
An Evolutionary Metaheuristic Based on State Decomposition
for Domain-Independent Satisficing Planning

Jacques Bibaı̈1,2

1Thales Research & Technology
Palaiseau, France

first.last@thalesgroup.com

Pierre Savéant1 Marc Schoenauer2

2Projet TAO, INRIA Saclay & LRI
Université Paris Sud, Orsay, France

first.last@inria.fr

Vincent Vidal3
3ONERA – DCSD
Toulouse, France

Vincent.Vidal@onera.fr

Abstract

DAEX is a metaheuristic designed to improve the plan qual-
ity and the scalability of an encapsulated planning system.
DAEX is based on a state decomposition strategy, driven by
an evolutionary algorithm, which benefits from the use of a
classical planning heuristic to maintain an ordering of atoms
within the individuals. The proof of concept is achieved by
embedding the domain-independent satisficing YAHSP plan-
ner and using the critical path h1 heuristic. Experiments
with the resulting algorithm are performed on a selection of
IPC benchmarks from classical, cost-based and temporal do-
mains. Under the experimental conditions of the IPC, and in
particular with a universal parameter setting common to all
domains, DAEYAHSP is compared to the best planner for each
type of domain. Results show that DAEYAHSP performs very
well both on coverage and quality metrics. It is particularly
noticeable that DAEX improves a lot on plan quality when
compared to YAHSP, which is known to provide largely sub-
optimal solutions, making it competitive with state-of-the-art
planners. This article gives a full account of the algorithm,
reports on the experiments and provides some insights on the
algorithm behavior.

Introduction
Recent advances in the design of PDDL planners have fo-
cused on plan quality rather than on speed needed to obtain
a single solution of eventually poor quality, as witnessed by
the 6th International Planning Competition. Planners were
given a fixed amount of running time, and their scores were
based, for each benchmark domain, on their coverage (num-
ber of solved problems) and on the quality of their solutions
with respect to various plan metrics. We think that this is an
important step towards the design of planning systems able
to tackle real-world problems, for which plan quality is gen-
erally a fundamental requirement. Another way to ensure
solution quality is of course the use of optimal planners, but
the size of the problems they can handle is by far lower than
that solved by satisficing planners.

In that perspective, we propose DAEX, a metaheuristic
aimed at (i) guiding an encapsulated planner towards a so-
lution of good quality, and (ii) increasing the scalability of
that planner when facing difficult planning problems. The

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

key components of DAEX are:
1- A decomposition principle used to divide a complex

planning task into (hopefully) easier subtasks. We chose a
state-based decomposition strategy: a planning task is sliced
into a sequence of intermediate states that must be reached in
turn before satisfying the goal. For reasons discussed later,
these intermediate states are partial states only that are con-
sidered as subgoals during search. This decomposition prin-
ciple relies on classical reachability planning heuristics. The
idea of decomposing a search space in this way is not new
(Korf 1987; Sebastia, Onaindia, and Marza 2006), but as we
have very minimalistic information to compute such a de-
composition, we consider this problem as an optimization
problem and use a specialized optimization algorithm to try
to discover the best decompositions.

2- An encapsulated satisficing planner used to solve each
subtask. In principle any PDDL planner could suit, provided
that it has a predictable behavior when applied to identi-
cal subtasks in order to ensure the convergence of the op-
timization process; even a stochastic planner such as LPG
(Gerevini, Saetti, and Serina 2003b) could be used, by con-
trolling its randomization seed. We chose for this purpose
the YAHSP planner (Vidal 2004), which is extremely fast
on many benchmark domains but suffers from poor solution
quality and scalability problems in some domains. We con-
sider particularly challenging the use of such a planner: will
the proposed metaheuristic be able to improve both its scal-
ability and plan quality?

3- An optimization algorithm used to drive the underlying
planner towards a solution of good quality, by controlling it
through the state-based decomposition process. We chose an
evolutionary algorithm to conduct the optimization process,
as these algorithms are known to have been very success-
ful for many optimization problems, and to ensure a high
diversification in the exploration of the search space. In-
deed, a planner such as YAHSP often sinks into unpromis-
ing subtrees, either leading to dead-ends or bad solutions,
without being able to visit better parts of the search space.
The net effect of the optimization algorithm will be to force
the planner to diversify the way it travels through the search
space, and concentrate it simultaneously to several different
promising parts.

DAEX builds on previous ideas implemented in DAE1
(Schoenauer, Savéant, and Vidal 2006; 2007) and DAE2

18

Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010)

(Bibai et al. 2008), but differs from these works in several
fundamental ways. Firstly, the decomposition principle of
DAE1 was based on manipulations at the planning objects
level, building intermediate states by combining predicate
and constant symbols in a completely blind way. DAE2 in-
troduced intermediate state computation at the atom level,
but still in a blind way. DAEX benefits from a time-based
atom choice method relying on standard planning reachabil-
ity heuristics (Haslum and Geffner 2000) and pairwise mu-
tual exclusions between atoms. Secondly, DAE1 and DAE2
were based on the assumption that the best results should be
obtained with an optimal planner such as CPT (Vidal and
Geffner 2006). The resulting planners were effectively able
to find very good solutions, but the cost of running YAHSP
instead of CPT for each subtask is so much lower that DAEX
clearly explores vast parts of the search space that were out
of reach for DAE1 and DAE2, making it able to outperform
them both in scalability and quality. While DAE2 exhib-
ited poor performance at IPC-6 — although the plan quality
for the problems it could solve was often very good, if not
the best (Bibai, Schoenauer, and Savéant 2009) — DAEX is
competitive with state-of-the-art planners in both coverage
and quality, as demonstrated in the experimental section.

Divide-and-Evolve
This section presents the details of the basic implementa-
tion of DAEX. As advocated in (Sebastia, Onaindia, and
Marza 2006), the first ingredient for state decomposition
is a decomposition principle. Previous works have tack-
led this issue by relying on theoretical bases, e.g., parti-
tioning planning problems into subproblems by parallel de-
composition (Chen, Hsu, and Wah 2006). On the oppo-
site, DAEX addresses the problem of finding a decompo-
sition of a planning task P = 〈A, O, I, G〉 by turning it
into an optimization problem: search for a sequence S =
(si)i∈[0,n+1] such that the plan σ obtained by compressing
subplans σi found by an embedded planner as solutions of
Pi = 〈A, O, si, si+1〉i∈[0,n] has the best possible quality.
Several crucial issues need to be addressed from the opti-
mization point of view: identify the search space, define an
objective function, and choose an optimization algorithm.
The three issues are of course related: choosing a power-
ful method with proven convergence usually implies heavy
restrictions on the search space and the objective function,
and the practitioner then has to twist the problem at hand
to make the chosen method applicable. The opposite route
was chosen in DAEX: avoid unnecessary restrictions on the
search space or the objective function, and use an optimiza-
tion algorithm that is both flexible and powerful enough to
be able to tackle the resulting optimization problem.

Evolutionary Algorithms
Evolutionary Algorithms (EAs) are general purpose op-
timization algorithms that have been demonstrated to be
highly flexible, but nevertheless robust, in handling such
challenging optimization problems. EAs are metaheuristics
based on a metaphor of the Darwinian evolution of biolog-
ical populations (Eiben and Smith 2003): the interaction

of natural selection (fitter individuals, with respect to the
environment, survive and reproduce more than others) and
blind variations (the genetic material is randomly modified
when passed on from the parents to their offspring during
reproduction) results in the emergence of individuals that
are adapted to their environment. In the Artificial Evolution
framework, individuals are candidate solutions of the opti-
mization problem at hand, the environment is given by the
value of the objective function, also called here fitness, se-
lection amounts to choosing individuals with a bias towards
good values of the fitness, whereas variation operators are
stochastic moves in the search space that have to balance
between exploitation of the previous good individuals, lo-
cally searching around them, and exploration of the search
space, by creating new individuals far from already explored
regions of the search space.

Note that selection procedures are problem-independent.
Hence, implementing an evolutionary algorithm for a new
problem requires to define the search space (or, equivalently,
the representation of candidate solutions), the fitness func-
tion, and the variation operators, that are usually categorized
into mutation operators, that modify a single parent to gen-
erate one offspring, and crossover operators, involving two
or more parents to generate one or more offspring.

Representation for State Decomposition

In DAEX, an individual is a state decomposition for the plan-
ning task at hand, i.e., a variable length list of states. How-
ever, searching the space of complete states would rapidly
result in a combinatorial explosion of the size of the search
space. Moreover, goals of a planning task are generally de-
fined as partial states. It thus seems more practical to search
only ordered sequences of partial states, and to limit the
choice of possible atoms used to describe such partial states.
However, this raises the issue of the choice of the atoms to
be used to represent individuals, among all possible atoms.

Some results of previous experiments on different do-
mains of temporal planning tasks from the IPC benchmark
series (Bibai, Schoenauer, and Savéant 2009) have demon-
strated the need for a very careful choice of the atoms that
are used to build the partial states. This lead us to propose a
new method to build the partial states, based on the earliest
time from which an atom can appear. Such time can be es-
timated by any admissible heuristic function, e.g., h1, h2...
(Haslum and Geffner 2000). The start times given by the
chosen heuristic are used to restrict the candidate atoms for
each partial state when building a sequence of partial states:
a partial state is built at randomly chosen timestamps by ran-
domly choosing among several atoms that can possibly ap-
pear at this time (this will be detailed more formally later).
The sequence of states is hence built by preserving the esti-
mated chronology between atoms (time consistency). The
heuristic function h1 has been used for all experiments pre-
sented here.

Nevertheless, even when restricted to specific choices of
atoms, the random sampling can lead to inconsistent partial
states, because some sets of atoms can be mutually exclu-

19

sive1 (mutex in short). Whereas it could be possible to al-
low mutex atoms in the partial states generated by DAEX,
and to let evolution discard them, it is more efficient to a
priori forbid them as much as possible. In practice, it is dif-
ficult to decide if several atoms are mutex. Nevertheless,
binary mutexes can be approximated (i.e., not all pairs of
mutually exclusive atoms can be discovered) with a varia-
tion of the h2 heuristic function (Haslum and Geffner 2000)
in order to build quasi pairwise-mutex-free states (i.e., states
where no pair of atoms are mutex).

Last, but not least, the useful decompositions are those
for which all resulting subproblems are easier to solve than
the initial problem for the planner at hand. We use a purely
syntactic (asymmetric) metric dist to evaluate the remaining
difficulty of solving the current planning task: for any com-
plete state i and partial state g, dist(i, g) is the number of
atoms in g that are not in i. Other metrics could be envis-
aged, such as information given by a reachability heuristic,
but the metric we used proved to be informative enough.

An individual of DAEX is thus represented as a variable
length list of time-ordered partial states, where each state is
a variable length list of atoms that are not known to be pair-
wise mutex. In the following, T (a) denotes the estimated
earliest starting time of a given atom a, T = {T (a) �= 0|a ∈
A} the set of all such starting times, Δ(s) = maxa∈sT (a)
the estimated earliest starting time of a given state s. For any
atom a, M(a) denotes the set of atoms which are mutex
with a, according to the approximation based on the h2

heuristic function. U denotes a uniform random draw from
the set given as argument.

Fitness Computation
When addressing the planning task P = 〈A, O, I,G〉, the
fitness of a state decomposition S = (si)i∈[0,n+1] (with
s0 = I and sn+1 = G) is computed by calling an em-
bedded planner to successively solve planning tasks P =
〈A, O, si, si+1〉. But two different situations should be dis-
tinguished here, depending on whether the embedded plan-
ner fails on one of the subproblems (the decomposition is
then termed infeasible), or not. In both cases, there must be
some fitness gradient, towards feasibility for infeasible indi-
viduals, and towards optimal plan quality for feasible ones.

The pseudo-code for the computation of the fitness is
given in Algorithm 1. The main loop (lines 3-12) processes
the intermediate states sequentially by calling the embedded
planner on the corresponding planning subproblems (line 5).
The initial state is the current state i, computed by actually
running the solution plan of the previous subproblem (line
11); indeed, remember that g is only a partial state, whereas
an initial state has to be complete. The goal is the currently
processed partial state g. The last argument bmax is a bound-
ary that is planner-dependent: its aim is to restrict the ex-
ploration, in order to discard subproblems that are too diffi-
cult (ideally, that are more difficult than the original global
problem). Indeed, because there can be no guarantee on the

1A set of atoms is a permanent mutex when there does not ex-
ist any plan that, when applied to the initial state, yields a state
containing them all.

difficulty of the subproblems, it is mandatory to restrain the
embedded planner (it could also be a time boundary).

In the current implementation, the embedded planner
YAHSP is constrained with a maximal number of nodes
that it is allowed to expand for solving any of the subprob-
lems. The actual boundary has been determined by a two-
steps process: first, while evaluating the initial population,
a very large number of nodes is allowed (e.g. 100000); the
boundary is then chosen as the median of the actual number
of nodes that have been used whenever a solution has been
found during these evaluations of the initial population.

The embedded planner returns solk, the solution of the
current subproblem, and the number of search steps (nodes,
in the case of YAHSP) bdone that was needed to find it —
unless it fails within the boundary bmax and returns a failure.

Algorithm 1 evaluate(Ind, planner)
Require: I , G, bmax, lmax
1: k ← 0 ; u ← 0 ; B ← 0
2: i ← I ; g ← {}
3: while g �= G do
4: g ← nextGoal(Ind)
5: (solk, bdone) ← planner.Solve(i, g, bmax)
6: if solk = ⊥ then
7: return (⊥, 10 · k · dist(i, G) + length(Ind) − u)
8: else if length(solk) > 0 then // avoid empty plan
9: u ← u + 1 // useful states counter

10: B ← B + bdone // total search steps
11: i ← ExecPlan(i, solk) // next initial state
12: k ← k + 1 // intermediate goal counter
13: (Sol, Q) ← Compress((solj)0≤j≤k)

14: return (Sol, Q + length(Ind)−u+1
Q

+ B
lmax· bmax

)

In the latter case, the fitness is set according to line 7: it
aims at minimizing the syntactic distance dist(i, G) between
the current initial state i and the final goal, that is also the
last current complete state that has been reached. However,
because the syntactic distance is by no way an accurate indi-
cator of the actual remaining difficulty, the fitness also takes
into account the number u of useful intermediate states, i.e.,
those intermediate states that require a non empty plan to be
reached (line 8).

When the individual is feasible (all subproblems are
solved by the embedded planner), a compression routine is
used to compress all subplans (line 13), and the fitness is ba-
sically the total quality Q of the resulting global plan. This
compression is made with a standard polynomial deorder-
ing procedure (Bäckström 1998) for temporal planning, or
a simple plan concatenation for sequential planning. How-
ever, as in the infeasible case, it was necessary to penalize
the individual by the amount of useless intermediate states,
in order to avoid unnecessary bloat. Furthermore, a second
additional term favors “easy” subproblems by penalizing all
problems with the cumulated number of search steps B ac-
tually used by the embedded planner, divided by the product
of the longest sequence of states allowed lmax and the bound-
ary bmax, leading to the formula of line 14.

The comparison between any two individuals assumes
that a feasible individual is always preferred to an infeasible
one, regardless of any fitness value. Two feasible individ-

20

uals are compared according to the value returned line 14
while two infeasible individuals are compared according to
the value returned on line 7.

Variation Operators
Variation operators modify the individuals in order to ex-
plore the search space. On the one hand, these operators
should ensure the ergodicity of the search: any point of the
search space must be reachable with a non-zero probability
from any other point using a finite number of applications
of variation operators. On the other hand, small modifica-
tions should be favored otherwise the evolutionary process
is close to a random walk.

Algorithm 2 crossover(Ind1,Ind2)
1: sa ← U(Ind1) // Ind1 = (si)1≤i≤n

2: tb ← U(Ind2) // Ind2 = (ti)1≤i≤m

3: if Δ(tb) > Δ(sa) then return (s1, . . . , sa, tb, . . . , tm)
4: else return (t1, . . . , tb, sa, . . . , sn)

The crossover operator, as described in Algorithm 2, is
the basic 1-point crossover for variable length representa-
tions: in order to recombine (si)1≤i≤n and (ti)1≤i≤m, it
uniformly chooses some states sa and tb, and crosses the
parts of both lists that maintain the chronology between
atoms in a sequence of states, obtaining one offspring.

Algorithm 3 addGoal(Ind)
Require: r // neighborhood radius
1: j ← U([1, min(length(Ind),lastReached(Ind))])
2: s ← {} // insert s between sj and sj+1

3: t ← U({t ∈ T | Δ(sj) < t ≤ Δ(sj+1)})
4: At ← {a ∈ A | T (a) ∈ neighbourhood(t, r)}
5: Am ← {} // set of non pairwise mutex atoms
6: while At �= {} do
7: a ← U(At)
8: Am ← Am ∪ {a}
9: At ← At \ ({a} ∪ M(a))

10: N ← U([1, #Am]) // goal length
11: repeat
12: a ← U(Am) // choose uniformly an atom in Am

13: s ← s ∪ {a} // add to s
14: Am ← Am \ {a} // remove from Am

15: until #s = N
16: insert(Ind, s, j) // insert s after goal j
17: return Ind

Four different mutation operators have been used. As-
sume parent is (s1, . . . , slastReached, . . . , sn), where slastReached
is the last state reached by the embedded planner
(slastReached = sn+1 = G if the individual is feasible, i.e.,
if all sub-problems have been solved). At the individual
level, mutation addGoal randomly adds a state after state
j ≤ min(n, lastReached) as described in Algorithm 3: this
new intermediate state may contain several atoms of At

and several atoms of its neighborhood of radius r, where
t is a time between Δ(sj) and Δ(sj+1), and the neigh-
borhood of radius r is the set of 2 × r + 1 immediate
times before and after t including t. Reciprocally, muta-
tion delGoal removes a state si, with i uniformly chosen
in [1, min(n, lastReached + 1)]. At the state level, mutation
addAtom changes or adds (or both) one random atom in

each state si (i ∈ [1, min(n, lastReached + 1)]) as described
in Algorithm 4, and mutation delAtom removes one uni-
formly chosen atom from state si, with i uniformly chosen
in [1, min(n, lastReached + 1)].

Algorithm 4 addAtom(Ind)
Require: pc, pa // relative probabilities to change or add an atom
1: for all k ∈ [1,min(length(Ind),lastReached(Ind)+1)] do
2: if U([0, 1]) < pc

length(Ind) then // atom change
3: a ← U(Ind[k])
4: b ← U({b ∈ M(a) | T (b) = Δ(Ind[k]) ∧ �c ∈

(Ind[k] \ {a}), b ∈ M(c)})
5: Ind[k] ← (Ind[k] \ {a}) ∪ {b}
6: if U([0, 1]) < pa then // atom addition
7: a ← U({b ∈ A | T (b) = Δ(Ind[k]) ∧ �c ∈

Ind[k], b ∈ M(c)})
8: Ind[k] ← Ind[k] ∪ {a}
9: return Ind

Initialization of the Population
The pseudo-code for the initialization is given in Algo-
rithm 5. First, the number of states is uniformly drawn be-
tween 1 and the number of estimated earliest possible start
times (algorithm 6 line 6); for every chosen time, the num-
ber of atoms per state is uniformly chosen between 1 and the
number of atoms of the corresponding restriction (line 11).
Atoms are then chosen one by one, uniformly in the allowed
set of atoms, and added to the individual if not mutex with
any other atom already there (lines 12 to 16).

Algorithm 5 generateIndividual(N)
Require: T // candidate start times
1: D ← {} // ordered list of timestamps
2: repeat
3: t ← U(T)
4: T ← T \ {t}
5: Insert(t, D) // maintain D ordered
6: until #D = N
7: Ind ← {} // start building the individual
8: for t ∈ D do
9: s ← {} // start building the intermediate goal

10: At ← {a ∈ A | T (a) = t} // atoms that can appear at t
11: n ← U([1, #At]) // number of atoms
12: while n �= 0 ∧ At �= {} do
13: a ← U(At) // choose uniformly an atom in At

14: s ← s ∪ {a} // add to s
15: At ← At \ ({a} ∪ M(a)) // remove all mutex
16: n ← n − 1
17: Ind ← Ind + {s} // add the new intermediate goal
18: return Ind

Evolutionary Loop
The first step of Algorithm 6 is the computation of the earli-
est start time for each atom a ∈ A estimated with the given
heuristic. The set T which gathers all potential start times
will be used later in a mutation operator. The initial popu-
lation is then set up by simply repeating calling the Gener-
ateIndividual function up to the desired size. Then comes the
main evolution loop (line 8). The offspring set is populated

21

Algorithm 6 DAEX(popSize, OffSpringSize, MaxGen, MaxChgt, pcross,
pmut, waddGoal, wdelGoal, waddAtom, wdelAtom, bmax, lmax, r, pc, pa)
Require: planner, h // embedded planner and heuristic function
1: for all a ∈ A do
2: T (a) ← h(a) // compute earliest start time
3: T ← {T (a) �= 0 | a ∈ A} // candidate start times set
4: pop ← {} // start building the population
5: repeat
6: pop ← pop ∪ {GenerateIndividual(U([1, #T])})
7: until #pop = popSize
8: repeat
9: offspring ← {}

10: repeat
11: Ind1 ← U(pop)
12: if U([0, 1]) < pcross then
13: Ind2 ← U(pop)
14: Newind ← crossover(Ind1,Ind2)
15: else
16: Newind ← Ind1

17: if U([0, 1]) < pmut then
18: f ← Uweighted(addGoal, addAtom, delGoal, delAtom,

waddGoal, wdelGoal, waddAtom, wdelAtom)
19: Newind ← APPLY(f , Newind)
20: offspring ← offspring ∪ {Newind}
21: until #offspring = OffSpringSize
22: for all Ind ∈ pop ∪ offspring do
23: Evaluate(Ind, planner)
24: pop ← SurvivalSelection(pop ∪ offspring)
25: until #gen > MaxGen OR noImprovementSince(MaxChgt)
26: return Evaluate(pop.BestIndividual, planner).Sol

with individuals from the population of the previous genera-
tion either as is or as the result of a crossover between two in-
dividuals and/or as the result of a mutation. The mutation is
chosen non-uniformally (according to a weight) among four
operators. All individuals are then evaluated before being
submitted to the survival selection, which selects the popula-
tion of the next generation from the parents+offspring (line
24) — see Section DAEYAHSP Settings for the actual im-
plementation. The evolution stops either after a maximum
number of generations or when no improvement has been
observed since a given number of generations. Lastly one of
the best individuals is evaluated to produce the best solution
found.

Experimental Results
DAEX

2 has been implemented within the Evolving Objects
framework3, an open source, template-based, ANSI C++
evolutionary computation library. Experiments have been
conducted in order to assess the behavior of DAEX over
different kinds of planning tasks: classical planning tasks,
cost-based planning (actions with costs), and simple tem-
poral planning tasks (actions with duration). IPC bench-
marks domains have been used, from the corresponding IPC
tracks. In order to select test domains, we have chosen for
temporal planning tasks and planning with costs, all IPC-6
domains that can be tackled by YAHSP and several other

2DAEYAHSP will be soon available under CeCILL-C license
3http://eodev.sourceforge.net/

domains from previous IPC competitions for which we have
reference values4. For STRIPS problems, test domains were
chosen according to their complexity as defined by (Helmert
2008), with the goal of having different types of complexity.
The complete list of domains is given with the results in Ta-
ble 1: altogether, 736 problems have been tested.

Furthermore, the results of DAEYAHSP have been com-
pared with those of the best state of the art planners: LAMA
(Richter, Helmert, and Westphal 2008), updated version,
LPG (Gerevini, Saetti, and Serina 2003a; 2003b), and TFD
(Eyerich, Mattmüller, and Röger 2009), updated version
which, according to the authors, outperforms all state-of-
the-art temporal planning systems, plus of course the em-
bedded planner itself YAHSP (Vidal 2004).

Performance Measures
Experiments were done using a 2 GHz computer with a
6 MB cache and a 16 GB RAM, running Linux. All al-
gorithms are given at most 30 minutes of CPU time for each
run on each problem instance. Their coverage is then mea-
sured by the number of instances solved in each domain.
The quality of the plans are evaluated using IPC rules. For a
given instance i, let Q∗

i be the reference plan quality. The
quality ratio for each planner is defined by Q∗

i /Qi. The
quality score of a planner for domain D is the sum over
all instances of D of the quality ratios of this planner. The
planner with the highest quality score is designated as the
best performer on the domain. Note that if a planner cannot
find a plan for a given instance after 30 minutes, its quality
ratio is set to 0 for this instance.

However, DAEYAHSP and LPG are stochastic algorithms,
and no firm conclusion can be drawn from a single run.
Hence 11 independent runs have been performed on each
instance in order to assess their robustness. Their cover-
age per domain is defined as the total number of instances
that have been solved at least once. The average coverage
of LPG and DAEYAHSP for a given domain D is defined asP

i;ni>0 ni
P

i;ni>0 1 , where ni is the number of successful runs (i.e.,

that found a plan) for instance i of D. The average cov-
erage hence lies in [0, 11], the higher the better. Finally,
the average quality of LPG and DAEYAHSP for domain D
is defined as the sum over all solved instances i of D of
1
ni

∑
{run j solved i}

Q∗
i

qj
where qj is the quality of the plan

found by run j — the closer to full coverage, the better.

DaEYAHSP Settings
One identified weakness of EAs is the difficulty in tuning
their numerous parameters, as there exists no theoretical
guidelines to help the practitioner. Users generally rely on
their previous experience on similar problems, or use stan-
dard and expensive statistical methods, e.g., Design of Ex-
periments (DOE) and Analysis of Variance (ANOVA). Ex-
perimental statistical procedures have been proposed (e.g.,
Racing (Yuan and Gallagher 2004)), that build on standard

4Reference values are either the best results of all IPCs, or the
best values obtained with CPT (resp. DAE1, DAE2).

22

DOE and use the specificities of the Evolutionary Computa-
tion domain to reduce the amount of computations.

In order to tune DAEX, (Bibai et al. 2009) proposed a two
steps learning approach which involves choosing the prob-
ability and weights of each of the variation operators with
Racing, and then choosing which predicates will be used to
describe the intermediate goals with statistical analysis. In
this paper, only the first step of (Bibai et al. 2009) approach
has been used, over several domains of IPC benchmarks.
The best parameter set output by the Racing procedure has
be chosen as the common parameter configuration for all ex-
periments of this paper, and is described below.

However, the Racing procedure (Yuan and Gallagher
2004) was limited to the parameters of the variation oper-
ators, and the evolution engine had been fixed according
to preliminary experiments: population size is set to 100
and offspring size to 700, each parent generates exactly 7
offspring using variation operators. The survival selection
is a comparison-based deterministic tournament of size 5:
5 individuals are uniformly chosen in the set of 800 par-
ents+offspring, and the best of those 5 is chosen to become
a parent of the next generation. Furthermore, the same stop-
ping criterion has also been used for all experiments: after a
minimum number of 10 generations, evolution is stopped if
no improvement of the best fitness in the population is made
during 50 generations, with a maximum of 1000 generations
altogether. Finally, the parameters of the variation operators,
as determined by the initial Racing phase, are the following:
the probabilities of individual-level application of crossover
and mutation (pcross and pmut) are (0.2, 0.8) and the rela-
tive weights of the 4 mutation operators (waddGoal, wdelGoal,
waddAtom, wdelAtom) are (3,1,1,1). The neighborhood radius
was set to 2, the longest sequence of states allowed lmax was
set to 2×#T , and the relative probabilities to change or add
an atom (pc and pa) were set to (0.8, 0.5).

Results
First column (resp. second column) of Table 1 shows for all
algorithms the best coverage Splanner (resp. quality Qplanner),
together with the average quality of LPG and DAEYAHSP,
and the average coverage of DAEYAHSP (the average cover-
age of LPG is always equal to 11 and is therefore not pre-
sented). Last column is the ratio Qplanner/Splanner. The mean
values of those figures across test domains are also provided,
by domain category, and over all domains.

Figure 1 displays boxplots for the average number of
states and atoms per state for the best decompositions ob-
tained by DAEYAHSP on zeno simple time (the situa-
tion is similar on other domains). It shows that DAEYAHSP
builds larger decompositions with more atoms per state as
instances get harder — even though the settings are the same
for all instances. DAEYAHSP thus seems to somehow grasp
instance difficulty. Figure 2 shows two typical examples of
the fitness behavior along evolution on crew planning
30 and openstacks simple time 30. It highlights
the learning power of evolutionary computation for an un-
known problem structure, that seem very different between
these two instances.

1 3 5 7 9 11 13 15 17 19

0
1

0
2

0
3

0
4

0
5

0
6

0

Zeno−Time−Atoms: DAEx

instances

m
e

a
n

 #
A

to
m

s
 p

e
r

s
ta

te
s

1 3 5 7 9 11 13 15 17 19

0
5

1
0

1
5

2
0

Zeno−Time−States: DAEx

instances

#
S

ta
te

s

Figure 1: DAEYAHSP Diversity on zeno simple time.

@

@

@
@

@@

@
@@@@

@@@@@@@@@@@@
@@@@@@@@

@@@@@@@@@@@@@@@@@@@@@@@@@
@@@

5
0

0
0

5
5

0
0

6
0

0
0

6
5

0
0

Fitness behavior on crewplanning 30

evaluations

m
a

k
e

s
p

a
n

@
@

@

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@@@@@@@@@@@@

@@@

1
4
0

1
5
0

1
6
0

Fitness behavior on openstacks−time 30

evaluations

m
a

k
e

s
p

a
n

Figure 2: Fitness behavior of DAEYAHSP on crew
planning 30 and openstacks simple time 30.

Discussion
The first clear result is that DAEYAHSP solves signifi-
cantly more problems (92.53% of total) than YAHSP alone
(88.86%), much more (91.25%) than LPG (82.50%) and
TFD (75.83%) on simple temporal planning, much more
(94.14%) than LPG (79.69%) on STRIPS planning, and a
little more than LAMA on STRIPS planning and cost-based
planning. Then, DAEYAHSP has the best quality score (see
last lines of Table 1) for all kinds of planning tasks. Further-
more, DAEYAHSP more often finds (see Table 1) either the
reference value (which may be optimal), or a value greater
than 90% of the reference value, and always finds a better
plan quality than YAHSP alone (Table 1). Note that the
best improvement on quality obtained by DAEYAHSP over
YAHSP alone is on cost-based planning.

However, although the DAEYAHSP planner has the best
quality score over all tested domains (last lines of Table 1),
LPG has the best ratio on STRIPS domains and simple tem-
poral domains (last lines of the corresponding sub-tables of
Table 1). We believe that this is due to the use of a com-
mon parameter configuration for all experiments, and further
work will investigate instance-specific parameter tuning.
Nevertheless, there does not exist any absolute best method:
even in the case where DAEYAHSP (respectively LPG) ob-
tains the best ratio value on a given type of problems, there is
always at least one domain of this type where the other plan-
ner performs better on all instances it could solve (see table
1). See for instance, the pegsolitaire (DAEYAHSP plan-
ner) domain for temporal planning tasks, and elevator
(LAMA planner) and pathways (DAEYAHSP planner) do-
mains for the other types of planning tasks.

Another conclusion we can draw from those results is

23

Table 1: Quality and scaling of satisficing planners YAHSP, LAMA, LPG, TFD and DAEYAHSP across the test domains. In
column Domain(x), x denotes the total number of problem instances. Columns 2-4 (or 2-5) display the coverage, i.e., number
of instances solved (and also, for DAEYAHSP, the average number of successful runs — the closer to 11 the better). Columns
5-7 (or 6-9) show the quality score (and in parentheses, for DAEYAHSP, the average coverage, the closer to the quality score the
better). See text for the exact definitions. The values in bold are the best values obtained on each type of planning task (Cost,
Temporal and STRIPS). Columns 8-10 (or 10-13) display the ratios Quality Score

Coverage on each domain (with means of those ratios
across the domain types).

Costs Domain-ipc6
Coverage Quality Quality / Total of solved problems

YAHSP LAMA DAEYAHSP YAHSP LAMA DAEYAHSP YAHSP LAMA DAEYAHSP

Woodworking (30) 20 30 27 / 8.9 15.96 24.36 24.79 (24.3) 79.82% 81.21% 91.81%
Pegsolitaire (30) 30 30 30 / 10.9 20.90 26.19 28.11 (27.2) 69.66% 87.31% 93.71%
Parcprinter (30) 28 22 28 / 11 16.87 11.94 27.25 (17.0) 60.24% 54.27% 97.33%
Openstacks (30) 30 30 30 / 11 8.52 20.73 19.45 (18.2) 28.39% 69.12% 64.85%
Transport (30) 30 30 30 / 11 16.73 26.40 24.99 (23.0) 55.77% 88.00% 83.30%
Scanalyser (30) 27 30 27 / 11 13.68 25.88 21.85 (20.9) 50.66% 86.27% 80.92%
Elevator (30) 30 24 30 / 11 9.60 22.65 18.31 (16.3) 32.00% 94.36% 61.05%
Sokoban (30) 24 25 20 / 9.6 21.32 24.25 19.79 (19.3) 88.85% 97.02% 98.96%
Total problems (240) 219 221 222 123.58 182.41 184.55 58.17% 82.19% 83.99%

Temporal Domain
Coverage Quality Quality / Total of solved problems

YAHSP LPG TFD DAEYAHSP YAHSP LPG TFD DAEYAHSP YAHSP LPG TFD DAEYAHSP

Crewplanning-ipc6 (30) 30 12 29 30 / 11 24.55 12.00 (12.0) 28.76 29.90 (29.5) 81.82% 100% 99.17% 99.68%
Elevator-ipc6 (30) 30 30 17 30 / 11 8.31 25.83 (24.6) 13.45 23.24 (20.2) 27.70% 86.12% 79.11% 77.46%
Openstacks-ipc6 (30) 30 30 30 30 / 11 17.90 29.45 (27.6) 26.49 28.41 (27.8) 59.66% 98.15% 88.30% 94.71%
Pegsolitaire-ipc6 (30) 30 30 28 30 / 11 27.25 29.74 (28.4) 26.78 30.00 (29.8) 90.83% 99.14% 95.63% 100%
Parcprinter-ipc6 (30) 15 20 15 22 / 10.1 10.98 19.36 (19.2) 10.27 14.60 (14.2) 73.23% 96.82% 68.49% 66.35%
Sokoban-ipc6 (30) 22 16 17 17 / 10.5 17.20 11.14 (11.1) 12.74 15.60 (15.3) 78.20% 69.63% 74.92% 91.78%
Rovers-ipc3 (20) 20 20 6 20 / 11 17.74 19.95 (19.8) 5.78 19.86 (19.8) 88.69% 99.75% 96.39% 99.32%
Satellite-ipc3 (20) 20 20 20 20 / 11 6.33 20.00 (19.8) 12.55 16.86 (16.2) 31.64% 100% 62.77% 84.28%
Zeno-ipc3 (20) 20 20 20 20 / 11 9.70 18.98 (18.4) 11.62 17.50 (16.7) 48.49% 94.92% 58.09% 87.50%
Total problems (240) 217 198 182 219 139.96 186.46 148.44 195.97 64.47% 93.84% 80.32% 89.01%

STRIPS Domain
Coverage Quality Quality / Total of solved problems

YAHSP LPG LAMA DAEYAHSP YAHSP LPG LAMA DAEYAHSP YAHSP LPG LAMA DAEYAHSP

Airport-ipc4 (50) 20 46 37 44 / 9.8 19.47 4 2.37 (41.1) 35.58 40.34 (38.9) 97.35% 92.10% 96.16% 91.69%
Psr small-ipc4 (50) 50 9 50 50 / 11 47.65 9.00 (9.0) 50.00 49.96 (49.9) 95.30% 100% 100% 99.91%
Satellite-ipc4 (36) 28 36 32 27 / 11 16.42 35.98 (35.9) 30.25 26.57 (26.5) 58.66% 99.95% 94.54% 98.40%
Openstacks-ipc5 (30) 30 23 30 30 / 10.8 27.98 22.43 (22.3) 28.55 29.97 (29.8) 93.28% 97.52% 95.16% 99.89%
Rovers-ipc3 (20) 20 20 20 20 / 11 17.74 19.93 (19.9) 19.33 19.80 (19.7) 88.71% 99.65% 96.63% 99.02%
Zeno-ipc3 (20) 20 20 20 20 / 11 15.37 19.45 (19.6) 19.25 18.91 (18.5) 76.86% 97.27% 96.23% 94.54%
Freecell-ipc3 (20) 20 20 20 20 / 8.5 12.50 18.01 (17.9) 19.52 15.68 (14.0) 62.52% 90.05% 97.62% 78.39%
Pathways-ipc5 (30) 30 30 29 30 / 11 25.57 29.37 (29.0) 26.78 29.47 (20.4) 85.25% 97.91% 92.34% 98.25%
Total problems (256) 218 204 238 241 182.72 196.56 229.26 230.70 82.24% 96.81% 96.09% 95.01%

the robustness of DAEYAHSP. Its coverage robustness is as-
sessed by its very high average coverage (close to the maxi-
mum value 11): when an instance is solvable, almost all runs
succeed. Regarding the quality robustness, the average qual-
ity of DAEYAHSP is most of the times greater than 95% of the
quality score, with however some low value outliers. It is
nevertheless difficult to compare, with respect to coverage,
stochastic algorithms (like DAEYAHSP and LPG) to deter-
ministic suboptimal ones (like LAMA). Lack of space for-
bids to present Cumulative Distribution Functions describ-
ing the distribution of the proportion of runs that did reach
a given fitness value in a given time. Let us simply com-
plement here the results of Table 1: replacing the coverage
condition by requiring that the instance is solved at least 3
(resp. 6) times out of 11, DAEYAHSP is still slightly ahead of
(resp. now slightly behind) LAMA. The general conclusion
— DAEX performs as well as LAMA — nevertheless holds.

Related Work

Addressing the planning problem with an evolutionary al-
gorithm, Genetic Planning, is not new but is usually done
with a direct encoding of partial plans, i.e., individuals rep-
resent linear lists of actions, and is also usually restricted to
classical planning like in (Westerberg and Levine 2001) or
(Brié and Morignot 2005). A genetic algorithm for learning
macro-actions for arbitrary planners and domains has been
recently proposed in (Newton et al. 2007). In aggregating
several steps, macros indirectly divide the state space by fos-
tering better plan trajectories among all possible ones but the
approach is much different from DAEX. It is worth mention-
ing also a successful space application, modeled with time-
lines and a multi-objective function, reported in (Cesta et al.
2008) and in which the MRSPOCK solver includes a clas-
sical genetic algorithm. But although it is indeed a practi-

24

cal application of evolutionary computation to planning, the
representation and operators used within MRSPOCK are
very different from what is done in DAEX.

LPG works by performing a stochastic local search, sim-
ilar to WalkSat, on planning graph subsets (Gerevini, Saetti,
and Serina 2003b). In both LPG and DAEX, the strat-
egy consists in gradually improving plan trajectories using
a stochastic scheme. Other similarities are timestamping
atoms with an earliest time estimate, and mutual exclusion
constraints. However, there are fundamental differences be-
tween the two approaches. Firstly, LPG is a self-contained
planner that performs a constructive method and reasons on
partial plans, whereas DAEX is a meta-algorithm that mod-
ifies intermediate states and relies on an external solver to
generate partial plans. Furthermore, although it manipu-
lates several different plans by doing restarts, LPG is not a
population-based search algorithm, because there is no in-
teraction between the different “individuals”. The use of
timestamping is also very different in both approaches.

Plan optimization is also often performed by anytime
search algorithms, such as LAMA; however, as mentioned
in (Richter, Thayer, and Ruml 2009), such algorithms are of-
ten caught in unpromising parts of the search space, thus be-
ing unable to really improve the plan. They show that doing
restarts in this kind of algorithms may be a better strategy. In
contrast, our approach is designed to introduce diversity in
the exploration of the search space, while taking benefit of
the past exploration through the evolution of the population.

Conclusion
This paper introduced DAEX, an evolutionary metaheuris-
tic for satisficing planning. DAEX optimizes the decom-
position of a planning task into a sequence of intermediate
states that must be reached in turn by an embedded planner,
in order to find a plan of the best possible quality. Creat-
ing the initial population and evolving the individuals from
one population to the next through variation operators heav-
ily relies on standard features of modern planners, such as
binary mutual exclusions and reachability heuristics, in or-
der to build time-coherent mutex-free partial states. Experi-
ments demonstrate that the performance of an encapsulated
planner can be greatly increased, both in terms of coverage
and solution quality, making it competitive with state-of-the
art planners. Although we used a single planner (YAHSP)
in our experiments, future works will use different planners,
evaluating their behavior within DAEX. A portfolio of plan-
ners could also be used to solve each subtask; a sequence
of solvers would then be recorded in the individuals. It is
also interesting to see that these results are obtained with
the simple h1 planning heuristic for the construction of indi-
viduals; on the one hand, its use improved a lot the results;
on the other hand, the use of more elaborate heuristics may
be envisaged. A precise assessment of the impact of such
heuristics on the results will be addressed in further work.

References
Bäckström, C. 1998. Computational aspects of reordering plans.
Journal of Artificial Intelligence Research 9:99–137.

Bibai, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2008.
DAE: Planning as Artificial Evolution (IPC-6 Deterministic part).
http://ipc.icaps-conference.org/.
Bibai, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2009. Learn-
ing Divide-and-Evolve Parameter Configurations with Racing. In
ICAPS 2009 Workshop on Planning and Learning.
Bibai, J.; Schoenauer, M.; and Savéant, P. 2009. Divide-And-
Evolve Facing State-of-the-Art Temporal Planners during IPC-6.
In EvoCOP’09, 133–144. Springer Verlag.
Brié, A. H., and Morignot, P. 2005. Genetic Planning Using Vari-
able Length Chromosomes. In 15th ICAPS, 320–329.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2008. Looking
for MrSPOCK: Issues in Deploying a Space Application. In ICAPS
2008 SPARK Workshop.
Chen, Y.; Hsu, C.; and Wah, B. 2006. Temporal Planning using
Subgoal Partitioning and Resolution in SGPlan. Artificial Intelli-
gence 26:323–369.
Eiben, A., and Smith, J. 2003. Introduction to Evolutionary Com-
puting. Natural Computing Series. Springer.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
Context-enhanced Additive Heuristic for Temporal and Numeric
Planning. In 19th ICAPS, 130–137.
Gerevini, A.; Saetti, A.; and Serina, I. 2003a. On Managing Tem-
poral Information for Handling Durative Actions in LPG. In AI*IA
2003: Advances in Artificial Intelligence. Springer Verlag.
Gerevini, A.; Saetti, A.; and Serina, I. 2003b. Planning through
Stochastic Local Search and Temporal Action Graphs in LPG.
JAIR 20:239–290.
Haslum, P., and Geffner, H. 2000. Admissible Heuristics for Opti-
mal Planning. In 5th AIPS, 140–149.
Helmert, M. 2008. Understanding Planning Tasks. Springer Ver-
lag.
Korf, R. 1987. Planning as Search: A Quantitative Approach.
Artificial Intelligence 33:65–88.
Newton, M. H.; Levine, J.; Fox, M.; and Long, D. 2007. Learn-
ing Macro-Actions for Arbitrary Planners and Domains. In 17th

ICAPS, 256–263.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
Revisited. In AAAI’08, 975–982. AAAI Press.
Richter, S.; Thayer, J. T.; and Ruml, W. 2009. The Joy of Forget-
ting: Faster Anytime Search via Restarting. In SOCS’09.
Schoenauer, M.; Savéant, P.; and Vidal, V. 2006. Divide-and-
Evolve: a New Memetic Scheme for Domain-Independent Tempo-
ral Planning. In EvoCOP’06, 247–260.
Schoenauer, M.; Savéant, P.; and Vidal, V. 2007. Divide-and-
Evolve: a Sequential Hybridization Strategy using Evolutionary
Algorithms. In Michalewicz, Z., and Siarry, P., eds., Advances in
Metaheuristics for Hard Optimization, 179–198. Springer Verlag.
Sebastia, L.; Onaindia, E.; and Marza, E. 2006. Decomposition of
Planning Problems. AI Communications 19(1):49–81.
Vidal, V., and Geffner, H. 2006. Branching and Pruning: An Op-
timal Temporal POCL Planner based on Constraint Programming.
Artificial Intelligence 170(3):298–335.
Vidal, V. 2004. A Lookahead Strategy for Heuristic Search Plan-
ning. In 14th ICAPS, 150–160.
Westerberg, H., and Levine, J. 2001. Optimising Plans using Ge-
netic Programming. In 6th Eur. Conf. on Planning (ECP-01).
Yuan, B., and Gallagher, M. 2004. Statistical Racing Techniques
for Improved Empirical Evaluation of Evolutionary Algorithms. In
PPSN VIII, 172–181.

25

