Definition

A subset $S \subseteq G$, is called a *generator* of G if any element of G can be written of a product of elements of S and their inverses. This is denoted by $G = \langle S \rangle$.

thus $G_C = \langle F, R, U, B, L, D \rangle$ ("Cube Group") with $|G_C| = 4.3 \cdot 10^{19}$ State Complexity Reduction by Phase Transition

• $G_0, |G_0| = 4.3 \cdot 10^{19}$ • no constraint

• $G_1, |G_1| = 2.11 \cdot 10^{16}$ • orientation of edge cubies (2¹¹)

. . .

• $G_2, |G_2| = 1.95 \cdot 10^{10}$

- orientation of edge cubies (
 - orientation of corner cubies (3⁷), transport of edge cubies to/from middle layer(^{12!}/_{8!·4!})

• $G_3, |G_3| = 6.63 \cdot 10^5$

4. Comparison to others

State Complexity Reduction by Evolutionary Phase Transition

i = 0 duplication population mutation phase i phase i > 0 selection pool or fitness $X < \mu$ calculation phase i i = i+1 phase selection transition phase i = 0and X≥µ phase 4 fitness = 0x = number of phase-solving cubes

 scrambled Cube is duplicated λ times

4. Comparison to others

23

Main Conclusion: Contribution is the Evolutionary Phase Transition

- each phase has its own fitness function, counting
 - wrong oriented/positioned cubies according to group constraints
 - 2 length of remembered sequence list
- weights adjustable

Example $G_0 \rightarrow G_1$:

$$phase0_{fitness} = weight \cdot (w) + c$$
 (1)

- w := number of wrong oriented edges
- c := length of sequence list

•
$$G_i$$
 constraints satisfied if $phase(i)_{fitness} = c$

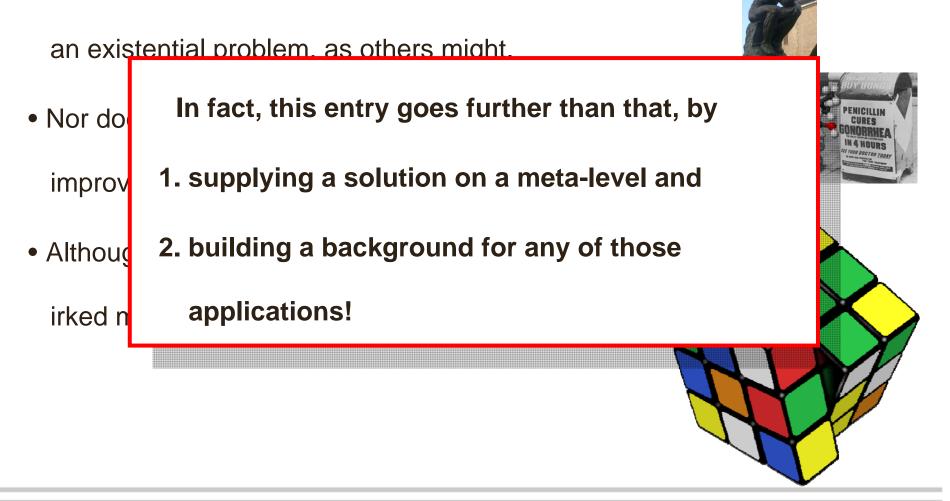
In the work we filed for the award, the **evolution of a human problem-solving strategy** that has been proven successful in many human competitions **and the incorporating of an exact algorithm is considered**, .

- **Therefore**, the approach qualifies for a **new research direction** within Evolutionary Computation, which is determined and inspired by human achievements.
- We understand this to be the major goal of the "HUMIES" AWARDS FOR HUMAN-COMPETITIVE RESULTS.

Main Conclusion: What is different ?

- This entry does not apply its considerable power to an existential problem, as others might.
- Nor does it present a grand social or medical improvement, which would be highly desirable.
- Although to be fair it solves a problem that has

irked millions of people since the late 1970s!


26

4. Comparison to others

Main Conclusion: What is different ?

• This entry does not apply its considerable power to

Impression

🕹 HuGO!												
				Res	set	E	dit	Cha	nge view	Reset	view	Save monitor
Phase 1 Phase 2	Phase 3	Statistic	5									
Generations:	20											
Population size:	50											
Individual size:	30											
Crossover probability	y: 0.6											
Mutation probability:	0.03											
								115.2	201			
								Hu	sed Genetic O			
	H											
FU	R B	D	L	Scramble:								
F2 U2 F	R2 B2	D2	L2	Solution:								
F' U' I	R' B'	D,	Ľ									Solve

PD Dr. habil Markus Borschbach

28