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seee Human Competitiveness

(

This work fullfils 7 of the 8 criteria for human competitiveness:

(A) The result was patented as an invention in the past, is an improvement
over a patented invention, or would qualify today as a patentable new
invention.

(B) The result is equal to or better than a result that was accepted as a new
scientific result at the time when it was published in a peer-reviewed
scientific journal.

(C) The result is equal to or better than a result that was placed into a
database or archive of results maintained by an internationally recognized
panel of scientific experts.

(D) The result is publishable in its own right as a new scientific result 3/4
independent of the fact that the result was mechanically created.

(E) The result is equal to or better than the most recent human-created
solution to a long-standing problem for which there has been a
succession of increasingly better human-created solutions.

(F) The result is equal to or better than a result that was considered an
achievement in its field at the time it was first discovered.

(G) The result solves a problem of indisputable difficulty in its field.




acese The Problem

+ The computer vision (CV) problem addressed in this work is,
Invariant Local Descriptors.

+ Local descriptors extracted from interest regions have impacted
to the CV community due to its simplified methodology for CV
applications.

*+ The idea of using local features in the context of matching and
recognition under different viewing conditions was first proposed
by Schmid and Mohr?,

Local Features

1C.Schmid and R.Mohr. Local grayvalue invariants for image retrieval. IEEE PAMI. 19(5): 530-534. 1997.




Object Recognition [1-6]

* Image Retrieval [7-10]

MOTION FIELD

+ Human Detection [11] PREDICTION

+ Texture Classification [9,12,13]
+ 3D Reconstruction [14,15]

*+ Motion Field Prediction [16]

+ Image Deformation [17,18] ACE DETECTION

* Image Panoramic Assembly [19]
+ Face Detection [13,20]
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Invariant local descriptor is posed as an optimization problem.

GP is used to synthesized mathematical expressions that are used to
improve the patented SIFT descriptor.

The results are called RDGPs (Region Descriptor with Genetic
Programming).

The F-Measure is proposed as a adequate fitness function as well as
a measure for the performance evaluation of local descriptors.

A widely accepted testbed is used in the evaluation.

The proposed descriptor is tested in an object recognition application.
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@ Motivation fior designing RDGPs

@ Development a technigue that is simple, automated
and reliable for improving local descriptors.

@ Better descriptor performance, better real applications.
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acese Performance Evaluation: F-Measure

* This measure gives the best balance between
precision and recall metrics commonly used in graphs
to evaluate local descriptors?.

* We claim that the F-Measure gives a Dbetter
Interpretation of the results than only plotting them.

TestBed: WINRIA

@ INRIA Rhone Alpes

@ University of Oxford

@ Katholieke Universiteit Leuven

@ Center of Machine Perception at the
Czech Technical University

2K.Mikolajczyk and C.Shmid. A performance Evaluation of Local Descriptors IEEE PAMI. 27(10):1615-1630. 2005.




c.cﬁPerformance Evaluation: F-Measure
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\) Results

@ Qur approach produced 30 RDGPs that outperformed all
the state-of-art descriptors published with the same
testbed.
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acee REsults

The 5 Best Evolved RDGPs
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Results

We obtained much better performance that the human-
made descriptor algorithms.
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Descriptors Performance for lllurmination Changes [ Leuven |
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acee Results

Descriptors Petformance for Rotation + Scale Changes [ Boat |
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Results

Descriptors Petformance for JPEG Compression { LBC )
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acese HUman Competitiveness

Whny should this work win?

2 The results obtained in this work fulfills 7 of the 8 human
competitive criteria.

@ Qur methodology for automatically obtaining new
descriptor operators using GP represents a new
approach within the CV community.

@ We believe that this kind of formulation shows a rigorous
path in the design of computer vision applications where
GP plays a major role; thus, strengthening the emerging
area of evolutionary computer vision.




acese Human Competitiveness

(A) The result was patented as an invention in the past,
IS an improvement over a patented invention, or
would qualify today as a patentable new invention.

Our proposed methodology for synthesizing descriptor operators represent
an improvement over a patented descriptor algorithm called SIFT (Scale
Invariant Feature Transform).

The SIFT patent is the following:

"Method and apparatus for identifying scale invariant features in an
image and use of same for locating an object in an image". David G.
Lowe, US Patent 6,711,293 (March 23, 2004). Asignee: The University of
British Columbia.




acese Human Competitiveness

(B) The result is equal to or better than a result that was
accepted as a new scientific result at the time when it
was published in a peer-reviewed scientific journal.

Here, we compared our results with previous published descriptors from which their
evaluation technique was based on a recall vs 1-precision space. Thus, we tested several
works to compare our descriptor algorithm and in particular we found that our results
surpassed the overall performance of previous local descriptors including the following:

@David G. Lowe, "Distinctive image features from scale-invariant keypoints," International
Journal of Computer Vision, 60(2):91-110, 2004.

@K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis and Machine Learning, 27(10):1615-1630, 2005.

@Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, "SURF: Speeded Up Robus
Features", Computer Vision and Image Understanding (CVIU), 110(3):346-359, 2008.




acese Human Competitiveness

(C) The result is equal to or better than a result that was
placed into a database or archive of results
maintained by an internationally recognized panel of
scientific experts.
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acese Human Competitiveness

(D),(E) and (F)

(D) The result is publishable in its own right as a new scientific result 3/4
independent of the fact that the result was mechanically created.

(E) The result is equal to or better than the most recent human-created
solution to a long-standing problem for which there has been a
succession of increasingly better human-created solutions.

(F) The result is equal to or better than a result that was considered an
achievement in its field at the time it was first discovered.

Our methodology for automatically obtaining new descriptor operators using genetic
programming represents a new approach within the computer vision field; in particular, it
address a new approach where local descriptors could be synthesized through GP. As a
by product, the results found by genetic programming in the experimental stage
surpassed our initial expectations; indeed, we obtained much better performance than the
human-made descriptor algorithms. As a conclusion, we have improved the SIFT
algorithm which has been considered until now, an achievement in its field using GP.




acese Human Competitiveness

(G) The result solves a problem of indisputable difficulty
In its field.

Today, most computer vision conferences and journals devote a special session
or section to local descriptors research because it has became a powerful
technique for solving real-world vision problems. Thus, our proposed technique
opens a research avenue towards evolutionary learning of local descriptors.
Here, we demostrated the effectiveness of our GP approach through an
extensive experimental study and its application using an object recognition
problem.
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