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Abstract Traditional Symbolic Regression applications are a form of supervised learning,
where a label y is provided for every ~x and an explicit symbolic relationship of the
form y = f(~x) is sought. This chapter explores the use of symbolic regression
to perform unsupervised learning by searching for implicit relationships of the
form f(~x, y) = 0. Implicit relationships are more general and more expressive
than explicit equations in that they can also represent closed surfaces, as well as
continuous and discontinuous multi-dimensional manifolds. However, searching
these types of equations is particularly challenging because an error metric is
difficult to define. We studied several direct and indirect techniques, and present
a successful method based on implicit derivatives. Our experiments identified
implicit relationships found in a variety of datasets, such as equations of circles,
elliptic curves, spheres, equations of motion, and energy manifolds.
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1. Introduction

Symbolic regression (Koza, 1992) is a method for searching the space of
mathematical expressions, while minimizing various error metrics. Unlike
traditional linear and nonlinear regression methods that fit parameters to an
equation of a given form, symbolic regression searches both the parameters
and the form of equations simultaneously. This process automatically forms
mathematical equations that are amenable to human interpretation and help
explicate observed phenomena. This paper focuses on the symbolic regression
of functions in implicit form.
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An implicit equation represents a mathematical relationship where the de-
pendent variable is not given explicitly. For example, an implicit function could
be given in the form f(~x, y) = 0, whereas an explicit function would be given
in the form y = f(~x). Implicit equations can be more expressive and are
often used to concisely define complex surfaces or functions with multiple out-
puts. Consider, for example, the equation of a circle: It could be represented
implicitly as x2 +y2−r2 = 0, explicitly using a multi-output square root func-
tion as y = ±

√
r2 − x2, or as a parametric equation of the form x = cos(t),

y = sin(t), t = 0..2π. Our goal is to automatically infer implicit equations to
model experimental data.

Regressing implicit relationships can be thought of as a form of unsuper-
vised learning. Traditional Symbolic Regression applications are a form of
supervised learning, where a label y is provided for every input vector ~x and
a symbolic relationship of the form y = f(~x) is sought. When seeking an
implicit relationship of the form f(~x, y) = 0, we are looking for any pattern
that uniquely identifies the points in the dataset, and excludes all other points
in space.

Like clustering methods and other data mining approaches (McConaghy
et al., 2008), unsupervised learning has the potential to find unexpected rela-
tionships in the data (De Falco et al., 2002; Mackin and Tazaki, 2000; Hetland
and Saetrom, 2005). For example, unsupervised learning can create a model
from positive examples only, and then use that model to detect outliers that do
not belong to the original set. This is important in many practical applications
where negative examples are difficult or costly to come by. For example, when
training a system to monitor a jet engine, a learning algorithm will typically
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Inferred Implicit
Equation Model:

y2 − x3 + x− 1 = 0

Figure 5-1. Many datasets exist that do not have explicit dependent variables, such as an elliptic
curve shown here. Instead, this type of data must be modeled with an implicit equation. We
explore using symbolic regression to infer these types of models.
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be trained using sensor data from intact operation only, but will be required to
alert an operator if abnormal sensor data is detected.

Implicit equations can also provide deeper insight into the mechanism un-
derlying an observed phenomenon by identifying conservations. For example,
when observing a pendulum, an explicit equation can be used to fit the data and
thus predict the pendulum’s future state based on its current and past states. In
contrast, searching for implicit relationships can lead to finding equations of
invariants, such as conservation of energy or momentum (Schmidt and Lipson,
2009). These conservations can also be used to make predictions, but provide
more insight into the underlying principles, beyond prediction.

While symbolic regression has been used to find explicit (Korns, 2006; Duffy
and Engle-Warnick, 1999; Bautu et al., 2005) and differential equations (Bon-
gard and Lipson, 2007), it is not immediately obvious how it could be used to
search for implicit equations (Figure 5-1). Symbolic regression ordinarily mod-
els and predicts a specific signal or value. In implicit equations, the equation
always evaluates to zero over the dataset.

A key challenge is that there are an infinite number of valid implicit equations
for any given dataset. For example, sin2(x)+cos2(x)−1 is exactly zero for all
points in the dataset, but it is also exactly zero for all points not in the dataset.
There are also an infinite number of relationships that are arbitrarily close to
zero, such as 1/(1000 + x2). In order to utilize symbolic regression, we need
to devise a fitness function that avoids these trivial solutions.

We experimented with a number of fitness functions for searching invariant
equations. We explored minimizing the variance of the function from zero over
the dataset while penalizing trivial equations that are zero everywhere, and
numerically solving the implicit equation and minimizing its distance to each
data point. Due to the difficulty of trivial solutions and susceptibility to local
optima, none of these direct methods worked well.

Based on these results, we looked for a different metric that would relate
an implicit equation to the dataset. Rather than attempting to model the data
points themselves or the zeros of the target function, we decided to look at the
gradients of the data. We found that we could derive implicit derivatives of the
data variables using an arbitrary implicit equation, and then compare the two.
Instead of fitting data points directly, this approach fits line segments (partial
derivatives) derived from the data to the line segments (implicit derivatives) of
the implicit function.

To test this approach, we experimented on modeling a number of implicit
systems – ranging from equations of circles to equations of motion. We found
this to be a reliable method for all these systems, whereas the other methods
failed to find even the equation of the circle with similar computational effort.
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In the remaining sections, we describe the direct methods in more detail, our
proposed fitness for arbitrary implicit equations, the experiments and results on
modeling implicit systems, and finally, concluding remarks.

2. The Implicit Equation Problem

The need to search for implicit equations arises when we do not know or
do not have an explicit dependent variable in a dataset. Instead, we are given
a large vector of data points and our goal is to find an equation that holds true
for all of these points. For example, an equation that when solved numerically
reproduces the points in the dataset.

An implicit equation has the form:

f(x, y, ...) = 0 (5.1)

where x, y, etc. are independent variables of the system. Implicit equations
in this form may or may not have an explicit equation in general (it may not
be possible to solve for any single variable). However, these equations can be
solved numerically or graphically when the equation is known.

Our task is to identify expression f(x, y, ...) that satisfies the Equation 5.1
uniquely for all points in the dataset.

3. Direct Methods

Table 5-1. A summary of direct methods and their difficulties
Method Difficulty

Equations that equal zero at all data
points

Trivial solutions such as 0 = 0, x−x =
0, etc

Equations that equal zero near data,
but grow with distance

Places too many constraints on the re-
sulting equations

Equations that equal zero but have
non-zero derivative

Places too many constraints on the re-
sulting equations

Equations that equal zero but not sym-
bolically zero when simplified

Trivial solutions, just more complex
zero identities such as cos2 x3+sin2 x3

−

1

Equations that Equal zero, but nonzero
at random point away from data

Trivial solutions such as f(x) =
1/(100 + x)2, which is non-zero near
x = −100

Numerically solve equation, measure
distance from data points to closest
zero

Difficult to evolve, many degenerate
equations do not have solutions, and
computationally expensive

Based on Equation 5.1, it might be tempting to search for equations that
evaluate to zero for all data points in the dataset. A simple fitness function for
this would be second moment or squared-error from zero. The problem with
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this naive method is quickly obvious however: evolution almost immediately
converges to a trivial solution such as x − x = 0 or x + 4.56 − yx/y, etc.
These trivial solutions are zero everywhere and are not particularly interesting
or useful for analyzing the data.

We tried a slight modification of this method by adding a test for trivial
solutions such as 0 = 0. For each candidate equation, we would perform a quick
symbolic simplification to see if the result reduces to zero. Unfortunately, the
evolution always converged to more complex identities equal to zero than we
could add to our simplification test. For example, (x−1)−(x2−2x+1)/(x−1)
and − sin2(x)− cos2(x) + 1, or more complex elaborations of zero identities.

A third method we tried was rewarding the function for being non-zero away
from the points in the dataset. In this circumstance, evolution still converged on
trivial solutions that were arbitrarily close to zero over most of the data, but still
nonzero away from the data. For example, solutions such as 1/(1 + x2), can
become arbitrarily close implicit equations over the data, but are still trivial.

Finally, we decided to try numerically solving the candidate implicit equa-
tions and comparing with the data points. This method is extremely slow as the
numerical solution requires an iterative procedure. It also has serious evolv-
ability problems. Many candidate equations do not have implicit solutions (for
example, f(x) = 1/x2 never crosses zero) which makes finding the numerical
solution non-convergent.

We modified this procedure slightly to find the local absolute valued mini-
mum of a candidate equation around each point in the data set, summing the
distance from the data points to their minima on the implicit function and the
distance of the minima from zero. In the case that there is no local minimum
for a data point, we capped the iterated procedure to a maximum distance.

This approach was able to identify implicit versions of simple lines, such as
x+y = 0, and once found the correct implicit equations in the unit circle dataset
(though these solutions were not repeatable). Unfortunately, all runs on more
complex datasets, and most runs on the unit circle dataset, became trapped in
local optima solutions. A common type of local optima evolved zeros around a
part of the dataset (for example 1/(x+a)−b−y can model the left and bottom
sides of a circle accurately), but rarely jumped to fit remaining data points.

While this final direct method may be a workable approach with more so-
phistication, it is far from elegant or efficient. Below, we describe a more direct
and greatly more reliable and efficient fitness calculation for implicit equations.

4. The Implicit Derivatives Method

The difficulties of the direct methods (Table 5-1) suggest that comparing the
zeros of the candidate implicit equation directly is insufficient to reliably find
accurate and nontrivial models.
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Rather than looking at the individual points, we decided to look at the local
derivatives of these points. If the candidate implicit equation is modeling the
points in a meaningful way, it should be able to predict relationships between
derivatives of each variable. Importantly, we must also be able to measure such
a relationship readily from the dataset.

For our method, we propose using the ratio of partial derivatives between
pairs of variables (implicit derivatives). The idea is that dividing two partial
derivatives of a candidate implicit equation f(...) = 0 cancels out the implicit
f(...) signal, leaving only the implied derivative between two variables of the
system.

For example, in a two-dimensional dataset we could measure variables x(t)
and y(t) over time. The system’s implicit derivatives estimated from time-
series data would then be ∆x/∆y = x′/y′ and ∆y/∆x = y′/x′, where x′

and y′ represent the time-derivatives of x and y. Similarly, given a candidate
implicit equation f(x, y), we can derive the same values through differentiation:
δx/δy = (δf/δy)/(δf/δx) and δy/δx = (δf/δx)/(δf/δy). We can now
compare ∆x/∆y values from the experimental data with δx/δy values from
a candidate implicit equation f(x, y) to measure how well it predicts indirect
relationships between variables of the system.

Finally, we can use this process in a fitness function for implicit equations.
We simply measure the error on all implicit derivatives that we can derive from
each candidate equation. In our experiments, we return the mean logarithmic
error of these derivatives:

− 1

N

N
∑

i=1

log

(

1 + |∆xi

∆yi
− δxi

δyi
|
)

(5.2)

where N is the number of data points, ∆x/∆y is a implicit derivative estimated
from the data, and δx/δy is the implicit derivative derived from the candidate
implicit equation.

5. Handling Unordered Datasets

The implicit method can also be applied to unordered and non-time series
data as there are several ways to estimate implicit derivatives from experimental
data. An implicit derivative is simply a local relation of how two variables
covary. In 2D, the implicit derivative is the slope of the tangent line. In 3D, the
implicit derivatives lie on the tangent plane. In higher dimensions, they lie on
the n-dimensional tangent hyperplane.

To generalize this procedure for arbitrary unordered data, one can fit a hy-
perplane, or higher-order surface such as a conic section (Shpitalni and Lipson,
1995), to local clouds of data points. From each hyperplane, one can then
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Figure 5-2. Implicit derivatives can be estimated from unordered, or shuffled data, nonpara-
metrically by fitting a hyperplane or higher-order surface to neighboring points. After fitting the
neighboring points, simply take any of the implicit derivatives of the locally fit surface.

sample implicit derivatives by taking the implicit derivative of the hyperplane
equation (Figure 5-2).

We verified that this procedure works in our experimental datasets by ran-
domly shuffling them and discarding their time ordering. The method regresses
the same implicit equations as in our results below using this procedure.

6. Experiments on Implicit Equations

We experimented on six implicit equation problems of varying complexity
and difficulty (Figure 5-3). The simplest are the equation of a circle and an
elliptic curve. These are well-known two dimensional systems with only two
implicit derivatives (δx/δy and δy/δx) that require implicit equations. A sim-
ilar but slightly more difficult problem is the 3-dimensional sphere. In each of
these systems we can collect data uniformly on their implicit surfaces.

The next three systems are dynamical systems of varying complexity: a
simple linear harmonic oscillator, a nonlinear pendulum, and a chaotic spring-
pendulum. We simulated single trajectories of each system, recording the po-
sitions, velocities, and accelerations for the implicit datasets. In these systems,
we are seeking the implicit equation of motion. In the spring-pendulum we are
seeking a similar implicit equation, the Hamiltonian, which only uses position
and velocity data. The data used for each system is shown in Figure 5-3.

From this data, we estimate the partial derivatives from the data (∆x/∆y)
by taking the ratio of the time derivatives. For the circle, elliptic curve, and
sphere, we picked an arbitrary time trajectory around their surfaces (two in the
case of the elliptic curve). This works because the time component cancels out
in the ratio. We could also have fit a local plane to each point to estimate the
partial derivatives non-parametrically of unordered data as discussed earlier.
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(a) Circle: x2 + y2 − 42
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(b) Elliptic Curve: x3 + x − y2 − 1.5
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(c) Sphere: x2 + y2 + z2 − 12
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(d) Harmonic Oscillator: θ̈ − 0.1θ̇ + 3x
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(e) Pendulum: θ̈ − 0.1θ̇ + 9.8 sin(θ)
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Figure 5-3. Data sampled from six target implicit equation systems. Data is collected uniformly
for the geometric systems. In the dynamical systems, the data is a single simulated trajectory
from a random initial condition.

We used a basic symbolic regression algorithm (Schmidt and Lipson, 2006)
to search the space of implicit equations. We use the deterministic crowding
selection method (Mahfoud, 1995), with 1% mutation probability and 75%
crossover probability. The encoding is an acyclic graph (Schmidt and Lipson,
2007) with a maximum of 128 operations/nodes. The operation set contains ad-

θ
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dition, subtraction, multiply, sine, and cosine operations. Fitness was calculated
using Equation 5.2.
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(a) Circle: x2 + y2 − 42
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(b) Elliptic Curve: x3 + x − y2 − 1.5
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(c) Sphere: x2 + y2 + z2 − 12
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(d) Harmonic Oscillator: θ̈ − 0.1θ̇ + 3x
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(e) Pendulum: θ̈ − 0.1θ̇ + 9.8 sin(θ)
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(f) Spring Pendulum: −10r+0.5ṙ2+5r2−
10rcos(θ) + 0.5r2θ̇2

Figure 5-4. Fitness of the symbolic regression algorithm using the implicit derivatives fitness
for each of the six systems. Results are the top ranked solution versus time, averaged over 20
independent trials. Error bars indicate the first standard error.

7. Results on Implicit Equations

We conducted 20 independent trials on each system, recording fitnesses and
solutions overtime. Evolution was stopped after a solution converged onto a
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near perfect solution. Figure 5-4 shows the mean fitness of the top-ranked
solution during the evolutionary runs on a validation dataset.

Each evolutionary run identified the correct implicit equation for these sys-
tems, although different systems required more computation than others. The
circle took less than a minute to converge on average; the elliptic curve, sphere,
and pendulum took five to ten minutes on average; and the spring pendulum
took approximately one to two hours.

In comparison, none of the direct methods could find solutions to any of these
systems, even with considerably more computational effort. In the case of the
circle, the implicit derivatives methods obtained the correct solution 20 out of
20 trials in under one minute per trial. In contrast, the direct methods did not
obtain the correct solution even once in 20, one hour trials. The best solution
found by the direct method over these runs was a/(x2 + b)− y− c = 0. In the
remaining target systems, the direct methods performed even worse.

Over our experiments, we also tracked the Pareto Front of the implicit
equation fitness and complexity for each system (Figure 5-5). This front shows
the tradeoff between equation complexity and its ability to model the implicit
data (Smits and Kotanchek, 2004). Here, we measure the complexity of an
equation as the number of nodes in its binary parse tree.

The Pareto fronts tend to contain cliff features where fitness jumps rapidly at
some minimum complexity. In the cases where even more complex equations
are found on the front, even several times more complex, the improvement in
fitness is only marginal.

For each system, the simplest implicit equation to reach the highest quali-
tative fitness on the Pareto front was the exact target equation. Looking more
closely at the higher complexity solutions, we found they were elaborations on
the exact solution – for example, extraneous terms with very small coefficients,
perhaps compensating for small errors in estimating the partial derivatives from
the data.

We also noticed that simpler and lower fitness solutions on the fronts con-
tained approximations to the exact solutions – for example, small angle approx-
imations in the pendulum and spring pendulum systems.

8. Conclusion

The ability to search for implicit equations enables searching for multi-
dimensional surfaces, equations of motion, and other invariant models in experi-
mental data. However, identifying meaningful and nontrivial implicit equations
poses difficult challenges.

We explored several naive fitness methods for rewarding implicit equations
to model data. These methods, which considered the individual data points and
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(b) Elliptic Curve: x3 + x − y2 − 1.5
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(c) Sphere: x2 + y2 + z2 − 12
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(d) Harmonic Oscillator: θ̈ − 0.1θ̇ + 3x
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(e) Pendulum: θ̈ − 0.1θ̇ + 9.8 sin(θ)
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(f) Spring Pendulum: −10r+0.5ṙ2+5r2−
10rcos(θ) + 0.5r2θ̇2

Figure 5-5. The fitness and equation complexity Pareto fronts found for each of the six systems.
The exact solutions are the simplest equations to reach near perfect fitness. More complex
solutions show elaborations on the exact solution, improving fitness only marginally.

the zeros of the implicit equations directly, were unable to solve the simplest
implicit equations reliably or consistently.

We showed that looking instead at ratios of partial derivatives of local data
points provided a reliable search gradient for a variety of implicit systems. This
method identified geometric equations such as elliptic curves and 3-dimensional
spheres, as well as equations of motions in nonlinear dynamical systems.
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