
Solving Iterated Functions Using
Genetic Programming

Michael D. Schmidt
Computational Synthesis Lab

Cornell University
Ithaca, NY 14853

mds47@cornell.edu

Hod Lipson
Computational Synthesis Lab

Cornell University
Ithaca, NY 14853

hod.lipson@cornell.edu

ABSTRACT
An iterated function f(x) is a function that when composed with
itself, produces a given expression f(f(x))=g(x). Iterated functions
are essential constructs in fractal theory and dynamical systems,
but few analysis techniques exist for solving them analytically.
Here we propose using genetic programming to find analytical
solutions to iterated functions of arbitrary form. We demonstrate
this technique on the notoriously hard iterated function problem of
finding f(x) such that f(f(x))=x2–2. While some analytical
techniques have been developed to find a specific solution to
problems of this form, we show that it can be readily solved using
genetic programming without recourse to deep mathematical
insight. We find a previously unknown solution to this problem,
suggesting that genetic programming may be an essential tool for
finding solutions to arbitrary iterated functions.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: Mathematics and
statistics.

General Terms
Algorithms

Keywords
Iterated Functions, Symbolic Regression

1. INTRODUCTION
Solving an iterated function is a type of mathematical problem
where the analytical form of a function f(x) is not known, but its
composition with itself is known. For example, what is f(x) such
that f(f(x)) = g(x), where g(x) is a given function.

Iterated functions appear in various fields such as fractal theory,
computer science, dynamical systems, and maps. Despite their
prevalence, they are notoriously difficult to solve, and few
mathematical tools exist to analyze them. A few methods have
been developed to analyze special cases. In the general case,
solving these problems has involved deep mathematical insight
and experimentation with different substitutions and
reformulations [1] for each class of iterated function problem.

In particular, a challenging iterated function problem has
circulated as a test of one’s intelligence particularly among
physicists [2] and in math competitions [3]. This problem asks to
find an analytical function f(x) such that f(f(x)) = x2 – 2. In fact,
those who first solved this problem are still celebrated within

various communities. Renowned physicist Michael Fisher is
rumored to have solved the puzzle within five minutes [2];
however, few have matched this feat.

The problem is enticing because of its apparent simplicity. Similar
problems such as f(f(x)) = x2, or f(f(x)) = x4 + b are straightforward
(see Table 1). The fact that the slight modification from these
easier functions makes the problem much more challenging
highlights the difficulty in solving iterated function problems.

Table 1. A few example iterated functions problems.

Iterated Function Solution

 f(f(x)) = x f(x) = x

 f(f(x)) = x – 2 f(x) = x – 1

 f(f(x)) = x4 f(x) = x2

 f(f(x)) = x2 – 2 f(x) = ?

In this paper, we propose using genetic programming to identify
and solve such iterated functions. We adapt the symbolic
regression algorithm to search for equations that iterate to the
correct map and solve the f(f(x)) = x2 – 2 problem.

The key benefit of using symbolic regression to solve this type of
problem is that it does not require deep mathematical insight into
the problem and it is free to find all solution forms to the iterated
function. Current solutions to this problem require recognizing
relations of Chebyshev polynomials or substituting special
functional forms. These methods also make assumptions which
lead to specific solutions, but there may and often do exist other
valid or more general solutions. We show genetic programming
can search for all solution types without assuming certain forms
and find new solutions faster than even the best human problem
solvers.

In the remaining sections, we provide a background on iterated
functions and their known solution methods. We then detail our
genetic programming approach and results, including a new
solution to the notorious iterated function problem, before
concluding with final remarks.

2. BACKGROUND
Iterated functions are known to present difficult mathematical
challenges. Here, we overview various applications of iterated
functions and known techniques for handling them.

Copyright is held by the author/owner(s).
GECCO’09, July 8–12, 2009, Montréal, Québec, Canada.
ACM 978-1-60558-505-5/09/07.

2149

2.1 Iterated Functions
An iterated function is a mathematical function that is composed
with itself one or more times (the output of a function is fed back
into the same function one or more times). For iterated function
problems, we are given the output of the function after iteration,
and we are attempting to find the function that produces this
output. For example:

fn(x) = g(x)

where g(x) is given and the notation fn(x) denotes that the function
f(x) is iterated n times, what is the function f(x)? Problems such as
this arise in several fields from fractals, to computer science, and
dynamical systems.

A fractal is produced by a system of one or more iterated
functions – which may be graphical or algebraic functions. The
inverse problem in iterated function systems is the problem of
identifying the procedure that produces a fractal. For example,
given the result of a simple fractal, what is the iterated function
that produces that fractal? Evolutionary algorithms have been
applied to the graphical version of problem [4]. In our case, we
are looking at a solving a particularly challenging algebraic
iterated function problem.

Iterated functions also arise in computer science. Approximating
the iterated function has been applied to image compression [5],
where a given image is approximated by finding a simple function
that can reproduce it when iterated. Iterated functions also arise in
lambda calculus and functional programming, where one is
attempting to find a recursive function to compute a desired result.

In dynamical systems, iterated functions arise in finite difference
equations and 1D maps [1]. A dynamical system can be modeled
by an iterated equation. The iterated function problem arises here
when the behavior of the dynamical system is known, but the
difference or map function is unknown.

2.2 Analytical Solution Methods
In this section we overview a few of the basic mathematical
techniques that have been deduced to solve certain families of
iterated functions.

The most basic approach to solving an iterated function is to
assume the function has some given structure, such as a
polynomial structure. For example, given:

f(f(x)) = x4 – 2

one might suspect that the function f(x) is also a polynomial of
lesser degree. For example, assume f(x) takes the following form:

f(x) = a x2 + b x + c

Iterating this form yields:

f(f(x)) = a (a x2 + b x + c)2 + b (a x2 + b x + c) + c

= a3x4+2a2bx3+(2a2c+ab2+ab)x2+(2abc+b2)x+ac2+bc+c

Next, we solve for a, b, and c, by equating the coefficients to the
known iterated function coefficients. We solve the set of
equations a3 = 1, 2a2b = 0, 2a2c+ab2+ab = 0, 2abc+b2 = 0, and
ac2+bc+c = -2 for a, b and c of our assumed f(x) polynomial.

This approach breaks down however whenever the function is not
polynomial. In fact, some iterated functions produce polynomials,
but cannot be solved as polynomials. For example, given:

f(f(x)) = x2 – 2

solving f(x) for polynomial coefficients fails. Yet, this problem
does have a solution.

This specific example is a long standing problem in mathematics.
Recently, different methods have been developed to handle this
particular case [1, 2]. One clever approach is to substitute in the
following functional form to rewrite f(f(x)):

f(x) = g(a g-1(x)),

f(f(x)) = g(a2 g-1(x)),

g(a2 g-1(x)) = x2 – 2,

where a is a parameter constant, and g(x) is some other function
that we may infer by inspection. For example, one may think to
set a2 = 2 and substitute t = g-1(x) to write:

g(2t) = x2 – 2 = g(t)2 – 2

which looks remarkably as a double angle formula, solved as:

x = g(t) = 2 cos(t),

x = g(g-1(x)) = 2 cos(g-1(x))

Next, we can solve for f(x):

f(x) = 2 cos(√2 cos-1(x/2))

A second method involves the application of Chebyshev
polynomials. One may recognize the following identities of
Chebyshev polynomials:

Tn(cos(t)) = cos(n t), and

Tm(Tn(x)) = Tm·n(x)

By inspection one could then rewrite:

f(f(2 cos(t/2))) = 2*cos(n t/2),

f(f(2 cos(t/2)) = 2 cos(√2 t/2),

f(x) = 2 cos(√2 cos-1(x/2))

While these solutions are remarkable deductions, they also make
assumptions on the form of f(x) and cannot be applied to all
iterated function problems. Below, we show that the problem can
be solved without deep mathematical insight or assuming a
particular form of the f(x) solution.

3. OUR METHOD
We adapted the symbolic regression algorithm to search for
solutions to the iterated function problem. Here we overview the
symbolic regression algorithm, the fitness function for iterated
functions, and how we verify the solutions found.

3.1 Symbolic Regression
Symbolic regression [6] is a type of genetic program for searching
the space of expressions computationally by minimizing various
error metrics. Both the parameters and the form of the equation
are subject to search. In symbolic regression, many initially
random symbolic equations compete to model experimental data
in the most parsimonious way. It forms new equations by
recombining previous equations and probabilistically varying their
sub-expressions. The algorithm retains equations that model the
experimental data better than others while abandoning
unpromising solutions. After an equation reaches a desired level

2150

of accuracy, the algorithm terminates, returning its most
parsimonious equation that is most likely to correspond to the
intrinsic mechanisms of the observed system.
In symbolic regression, the genotype or encoding represents
symbolic expressions in computer memory. Often, the genotype is
a binary tree of algebraic operations with numerical constants and
symbolic variables at its leaves [7, 8], for example, a binary parse
tree. Other encodings include acyclic graphs [9] and tree-adjunct
grammars [10].
A point mutation can randomly change the type of the floating-
point operation (for example, flipping an add operation to a
multiply or an add to a system variable), or randomly change the
parameter constant associated with that operation (if it is used).
The crossover operation recombines two existing equations to
form a new equation. To perform crossover, we select a random
location in the genome, and copy all operation and parameter
values to the left of this point from the first parent and remaining
operations and parameters to the right from the second parent.

Symbolic regression has been applied to explicit equations,
dynamical systems [11], and invariant equations [12]. Here, we
are applying it to a new type of problem: iterated functions.

3.2 Fitness Function
In order to search for solutions to iterated functions using
symbolic regression, we need only to modify the fitness function
of the algorithm – the metric for how well an equation explains
the iterated function.

For the problem f(f(x)) = x2 – 2, we generated data on the parabola
x2 – 2. We sampled 200 points uniformly between x = -5 and x =
5. Additionally, generate a validation set on a wider range
between x = -10 and x = 10. The fitness during evolution is
measured on the smaller range while the fitness on the validation
set is used for selecting the best solution and testing for
convergence on a general solution.

To measure the fitness of a candidate equation, we evaluate the
equation twice for each data point. First evaluating f(x), and then
evaluating a second time on this result to calculate f(f(x)). We then

compare the how close the iterated equation comes to the target
iterated function g(x) of the data.

There are many ways to summarize the error over the data set. We
used the mean absolute error because it is simple and fast to
compute. However, other statistics such as squared error or
correlation are likely to also work well.

3.3 Verifying Solutions
For this problem, we are looking for an exact analytical solution.
Therefore, we want to verify that the final solution we get is
symbolically correct to the iterated map.

The validation set helps us to weed out most overfit solutions but
there could still be degenerate solutions that appear numerically
correct, but do not analytically derive the target map. Ideally, we
would check this in the algorithm itself, perhaps as part of the
fitness function. However, we found it was sufficient to perform
this verification step at the end of evolution.

Many of the iterated functions require difficult simplifications to
reduce down to the exact target – for example, the f(x) = 2 cos(√2
cos-1(x/2)) solution described above. We used the Sage
Mathematics Software [13] to simplify the iterated solutions.

3.4 Experimental Setup
We used the symbolic regression algorithm [14-16] to search for
free-form solutions to the iterated function f(f(x)) = x2 – 2.

We used the deterministic crowding selection method [17], with
1% mutation probability and 75% crossover probability. The
encoding is an operation list acyclic graph with a maximum of 32
operations/nodes [9]. Single-point crossover exchanges operations
in the operation list at a random split. The operation set contains
addition, subtraction, multiply, divide, exponential, logarithm,
sine, and cosine operations.

We distributed the symbolic regression evolution over 8 quad core
computers (32 total cores) using the island distributed
computation method [18, 19]. The island model partitions the

100 101 102 103

-10

-8

-6

-4

-2

0

Time [seconds]

Fi
tn

es
s

[-e
rro

r]

100 101 102 103
0

20

40

60

80

100

Time [seconds]

C
on

ve
rg

ed
 R

un
s

[%
]

Figure 1. The validation fitness of the most fit iterated equation (left) and the percentage of runs that found an exact solution
(right) over the running time of the algorithm. The evolutionary runs converge onto a near perfect fitness solution after
approximately two minutes. Results are averaged over 50 independent trials. Error bars show the standard error.

2151

population of solutions into separated smaller populations residing
on each computer (or core).

4. RESULTS
In this experiment, we did not provide the inverse cosine
operation to the symbolic regression algorithm. Therefore, the
algorithm was forced to search for a completely new solution that
has not been previously identified, assuming one does exist.

In our first evolutionary run, the algorithm quickly converged
onto an exact solution. Figure 1 shows the validation fitness of the
highest fit solution over 50 evolutionary runs. The evolution
converged onto a perfect fitness solution (epsilon error) within
130 seconds (approximately 2 minutes). This solution is:

2

(2)()
(2)

b b axf x
ax b ax

−
=

−

where a = 1.16871·1018 and b = 0.683913 are parameter constants.
It is striking that the parameter a is so large in this solution. It is
very suspicious that an exact solution would really use such a large
parameter constant. In fact, our initial thought was that the
evolutionary algorithm had found a way to exploit the floating-point
round-off in the hardware. Additionally, if we compose this solution
with itself, the result is a rather complex rational function – not
simplifying neatly to the exact x2 – 2 of the problem. It appeared
that the solution was degenerate; perhaps numerically correct but
not analytically.
However, we noticed a peculiar trend in the logs of the evolutionary
run. Figure 2 shows the sequence of solutions during the run leading
up to the final solution. The sequence shows that the algorithm
identified the basic structure of this solution early on, and then
gradually, solutions evolved to increase the parameter a
incrementally. We repeated the evolution a number of times; each
time getting a similar result.
The parameter a appears to stop increasing at approximately 1018
due to the floating-point precision of the computer. Increasing it
further causes the floating-point calculations performed for this
solution to produce NaN error codes. Perhaps the equation would
become more accurate however with higher precision arithmetic.
Based on this, we suspected that the evolution was attempting to
push this parameter constant to positive infinity – much like taking
a limit. By taking this limit symbolically, we get the following
result:

2

(2)()
()

b b axf x
ax b ax

−
=

−
,

() ()()
() ()()2

2 ()
()

() ()

b b a f x
f f x

a f x b a f x

−
=

−
,

() ()()
() ()()2

2 ()
lim () lim

() ()a a

b b a f x
f f x

a f x b a f x→∞ →∞

−
=

−
,

() 2lim () 2
a

f f x x
→∞

= − ,

Therefore, we verified this is an exact solution – both symbolically
and numerically – to the iterated function we want to solve by
taking the limit.
Investigating further, we find that the limit of this function is
independent of the value of the parameter b; it drops out after the
second derivative of the numerator and denominator during the limit
calculation. However, b must be non-zero, otherwise f(x) = 0
trivially. Therefore, we refine our solution further by setting b = 1:

2

1 2()
(1 2)

axf x
ax ax

−
=

−

where the limit of a is taken to positive infinity.

Fitness Solution

-0.620
2

2

1.037 7 2.274 8
3.709 7
e x e

e x
+

-0.460
4 2

2

-2.997 3 1.553 5 1.056 7
1.245 6 2.828 5
e x e x e

e x e
+ +

+

-0.329
4 2

2

2.504 5 7.503 6 6.404 6
1.094 6 9.509 6
e x e x e

e x e
+ −

+

-0.129 3

2.505 8 4.664 5
6.727 10 1.252 8

e x e
e x e x

− −
+

-0.089 3

1.197 8 8.649 3
8.288 11 5.986 7

e x e
e x e x

− −
+

-0.057 3

2.045 8 2.025 3
1.033 13 1.022 8

e x e
e x e x

− −
+

-0.035
2

4 3
1.022 4 2.045 4 0.2025

5.167 8 1.033 9 1.022 4
e x e x

e x e x e x
− + +

− −

-0.013 3 2

9.921 6 2
2.460 13 3.968 7 4.960 6

e x
e x e x e x

− −
+ +

-0.009 3 2

2.702 7 1
3.652 14 8.107 7 1.351 7

e x
e x e x e x

− −
+ +

-0.007 3 2

7.207 7 1
2.597 15 5.765 8 3.603 7

e x
e x e x e x

− −
+ +

-7.896e-7 3

8.115 13 1
3.293 27 4.057 13

e x
e x e x

−
−

Figure 2. A sequence of solutions during an evolutionary run.
The most fit solutions at several times are shown in order from
top to bottom. Higher fitness (less negative) is better. A general
structure is found quickly, and a parameter constant then
grows to infinity to converge on an exact solution. Equations
have been factored symbolically from their raw encoding.

2152

This appears to be the first non-trigonometric solution to this
problem discovered thus far, and the only other solution yet
reported in the literature.

5. CONCLUSIONS
Iterated functions arise in many scientific fields, yet few tools
exist to analyze them or find their solutions. We have proposed
genetic programming as a method to find free-form solutions to
iterated function problems. This approach is applicable to
arbitrary problems, and does not require deep mathematical
insight into each particular family of iterated functions.

We demonstrated this approach on the notoriously difficult
iterated function problem of finding f(x) given f(f(x)) = x2 – 2.
Based on the evolved solution for this problem, we were able to
identify a novel solution to this problem. The solution composed
was verified to be both numerically and symbolically exact.

Our results suggest that genetic programming may be a valuable
tool for finding different solutions that do not rely on specific
solution forms for arbitrary iterated function problems.

6. ACKNOWLEDGMENTS
Thanks to Brian Josephson (Cambridge University), Richard
Palmer (Duke University), and Tom Witten (University of
Chicago) for suggesting this problem and helping track its history.
This research was supported by the U.S. National Science
Foundation Graduate Research Fellowship Program, and U.S.
National Science Foundation Grant EFRI 0735953.

7. REFERENCES
[1] R. Brown, "On Solving Nonlinear Functional, Finite

Difference, Composition, and Iterated Equations," Fractals,
vol. 7, pp. 277-282, 1999.

[2] B. A. Brown, A. R. Brown, and M. F. Shlesinger, "Solutions
of Doubly and Higher Order Iterated Equations," Journal of
Statistical Physics, vol. 110, pp. 1087-1097, 2003.

[3] "Mathvn journal problems," in Mathvn. vol. 01/2009
mathvn.org, 2009.

[4] B. Andrzej and S. Barbara, "Finding an iterated function
systems based representation for complex visual structures
using an evolutionary algorithm," MG&V, vol. 16, pp. 171-
189, 2007.

[5] A. Bielecki and B. Strug, "An Evolutionary Algorithm for
Solving the Inverse Problem for Iterated Function Systems
for a Two Dimensional Image," in Computer Recognition
Systems, 2005, pp. 347-354.

[6] J. R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA,
USA: MIT Press, 1992.

[7] M. Ben, J. W. Mark, and W. B. Geoffrey, "Using a Tree
Structured Genetic Algorithm to Perform Symbolic
Regression," in First International Conference on Genetic
Algorithms in Engineering Systems: Innovations and
Applications, GALESIA. vol. 414, 1995, pp. 487-492.

[8] D. Edwin and B. P. Jordan, "Multi-Objective Methods for
Tree Size Control," in Genetic Programming and Evolvable
Machines. vol. 4, 2003, pp. 211-233.

[9] M. Schmidt and H. Lipson, "Comparison of tree and graph
encodings as function of problem complexity," in
Proceedings of the Genetic and Evolutionary Computation
Conference, London, 2007, pp. 1674-1679.

[10] X. H. Nguyen, R. I. McKay, and D. L. Essam, "Solving the
Symbolic Regression Problem with Tree-Adjunct Grammar
Guided Genetic Programming: The Comparative Results," in
The Australian Journal of Intelligent Information Processing
Systems. vol. 7, 2001, pp. 114-121.

[11] J. Bongard and H. Lipson, "Automated reverse engineering
of nonlinear dynamical systems," Proceedings of the
National Academy of Sciences, vol. 104, pp. 9943-9948,
2007.

[12] M. Schmidt and H. Lipson, "Distilling Free-Form Natural
Laws from Experimental Data," Science, vol. 324, pp. 81-85,
2009.

[13] W. Stein, "Sage Mathematics Software (Version 3.4)," The
Sage Development Team, http://www.sagemath.org/, 2009.

[14] M. D. Schmidt and H. Lipson, "Coevolution of Fitness
Maximizers and Fitness Predictors," in Proceedings of the
Genetic and Evolutionary Computation Conference, Late
Breaking Paper, 2005.

[15] M. D. Schmidt and H. Lipson, "Co-evolving Fitness
Predictors for Accelerating and Reducing Evaluations," in
Genetic Programming Theory and Practice IV. vol. 5, 2006,
pp. 113-130.

[16] M. D. Schmidt and H. Lipson, "Coevolution of Fitness
Predictors," IEEE Transactions on Evolutionary
Computation, vol. 12, pp. 736-749, Dec 2008.

[17] S. W. Mahfoud, "Niching methods for genetic algorithms,"
University of Illinois at Urbana-Champaign, 1995.

[18] F. Francisco, S. Giandomenico, T. Marco, and V. Leonardo,
"Parallel Genetic Programming," in Parallel Metaheuristics,
2005, pp. 127-153.

[19] G. Christian, P. Marc, and D. Marc, "A Robust Master-Slave
Distribution Architecture for Evolutionary Computations," in
Genetic and Evolutionary Computation Conference Late
Breaking Papers, 2003, pp. 80-87.

2153

