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Abstract

Recognizing and localizing objects is a classical
problem in computer vision that is an important stage
for many automated systems. In order to perform ob-
ject recognition many researchers have focused on lo-
cal features as the basis of their proposed methodolo-
gies. This work is devoted to the task of learning in-
variant region descriptor operators with genetic pro-
gramming. The idea is to find a set of expressions
that could be equal or better than the weighted gra-
dient magnitude that is normally applied on the SIFT
descriptor. This magnitude corresponds to the operator
that we would like to improve through genetic program-
ming (GP). The key for a successful problem statement
was achieved with the F-measure. After a bibliographi-
cal study we have found a criterion that is simple, re-
liable, and useful in the estimation of such a metric.
The measure that we propose here is based on the har-
monic mean which is normally used by the information
retrieval community. Experimental results show that the
evolved descriptor’s operator can enhance significantly
the overall performance of the SIFT descriptor and sur-
pass other state-of-the-art algorithms.

1 Introduction

The idea of using interest points and region descrip-
tors as a starting stage within a larger vision system
has impacted the entire process where identification and
matching locations between images is required; i.e., im-
age matching, object recognition and detection, motion
tracking and segmentation, 3D reconstruction, image
panorama assembly, and epipolar calibration, to name
but a few. In particular this paper deals with the synthe-
sis of region descriptor operators through GP.

This work follows our previous research where we
have successfully synthesized interest point operators
[9, 10, 11]. One of the major conclusions of that work
is that a number of interest point operators exist which
achieve a high-performance with respect to the repeata-
bility and point dispersion criteria. This is contrary to
the common practice of using mainly the Harris oper-
ator and its variants as the optimal interest point op-
erator. In this work rather than proposing a novel re-
gion descriptor which is definitively a more challenging
work, we decide to improve the SIFT algorithm as sev-
eral researchers have done in the past. For example,
Ke and Sukthankar [4] proposed PCA-SIFT in order to
represent in a more compact way the normalized gra-
dient patch instead of the standard SIFT representation.
Bay et al. [2] designed also a descriptor called SURF,
which is a SIFT version specially designed for real time
applications. Mikolajczyk and Schmid [6] suggested a
descriptor called GLOH, which is a SIFT variant where
the local region used to build the histogram is computed
with polar coordinates and PCA was also employed.
Dalal and Triggs [3] proposed also a SIFT variant called
HOG that is based on evaluating well-normalized lo-
cal histograms of image gradient orientations in a dense
grid. Tola et al. [8] introduced a SIFT version named
DAISY with the idea of computing fast dense matching
in the case of wide baseline configurations using graph-
cuts.

In the vein of those previous works we decide to im-
prove also the SIFT algorithm looking for a better de-
scription of the information being extracted from the lo-
cal regions. Our goal is also not to change the whole
process but rather change key aspects that could make
a greater difference on the global performance. SIFT as
described in [5] consists of four major stages: 1) scale
space peak detection, 2) keypoint localization, 3) orien-
tation assignment, and 4) keypoint descriptor. We will



focus our discussion on the last stage as our present con-
tribution is devoted to improve the local image descrip-
tor. However, to help the newcomer we recall briefly
the main steps. First, potential interest points are de-
tected on the image using the scale space. This is imple-
mented efficiently by constructing a Gaussian pyramid
and searching for local peaks (keypoints) in a series of
difference-of-Gaussian (DOG) images. Second, candi-
date keypoints are localized to sub-pixel accuracy and
eliminated if found to be unstable. Third, the algorithm
identifies the dominant orientations for each keypoint
based on its local image patch. The assigned orienta-
tion, scale and location for each keypoint enables SIFT
to construct a canonical view for the keypoint that is
said invariant to similarity transforms. The last stage
builds a local image descriptor for each keypoint, based
upon the image gradients of a patch of pixels in its local
neighborhood. This patch is centered on the keypoint
location, rotated with respect to the dominant orienta-
tion and scaled to the appropiate size. We propose in
this work to name the gradient magnitude normally used
in SIFT and its variants as the local image descriptor op-
erator, see Figure 1.
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Figure 1. Local image descriptor operator
used within SIFT: c) gradient magnitude
g) RDGP.

Our idea is to improve such operator through a GP
based approach similar to our previous work. However,
the challenge here is how to devise a well-posed metric
working on the Recall vs 1-precision space.

This paper is organized as follows. Section 2
presents a discussion about our search for a suitable
evaluation criterion. Section 3 outlines our GP ap-
proach. Section 4 provides implementation details, as
well as experimental results and possible future work.

2 Evaluating Regions’ Descriptors
through the F-measure

Current evaluation techniques described in the lo-
cal descriptor literature propose metrics that work on
the ROC space, as well as on the Recall vs 1-precision
space, which are derived from the contingency table.
These correspond to graphical evaluations that convey a
subjective interpretation specially when plotting curves
intersect. Here we propose as an evaluation technique
the F-measure in order to obtain a good evaluation
methodology to compare local image descriptors. At
the time of writing, we are not aware of any work using
the F-measure method for evaluating the performance
measurement of such tasks. As shown by Agarwal and
Roth [1] Recall vs 1-precision space is considered a
much better way of reporting and interpreting results
because it avoids the computation of the total number
of negatives used by ROC curves.

In this way, the overall accuracy could be computed
with the following metrics: true negative rate, true pos-
itive rate, weighted accuracy, G-mean, precision, re-
call, and the F-measure. Other measures that could be
computed are the area under the ROC or Recall vs 1-
precision curves. Another way is simply to address the
problem in multiobjective terms and fix one of the co-
ordinates or better to use some evolutionary multiob-
jective optimization. However, as we will see here the
F-measure already provides a measure that is simple, re-
liable and useful in the estimation of the local descriptor
performance. The F-measure is based on the harmonic
mean which was originally proposed by the information
retrieval community [12]. It gives the best balance be-
tween precision and recall metrics. The general formula
is defined in the following equation:

Fα(p, r) =
(1 + α) · (p · r)

(α · p + r).
(1)

where p is precision {p : 0 ≤ p ≤ 1}, r is recall {r :
0 ≤ r ≤ 1}, and {α : 0 ≤ α ≤ ∞}. Note that in the
case of α < 1 the variable with a higher weight is p,
while α > 1 the variable with a higher weight is r, and
when α = 1 the precision and recall are well balanced.

3 Evolving Descriptors’ Operators with
Genetic Programming

Genetic programming is a relatively new and fast
developing approach to automatic programming, see
Poli et al. [7]. GP is an evolutionary algorithm based
methodology inspired from biological evolution to find
computer programs that perform a user-defined task. It



is said to be a machine learning technique that auto-
matically solves problems without requiring the user
to know or specify the form or structure of the final
solution in advance. GP is not typically used to cre-
ate programs like in the familiar Turing-complete lan-
guages that humans normally use for software develop-
ment. It is instead more common to evolve programs
(expressions or formulae) in a more constrained and of-
ten domain-specific language. The search space is de-
fined according to our previous analysis, see Trujillo
and Olague [10]. The function and terminal sets used
in our evolutionary algorithm are the following:

F =
{

+, |+ |,−, | − |, ∗,÷,
√

It,

It

2
, log2(It), DxGσ, DyGσ, Gσ

}

T = {I,Dx, Dxx, Dyy, Dxy, Dy}

(2)

where I is the input image and It can be any of the ter-
minals in T , as well as the output of any of the functions
in F ; Du symbolizes the image derivatives along direc-
tion u then Du = I ∗ Gu(σ=1); Gσ are the Gaussian
smoothing filters with σ = 1 or 2; DuGσ represents the
derivative of a Gaussian filter with image blur σ. An ap-
propriate fitness function is decisive to the GP process
success. Thus, our fitness function is based on a well
balance precision and recall data as explained earlier:

Q = argmax
n

Fα(P x
i , Rx

i ) =
Pn

i=1

(1 + α) · (pi · ri)

(α · pi) + ri

o

where Q : Fα(P s, Rs) ≥ Fα(P t, Rt)
(3)

with n representing the number of thresholds. Preci-
sion data from an image pair are denoted by P x =
(p1, p2, ..., pn) and recall data by Rx = (r1, r2, ..., rn).
The ranking order of Q is ascendent where the highest
value of Q corresponds to the descriptor with the best
performance. It is also possible to use the mean of Q
instead of the total sum of Fα.

4 Experimental Results

In this section, we introduce experimental results
for the local descriptors’ evaluation. The proposed ap-
proach was implemented as in general machine learn-
ing through two basic stages: training and testing
which were programmed on Matlab with the GP tool-
box (GPLAB1). The core platform of our descriptor al-
gorithm is based on SIFT features, programmed in Mat-
lab/C2. For training we have used the boat and Leuven

1http://gplab.sourceforge.net/index.html
2http://vision.ucla.edu/ vedaldi/code/sift/sift.html

image pairs, which have rotation, scale and illumina-
tion transformations. For testing, five image pairs were
used with different image transformations. All image
sets were downloaded from the Visual Geometry Group
website3, along with Matlab source code to compute
precision and recall data. For more details of the dataset
used in this paper, see [6]. The training test could seem
to be rather small to learn something useful and general.
Note that we are learning a mathematical expression
based on geometric and photometric principals without
any kind of semantic interpretation. According to our
previous work it is only important to train with an ex-
ample of the major transformation being studied. Its
generality could be tested with other image sequences
keeping the main hypothesis as is normally done; for
example, with the Harris operator. Results are shown
in Figure 3 where it is easily to observe the superiority
of the RDGP operator compared with the GLOH and
SIFT descriptors. In those graphs we decide to change
α = 0.5 except for Figure 3(c) where was used α = 2.
Note that our space is now r vs 1 − p and the domain
is defined as follows: when α < 1 the variable with the
higher weight is 1− p then is logical to observe that we
are separating the curves along this axis. On the other
hand, when α > 1 then we are separating the curves
along the recall axis. The discovered RDGP, see Fig. 2,
could be seen as a geometric mean, which indicates the
central tendency or typical value of a set of numbers and
it only applies to positive numbers. In a special case the
geometric mean is also the arithmetic-harmonic mean.
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Figure 2. Statistics for RDGP showing fit-
ness evolution and best individual.

5 Conclusions

In this paper, we have proposed a new methodol-
ogy based on GP with the goal of synthesizing region

3http://www.robots.ox.ac.uk/vgg/research/



Table 1. RDGP algorithm set up.
Parameters Description
Generations 50
Population size 50 individuals
Initialization Ramped Half-and-Half
Crossover 0.90
Mutation 0.10
Selection Stochastic Universal Sampling
Survival Keep Best Survival Strategy
Fitness α = 1

descriptor operators that actually achieves excellent re-
sults. The quantitative measurement presented in this
paper was the key to pose properly the evolutionary pro-
cess; since, the measurement is basic to make a cor-
rect judgment on the performance achieved by each so-
lution. In future work we would like to explore our
methodology in real-world recognition problems.
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Descriptors Performance for Rotation Changes

RDGP−DoG= 11.1728
SIFT−harris= 5.6893
GLOH−DoG= 6.0782
SIFT−DoG= 5.2918
GLOH−hessaff= 4.3270

       NewYork image
     Number of Regions
Detector    Img1  − Img15
DoG          1080  − 1005
harris         1424 − 1253
hesaff        2120 − 2078
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Descriptors Performance for Rotation + Scale Changes

RDGP−DoG= 7.6978

SIFT−heslap = 4.3302

GLOH−DoG= 5.1244

SIFT−DoG= 4.0761

GLOH−hesaff = 4.3630

          BOAT image
     Number of Regions
Detector     Img1 −  Img4
DoG           1766 − 1126
heslap         3549 − 1664
hesaff         3146 − 1433
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Descriptors Performance for Blur Changes

RDGP−DoG= 5.6935
SIFT−hesaff = 3.8642
GLOH−DoG= 2.7105
SIFT−DoG= 1.9075
GLOH−haraff = 4.0373

            Bikes image
        Number of Regions
Detector       Img1 − img5
DoG              1801 − 1259
hesaff          1025 − 655
haraff            931 − 400
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Descriptors Performance for Illumination Changes

RDGP−DoG= 8.1092
SIFT−hesaff = 4.0065
GLOH−DoG= 5.9319
SIFT−DoG= 4.8373
GLOH−haraff = 3.5459

         Leuven Image
    Number of Regions
Detector    Img1 − img5
DoG           1108 −  654
hesaff        2455 − 1294
haraff           931 −  400
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Descriptors Performance for JPEG Compression

RDGP−DoG= 6.1477
SIFT−hesaff = 3.8000
GLOH−DoG= 2.9981
SIFT−DoG= 2.8942
GLOH−haraff = 3.3758

          UBC image
    Number of Regions
Detector      Img1 − Img5
DoG             1494 − 1944
hesaff          1570 − 1647
haraff          1462 − 1646
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Figure 3. Experimental results for descrip-
tors performance under different image
transformations.


