
A Hybrid GA-PSO Fuzzy System for User Identification
on Smart Phones

Muhammad Shahzad, Saira Zahid, Muddassar Farooq
Next Generation Intelligent Networks Research Center (nexGIN RC)

National University of Computer and Emerging Science (FAST–NUCES)
Islamabad 44000, Pakistan

{muhammad.shahzad, saira.zahid, muddassar.farooq}@nexginrc.org

ABSTRACT
The major contribution of this paper is a hybrid GA-PSO
fuzzy user identification system, UGuard, for smart phones.
Our system gets 3 phone usage features as input to iden-
tify a user or an imposter. We show that these phone usage
features for different users are diffused; therefore, we justify
the need of a front end fuzzy classifier for them. We further
show that the fuzzy classifier must be optimized using a back
end online dynamic optimizer. The dynamic optimizer is a
hybrid of Particle Swarm Optimizer (PSO) and Genetic Al-
gorithm (GA). We have collected phone usage data of 10
real users having Symbian smart phones for 8 days. We
evaluate our UGuard system on this dataset. The results of
our experiments show that UGuard provides on the average
an error rate of 2% or less. We also compared our system
with four classical classifiers – Näıve Bayes, Back Propaga-
tion Neural Networks, J48 Decision Tree, and Fuzzy System
– and three evolutionary schemes – fuzzy system optimized
by ACO, PSO, and GA. To the best of our knowledge, the
current work is the first system that has achieved such a
small error rate. Moreover, the system is simple and ef-
ficient; therefore, it can be deployed on real world smart
phones.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls, Authentication

General Terms
Algorithms, Design, Security

Keywords
Hybrid GA-PSO-Fuzzy, Authentication, Chromagent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

1. INTRODUCTION
Genetic algorithms are finding their applications in a num-

ber of emerging real-world applications: biomedical infor-
matics, computational finance, computer graphics and games,
and network/host security. However, their utility in infor-
mation security systems has received little attention. Specif-
ically their usefulness in developing intelligent user authen-
tication schemes to ensure legitimate access to a device’s
resources has not been explored. Moreover, their use in the
emerging smart phones market is absolutely non-existent.
We believe that genetic algorithms, if developed with an en-
gineering vision, can play a vital role in targeting intelligent
security solutions for next generation mobile devices.

A recent study of mobile phone users in UK, US and Japan
by a security analyst of McAfee reports that 58% of the mo-
bile phone users are seriously worried about the data and
services security of their mobile phones. The survey in [1]
and [5] also report similar trends. According to these sur-
veys, the information security on mobile phones is a seri-
ous concern of both users and manufacturers. The mobile
operators mostly use Personal Identification Number (PIN)
for identifying their legitimate users. But this scheme has
a number of serious flaws: (1) the authentication schemes
based on passwords can be easily broken by stealing or over-
hearing the password, and (2) the users also do not feel com-
fortable to enter the passwords every time they want to use
the mobile phones [4].

In this paper, we show that a better and robust approach
to identify a legitimate user of a mobile phone is to learn
his/her behavior of using the mobile phone. We set four ob-
jectives for our UGuard identification system: (1) correctly
identify an imposter and the legitimate user, (2) user’s iden-
tification within 8 calls, (3) if an imposter is detected, block
the mobile phone to ensure information security, and (4) the
system should be simple and efficient to facilitate its deploy-
ment on smart phones.

We, therefore, propose our UGuard system which learns
the behavior of the legitimate user and blocks any imposter
based on a fuzzy classifier that optimally maps the diffused
features space of a mobile phone user to his/her profile. It
also utilizes an online dynamic optimizer that is a hybrid of
(PSO) and (GA) at the back end for continuous evolution of
the fuzzy system. This caters for varying usage pattern of
a user. PSO and GA are well-known for providing efficient,
online solutions to dynamic and time-varying optimization
problems. The results of our experiments justify the use of
the hybrid approach. We compare our system with a num-
ber of bio-inspired and classical machine learning classifiers

on a real dataset of 10 mobile phone users collected over
a period of 8 days. (To the best of our knowledge, no such
dataset is currently available.) Our system significantly out-
performs other approaches and achieves an error rate of less
than 2%. Consequently, the system provides significantly
better accuracy not only in detecting an imposter but also
the legitimate users. Once we detect an imposter, we can
report it to the cybercrime division of Police to track and
ultimately catch the culprit. We believe that such a system
has the potential to become an integral part of the operating
systems of smart phones.

The rest of the paper is organized as follows. We explain
the architecture of our UGuard system in Section 2. In
Section 3, we report the results of our comparative study
and Section 4 refers to related work. Finally, we conclude
our paper with an outlook to our future research.

2. ARCHITECTURE OF UGUARD
In this section we give a detailed description of our pro-

posed system called “UGuard”. The aim of our work is to
design a system for smart phones that should detect the le-
gitimate user from an imposter. An imposter should always
be detected as an imposter without any error. This error is
quantitatively represented by False Acceptance Rate (FAR)
and should ideally be 0%. Similarly it is important that the
legitimate user should always be granted access without any
error. This error is called False Rejection Rate (FRR). Ide-
ally FRR should also be 0% because a large FRR will quickly
become frustrating for the owner of the smart phone. Last
but not least, the detection of an imposter must be done in
the smallest possible time.

We now discuss the architecture of UGuard. Figure 1
shows the block diagram of the complete system. First of all
the features are extracted from the log of a user and k-means
clustering is used to generate an initial rule base for the
fuzzy inference system. The rule base of the fuzzy system is
optimized online in realtime with the help of a hybrid PSO-
GA scheme. The system first runs in the training mode
and then is deployed for classification of users in realtime.
Algorithm 1 describes the functioning of our system.

2.1 Feature Extraction

Figure 1: Top Level Diagram of UGuard

We require a feature set that can be utilized to distinguish
an imposter from a legitimate user. To this end, we use a set
of three features. It is important to mention here that we
divide the log of a user into profiles. Each profile consists of
8 dialed calls. (This number will be shortly justified during
the discussion of the experiments). The features extracted
from each profile are listed below:
Average Call Duration. We take the average call dura-
tion of 8 calls in a profile.
Number of SMS. This is the total number of short mes-
sages that are sent in a single profile.
Camera Usage. The total number of camera key hits in
one profile.

Table 1 lists data of 10 real-world users, which include

Algorithm 1 Main

procedure Main(UserProfile,TrainingProfile1,TrainingProfile2)
{Profiles contain Call Times, Number of SMSs and Camera Keys}
training data ⇐ extract features from UserProfile and TrainingPro-
files
PopSize ⇐ 30 {total number of chromagents}
EliteCount ⇐ 2 {number of elite chromagents selected as it is}
XoverFrac ⇐ 0.6 {fraction of chromagents selected for cross over}
TotalIter ⇐ 50 {total number of generations}
StallIter ⇐ 25 {number of iterations during which if the fitness
does not improve, the algorithm stops}
PersonalInc ⇐ 0.35
GlobalInc ⇐ 0.40
CommunicationInterval ⇐ 5{generations after which GA and
PSO communicate}
OptimumChromagent⇐Training(PopSize, EliteCount,
XoverFrac, TotalIter, StallIter, PersonalInc, GlobalInc,
CommunicationInterval,training data)
while 1 do

TestingProfile ⇐extract features from real time user data
return FuzzyInference(OptimumChromagent,TestingProfile)

end while
end procedure

young students, professional corporate executives, senior cit-
izens and software engineers. The table shows the number
of profiles of each user along with the average values of the
three features used for each user.

Table 1: Feature table of users
Total Average call Average Average

Users profiles duration(secs) SMS Camera keys

x1 11 24.1 37.2 16.4
x2 15 11.3 17.1 8.22
x3 10 154.1 8.86 2.82
x4 21 32.2 15.3 7.45
x5 9 82.7 7.21 18.9
x6 14 11.4 0.21 1.69
x7 13 1452.3 0.83 1.21
x8 22 171.4 35.4 13.37
x9 12 84.2 17.6 0.51
x10 8 26.8 52.7 8.3

Figure 2 shows the plot of the mean values of the three fea-
tures for all profiles of each user. It can be seen in the figure
that the features of various users are quite fused into each
other and classification of such diffused datasets is a daunt-
ing task for classical machine learning algorithms. There-
fore, we propose an online real-time fuzzy system for classi-
fication whose rule base is optimized using a hybrid PSO-GA
scheme.

2.2 Fuzzy Classifier
We are working on a two-class classification problem as

we need to distinguish between a legitimate user and an

0
500

1000
1500

2000
2500

051015202530
0

10
20
30
40
50
60
70
80

Average call time (sec)

Plot of 135 profiles of 10 users collected over 8 days

SMS per profile

C
am

er
a

ke
y

pr
es

se
d

pe
r p

ro
fil

e

Figure 2: Diffused nature of the features used for
classification

imposter. It is obvious in Figure 2 that we cannot use stan-
dard classifiers because it is not possible to assign crisp class
labels to the diffused set. Consequently, it is justified to de-
ploy a fuzzy classifier because: (1) it assigns a given data
point a degree of membership to all available classes, and (2)
it uses linguistic variables that provide traceable and inter-
pretable steps and logic statements, which ultimately leads
to the class prediction for a given data point [12]. In a fuzzy
system, we also define its inputs or outputs in terms of lin-
guistic fuzzy variables, which represent rules and facts. A
fuzzy system also uses a database and a rule base. Algo-
rithm 3 shows how our fuzzy inference system works. We
now elaborate how we design database and rule base for our
fuzzy system.

Recall that we give a set of three features as an input to
the system and it classifies a given user as a legitimate user
or an imposter (2 outputs). We provide 3 features men-
tioned in Section 2.1 to our fuzzy system. The system gives
a positive output for a legitimate user and a negative out-
put for an imposter. We then define a certain range for each
variable after observing its variation in the dataset; how-
ever, the output variables vary in the interval [0,1]. A fuzzy
variable can have a number of partitions, each having its
own membership function. We consider six fuzzy partitions
for each fuzzy variable. The sets are defined in terms of six
linguistic labels defined by the set L:

L = {very large, large, medium, moderately medium,
small, very small}

As the etymology suggest, the labels very large to very small
represent a decreasing tendency of the corresponding vari-
able to belong to a particular set. For simplicity our output
variables have only three linguistic labels: low, medium and
high; each label quantifies the grade of membership of an
input variable to an output variable. After analyzing the
patterns of features’ set, we defined trapezoidal member-
ship functions. The trapezoidal functions provide a range in
which their value remains constant at 1. This property helps
in mapping a user whose values vary in the range of the flat
portion to model his/her normal behavior. Our experiments
show that this significantly improves the overall accuracy of
our system.

We use simple k-means algorithm for rule base generation
by doing clustering. The clusters with the smallest number
of data points are considered outliers and are discarded. We
define the centroid of a cluster in the form of (x1, x2, x3),
where x1, x2, and x3 are the values of the first, second and
third features respectively. We search their values in the

Algorithm 2 Training

procedure Training(PopSize, EliteCount, XoverFrac, TotalIter,
StallIter, PersonalInc, GlobalInc,CommunicationInterval,
training data)
make sample chromagent s by k − means clustering
Pop[:] ⇐ GenerateInitialPopulation(PopSize, s)

GAPop ⇐ Pop[1 :
size(P op)

3] {chromagents used for GA}
PSOPop ⇐ Pop[

size(P op)
3 +1:size(Pop)] {chromagents for PSO}

for j = 1 to size(GApop) do
GAPopFitness[j] ⇐ComputeFitness(GAPop[j],training data)

end for
for j = 1 to size(PSOPop) do

PSOPopFitness[j] ⇐ComputeFitness(PSOPop[j],training
data)

end for
PrevBestF itness ⇐ best value in GAPopFitness[:] and
PSOPopFitness[:]
SameFitnessIter ⇐ 0
CommunicationIter ⇐ 0
i ⇐ 0
while i ≤ TotalIter and SameFitnessIter ≤ StallIter do

GAPop ⇐ GeneticAlgo(GAPop, GAPopFitness[:],
EliteCount, XoverFrac)
PSOPop ⇐ PSOAlgo(PSOPop, PSOPopFitness[:],
PersonalInc, GlobalInc, training data)
for j = 1 to size(GAPop) do

GAPopFitness[j] ⇐ ComputeFitness(GAPop[j], training
data)

end for
for j = 1 to size(PSOPop) do

PSOPopFitness[j] ⇐ ComputeFitness(PSOPop[j],
training data)

end for
CommunicationIter ⇐ CommunicationIter + 1
if CommunicationIter == CommunicationInterval then

replace worst chromagent of GAPop[:] with best of
PSOPop[:]
replace two worst chromagents of PSOPop[:] with two bests
of GAPOP [:]
CommunicationIter = 0

end if
CurrentBestF itness ⇐ best value in GAPopFitness[:] and
PSOPopFitness[:]
if PrevBestF itness == CurrentBestF itness then

SameFitnessIter ⇐ SameFitnessIter + 1
else

SameFitnessIter ⇐ 0
end if

end while
return overall best chromagent in GAPOP [:] and PSOPop[:]
end procedure

corresponding fuzzy sets, determine their degree of mem-
bership to the fuzzy partitions in which they lie, and choose
the partition with the maximum degree of membership. For
example, if we get a value for the first feature that belongs
to the fuzzy partition very small with 0.7 and to fuzzy par-
tition small with 0.3, then we choose very small as the con-
dition for this fuzzy variable in the antecedent of the rule.
The conditions for the other two variables are determined in
a similar fashion to completely define the antecedent of the
rule. To determine the consequent of a rule, we find the den-
sity of the cluster of the centroid for which we are defining an
antecedent of the rule. If a cluster has high, medium or low
density then the output belongs to the fuzzy partition high,
medium or low respectively in the consequent of the rule.
In this way we define the whole rule base using the centroid
of all the clusters. We usually start with five clusters in our
database. An inference system applies the rule base to the
inputs in order to determine the outputs. We use standard
Mamdani Inference System [7], which uses our customized
defuzzification technique explained in Algorithm 3.

Algorithm 3 Fuzzy Inference System

procedure FuzzyInference(s, UnknownProfile)
generate input membership functions, output membership
functions and rule base according to chromagent s
apply fuzzy inference system generated above toUnknownProfile
V aluePos = 0.3 ∗ x1

0 A(x)dx + 0.7 ∗ x2
x1

A(x)dx + 1 ∗ 1
x2

A(x)dx

V alueNeg = 0.3 ∗ x1
0 A(x)dx + 0.7 ∗ x2

x1
A(x)dx + 1 ∗ 1

x2
A(x)dx

{x1 and x2 are the intersection points of low,medium and
medium,high membership functions of each of the two output
membership functions. x is dummy integration variable}
if V aluePositive > V alueNegative then

return OWNER
else

return IMPOSTER
end if
end procedure

The FAR and FRR values of our fuzzy system are not
very good but our analysis reveals that they can be improved
considerably if we use a dynamic optimizer that dynamically
maps our fuzzy system to the diffused continuously changing
features’ set.

2.3 Optimizer
As mentioned above, an initial rule base is generated using

k-means clustering. But we need to dynamically optimize it
to cater for changing behavior of a user. Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA) are well-
known online optimizers for dynamic environments.

The main idea of PSO is to use a swarm of agents spread
on the problem space, and these agents through local inter-
actions tend to find an optimal solution of the problem. The
feature that makes PSO successful is the communication be-
tween the agents. This, in essence, is the concept of feedback
which is utilized by every agent to converge to the best lo-
cation. GA, however, does not utilize feedback explicitly;
rather it uses genetic operators of selection, crossover and
mutation to find the best solution. In our hybrid approach
we combine feedback of PSO and diversification concepts of
GA.

We will call the individuals in the population/swarm as
“chromagents”. Both PSO and GA use the same type of
chromagents. We now describe the structure of chromagents
in detail. Our hybrid PSO-GA optimizer is used to evolve
the following features of the rule base of the fuzzy system:
(1) Ranges of fuzzy partitions of input and output variables;
(2) Total number of rules;
(3) Conjunction type of the rules i.e. either AND or OR;
(4) Rules.
In order to bound the computational complexity of the sys-
tem, we allow maximum of 20 rules. The structure of a
chromagent is shown in Table 2. We use Pittsburgh encod-
ing approach introduced in [2]. Each chromagent consists
of 159 genes. The size of a chromagent = 1(representing
number of rules) + 3(for each input variable)* 10(represent-
ing ranges of each fuzzy partition for a single variable) +
2(for each output variable)* 4(representing ranges of each
fuzzy partition for a single variable) + 6(for each rule)*20(
maximum number of possible rules)=159

We now explain the other aspects of the system.

2.3.1 Initial Population
Our system begins with a random initial population. For

this purpose, we take the rule base generated by the k-means
clustering and encode it accordingly in a chromagent. This

Algorithm 4 Initial Population

procedure GenerateInitialPopulation(PopulationSize, s){s is a
sample chromagent}
for i = 1 to PopulationSize do

population[i] ⇐ s
for j = 1 to 159 do

x ⇐ random number
y ⇐ random number
if x > 0.5 then

population[i, j] ⇐ population[i, j] + 7 ∗ y
else

population[i, j] ⇐ population[i, j] − 7 ∗ y
end if

end for
end for
return population
end procedure

chromagent serves as a sample and a total of 29 more chro-
magents are generated that are variants of the sample chro-
magent; however they differ substantially from one another
to ensure diversity. In this way we get an initial popula-
tion of 30 agents. One chromagent takes 273 bytes of RAM.
Thus a population of 30 will take up less than 8KB of RAM
which is negligible as compared to few tens of MB of RAM
available in ordinary smart phones. Algorithm 4 details the
process of generating the initial population.

2.3.2 Fitness Function
Once the initial population of chromagents is generated,

the next important step is to evaluate each individual and
assign it a fitness value. We define fitness as:

fitness = 1 − (0.75 ∗ (1 − FAR) + 0.25 ∗ (1 − FRR)) (1)

The motivation behind assigning more weight to FAR com-
pared with FRR is twofold: (1) if an imposter is classified as
a legitimate user (FAR) it represents a serious threat to the
data on the mobile phone, however, (2) if a legitimate user
is classified as an imposter (FRR) it is a mere annoyance
to the user without any threat to the data. The weight of
0.75 for FAR and 0.25 for FRR are empirically chosen to
provide an acceptable tradeoff between FAR and FRR. The
pseudo code for evaluating the fitness function is described
in Algorithm 5.

Once all chromagents are assigned fitness values, the pop-
ulation is divided into two subgroups. The first subgroup
consists of 20 chromagents that are used by PSO for op-
timization. The second subgroup consists of remaining 10
chromagents, which are optimized by GA. For the first time,

Table 2: The description of a chromosome
Genes Encoding description

g1 − g10 fuzzy partitions of first input variable
g11 − g20 fuzzy partitions of second input variable
g21 − g30 fuzzy partitions of third input variable
g31 − g34 fuzzy partitions of first output variable
g35 − g38 fuzzy partitions of second output variable

Note that gi ≤ gi+1, ∀i = 1 − 9
∨i = 11 − 19 ∨ i = 21 − 29 ∨ i = 31 − 33 ∨ i = 35 − 37

g39 represents the total number of rules
Note that 0 ≤ g39 ≤ 20

g40 + k ∗ 6 represents the conjunction type
value of g40 is 8 or 9

(g41, g42, g43) + k ∗ 6 represents partition values of three inputs
(g44, g45) + k ∗ 6 represents partition values of two outputs

Note that k = 0 to g39 − 1

Algorithm 5 Fitness Function

procedure ComputeFitness(s, training data){s is a chromagent}
if s is a valid chromagent then

Profile ⇐ a randomly selected known profile from training data
OT ⇐ 0 {number of correctly identified owner}
OF ⇐ 0 {number of false identified owner}
IT ⇐ 0 {number of correctly identified intruder}
IF ⇐ 0 {number of false identified intruder}
UserIdentity ⇐ FuzzyInference(s,Profile)
if OWNER identified as OWNER then

OT ⇐ OT + 1
else if OWNER identified as IMPOSTER then

OF ⇐ OF + 1
else if IMPOSTER identified as IMPOSTER then

IT ⇐ IT + 1
else if IMPOSTER identified as OWNER then

IF ⇐ IF + 1
end if
FRR ⇐ OF /(OF + OT)
FAR ⇐ IF /(IF + IT)
fitness ⇐ 1 − (0.25 ∗ (1 − FRR) + 0.75 ∗ (1 − FAR))
return fitness

else
fitness ⇐ 1{worst fitness value is 1 and best is 0}
return fitness

end if
end procedure

we randomly assign individuals to each group. We now dis-
cuss GA and PSO optimizers and the communication pro-
cess between them.

2.4 Genetic Algorithm
The genetic algorithms (GA) [6] are well-known for pro-

viding acceptable solutions to dynamic optimization prob-
lems. Our GA uses a set of 10 chromagents and applies the
selection, crossover and mutation operators on them. Algo-
rithm 6 explains the working of GA in our system.

2.4.1 Next Population Generation
A certain number of chromagents (elite count) having the

best fitness values are automatically selected as the chroma-
gents of next generation. This helps in maintaining good
configurations of a fuzzy system. We take 20% of the chro-
magents in the elite count. Our crossover fraction is 0.6 and
mutation fraction is 0.2. The crossover and mutation func-
tions are explained in Algorithm 6 and we have used stan-
dard “stochastic uniform” method for selection. It is impor-
tant to note here that we have done an extensive analysis
on the population size, the number of generations, selec-
tion criteria, and crossover and mutation fractions as well
as types of these functions and empirically determined the
optimum values for all of these features reported in this pa-
per. For brevity the analysis has not been reported in this
paper. Once selected, our proposed crossover and mutation
operators are applied to chromagents and this produces new
configurations of the fuzzy system. The next generation gets
its required number of chromagents through elite count, se-
lection, crossover and mutation operators. Algorithm 6 ex-
plains our crossover and mutation operators. Once we get
the next generation of population, the fitness value of each
chromagent in the new population is evaluated and the cycle
repeats. The stopping criteria will be discussed shortly.

2.5 Particle Swarm Optimization
PSO is applied on 20 chromagents included in the first

subgroup. PSO utilizes the concept of velocity. We assume
the chromagents will move in a 159 dimensional space. The

Algorithm 6 Genetic Algorithm

procedure GeneticAlgo(GAPop, GAPopFitness[:], EliteCount,
XoverFrac)
ElitePop[:] ⇐ best EliteCount individuals in GAPop
XoverPop[:] ⇐ Stochastic Uniform Selection from GAPop
MutationaPop[:] ⇐all remaining chromagents
for i = 1 to XoverFrac ∗ size(GAPop) do

XoverKids[i] ⇐ CrossOver(XoverPop[2 ∗ i − 1],
XoverPop[2 ∗ i])

end for
for i = 1 to size(MutationPop) do

MutationKids[i]⇐ Mutation(MutationPop[i])
end for
GAPop[:] ⇐ [ElitePop[:], XoverKids[:], MutationKids[:]]
return GAPop[:]
end procedure

procedure CrossOver(s1, s2){s1 and s2 are parents}
for i = 1 to 159 do

x ⇐ random number in the range [0,1]
if x > 0.5 then

s3[i] ⇐ s1[i]
else

s3[i] ⇐ s2[i]
end if

end for
return s3{s3 is child chromagent produced from s1 and s2}
end procedure

procedure Mutation(s){s is a chromagent for mutation}
for i = 1 to 38 do

x ⇐ random number in the range [0,1]
if x > 0.5 then

s[i] ⇐ s[i] + round(10 ∗ x)
else

s[i] ⇐ s[i] − round(10 ∗ x)
end if

end for
x ⇐ random number in the range [0,1]
if x > 0.5 then

s[39] ⇐ s[39] + round(5 ∗ x)
else

s[39] ⇐ s[39] − round(5 ∗ x)
end if
for i = 1 to 20 do

x ⇐ random number in the range [0,1]
if x > 0.5 then

s[40 + (i − 1) ∗ 6] ⇐AND
else

s[40 + (j − 1) ∗ 6] ⇐OR
end if
for j = 1 to 5 do

y ⇐ random number in the range [0,1]
s[40 + j + (i − 1) ∗ 6] ⇐ s[40 + j + (i − 1) ∗ 6] + round(7 ∗ y)

end for
end for
end procedure

159 genes of each individual act as the coordinate values for
the respective 159 dimensions. Each individual remembers
its best fitness value and the corresponding coordinates. The
best fitness value of individual i is denoted by pbesti. Each
individual also knows the overall best fitness value chroma-
gent that is denoted by gbest and its corresponding coordi-
nates. We define a matrix M of dimensions 159 x 20. Each
column of M corresponds to the current coordinate values of
corresponding individual. We also maintain another matrix
P of dimensions 159 x 20, which stores the coordinates of the
corresponding best encountered fitness value individuals. A
column vector G of length 159 stores the coordinate values
corresponding to the best fitness value of each individual.
Furthermore, each individual in the swarm of these 20 chro-
magents has its own velocity in each of the 159 dimensions.
These velocities for every individual are stored in a matrix
V of dimensions 159 x 20. Let us now consider an individual

Algorithm 7 PSO Algorithm

procedure PSOAlgo(PSOPop, PSOPopFitness[:], PersonalInc,
GlobalInc, training data)
for i = 1 to size(PSOPop) do

Mx[:][i] ⇐ PSOPop[i]
Vy[:][i] = Vx[:][i] + rand ∗ PersonalInc ∗ (P [:][i]−Mx[:][i]) +
rand*GlobalInc ∗ (G[:] − Mx[:][i])
My[:][i] = Mx[:][i] + Vy[:][1] ∗ 1 time unit
GlobalBestF ittness ⇐ ComputeFitness(G[:], training data)
PersonalBestF ittness ⇐ ComputeFitness(P [:][i], training
data)
CurrentFittness ⇐ ComputeFitness(My[:][i], training data)
if CurrentFittness > PersonalBestF ittness then

P [:][i] ⇐ My[:][i]
end if
if CurrentFittness > GlobalBestF ittness then

G[:] ⇐ My[:][i]
end if
PSOPop[i] ⇐ My[:][i]
x ⇐ y

end for
return PSOPop[:]
end procedure

i (where 1 ≤ i ≤ 20) and see how it changes its velocity in
order to move towards the optimum point. The component
of its velocity is maintained in ith column of Matrix V . Its
current location is stored in column i of matrix M . The
objective of the chromagent is to adjust its velocity in such
a fashion that it moves towards the optimal solution. This
change in velocity is accomplished by the following equation:

V [:][i] = V [:][i] + rand ∗ PersonalInc ∗ (P [:][i] − M [:][i])
+ rand ∗ GlobalInc ∗ (G[:] − M [:][i])

where V [:][i] is a column vector consisting of all rows of
matrix V but only the ith column. Similarly M [:][i] is a col-
umn vector from matrix M corresponding to the ith chro-
magent, PersonalInc and GlobalInc are tuning parameters
and their values are empirically determined to be 0.35 and
0.40 respectively.

In this way each of these chromagents gets a new velocity
in order to move towards a better solution. This will com-
plete one iteration and is equivalent to the production of a
new generation in the GA. It is important to mention here
that the larger value of PersonalInc causes the chroma-
gents to roam around the best fitness value that they had
observed and larger GlobalInc causes the chromagents to
prematurely converge towards the best local maxima which
an individual has seen. The smaller values of these param-
eters cause excessive wandering of chromagents and hence
the convergence becomes very slow. However, the conver-
gence is achieved with a reasonable exploration of the fitness
landscape. The pseudo code of all this process is given in
Algorithm 7.

2.6 Communication between GA and PSO
In order to efficiently evolve chromagents, it is important

that the progress of GA should be communicated to PSO
and vice versa. After every five iterations, we replace 1
worst individual of the GA group chromagents with the best
individual of PSO group chromagents . Similarly, we also re-
place two worst individuals of PSO group with the two best
of the GA group. This communication mechanism ensures
that the hybrid system benefits from both PSO and GA.
Note that an iteration in GA corresponds to generating the
next population; while in PSO it corresponds to a velocity

adjustment of all the chromagents. Algorithm 2 explains the
communication in detail.

2.7 Stopping Criteria
The fitness values of chromagents improve with each it-

eration. In our experiments, we stop the simulations if any
of the following criterion is met: (1) a total of 50 iterations
have taken place, or (2) the fitness value of the best individ-
ual of PSO and GA groups has not changed in previous 25
iterations. Finally, the best chromagent among the popula-
tion of 30 is chosen and is used as a rule base for the fuzzy
system.

3. EXPERIMENTS: RESULTS AND COM-
PARISONS

Our definition of a real usable system should meet the
following important requirements: (1) FAR and FRR below
5% (ideally it should be 0%, but practically 5% is enough),
(2) user identification within a profile of 8 calls, and (3) the
system should have a small processing overhead. We now
use three types of analysis to satisfy the real usable require-
ments: (1) accuracy analysis, (2) scalability analysis, and
(3) training and testing time analysis. In our experiments,
we use the same training and testing methodology for all
classifiers. During the training phase, we make one of the
10 users as the legitimate user and 2 of the remaining 9 as
imposters. We train the system on their profiles. During
the testing phase, however, we ensure that we never present
an imposter to a classifier if it is trained even on one of his
profiles. Consequently, it ensures that a system is able to
identify an imposter without any a priori knowledge about
his behavior. We argue that in the real life it is not pos-
sible to get the profiles of potential imposters in advance.
Ideally, we should have a pure anomaly detection system,
which does not take even the profiles of 2 imposters. We
also show results for this scenario.

3.1 Accuracy Analysis
We have implemented and simulated our system in Mat-

lab and compared its results with four classical classifiers –
Näıve Bayes, Back Propagation Neural Networks, J48 Deci-
sion Tree, and fuzzy system – and three evolutionary schemes
– fuzzy system optimized by Ant Colony Optimization (ACO),
Particle Swarm Optimizer (PSO), and Genetic Algorithm
(GA), individually. Note that Näıve Bayes, BPNN, and J48
were implemented in Weka [11]. We repeated our experi-
ments for ACO − Fuzzy, PSO − Fuzzy, GA − Fuzzy, and
UGuard 500 times and the confidence interval turned out to
be 95%. The results of experiments are reported in Table 3.

We can see in Table 3 that a simple fuzzy system and
other classical machine learning algorithms are unable to
meet our requirement of 5% average error rates. It is impor-
tant to highlight that a random detection system provides
50% (on the average) FAR and FRR. The simple fuzzy sys-
tem provides on the average 15.1% and 21.7% FAR and FRR
respectively. The classical algorithms, Näıve Bayes, BPNN
and J48, also provide on the average 11%, 12% and 24%
FAR respectively while their FRR is approximately 6-7%.
To conclude, none of them come close to our requirement of
5% FAR and FRR.

We now optimize the rule base of our fuzzy system with
the help of well-known optimizers for dynamic environments:

Table 3: A comparative study of techniques on the basis of three features
Näıve Bayes BPNN J48 Fuzzy System ACO-Fuzzy PSO-Fuzzy GA-Fuzzy UGuard

Users FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR

x1 10.1 5.32 14.2 6.34 21.3 6.97 13.2 31.3 8.13 8.01 7.44 8.21 7.22 6.31 2.43 1.86
x2 13.4 6.34 11.7 7.68 25.4 7.21 17.1 30.9 6.21 7.32 5.22 9.42 4.31 8.22 1.71 1.92
x3 11.2 4.73 12.3 7.21 27.9 5.34 20.6 21.8 11.7 8.51 8.23 7.22 6.34 9.31 3.44 1.82
x4 9.61 4.85 16.2 8.33 24.3 6.72 18.9 26.3 7.23 6.24 6.45 5.84 8.91 7.34 1.19 1.38
x5 10.4 5.92 9.56 9.22 28.1 7.43 11.4 17.8 4.34 6.33 3.97 4.92 3.25 5.81 3.37 2.45
x6 8.72 6.11 9.43 6.81 19.6 8.33 13.4 17.1 7.21 6.32 6.95 6.01 6.33 5.42 2.31 3.11
x7 13.1 7.23 17.1 7.13 22.3 9.12 11.2 18.7 9.92 4.52 9.12 3.21 8.93 3.71 1.82 3.34
x8 11.5 6.41 12.4 6.21 26.4 8.73 12.3 15.2 8.61 7.84 9.22 6.42 10.3 9.73 1.01 1.72
x9 12.7 5.34 14.1 8.33 22.1 7.12 16.1 13.4 5.21 6.34 5.02 6.17 5.61 6.29 3.21 1.04
x10 13.6 7.21 11.9 8.47 21.9 8.32 17.1 24.2 7.35 8.21 7.40 5.95 7.21 6.32 2.40 1.33

average 11.4 5.95 12.9 7.57 23.9 7.53 15.1 21.7 7.59 6.96 6.90 6.34 6.84 6.84 2.29 1.99
difference 9.11 3.96 10.6 5.58 21.6 5.54 12.8 19.7 5.30 4.97 4.61 4.35 4.55 4.85 - -
improve- 79.9 66.6 82.1 73.7 90.38 73.6 84.8 90.8 69.8 71.4 66.8 68.6 66.5 70.9 - -
ment%

Ant Colony Optimizers (ACO), Particle Swarm Optimizers
(PSO) and Genetic Algorithms (GA). An important consid-
eration – other than the error rates – is that the selected
optimizer must be simple and efficient so that it can be
deployed on smart phones. Remember that smart phones
have not only limited computing power and memory but also
short battery life. One can see in Table 3 that using ACO,
PSO and GA as an optimizer for the fuzzy system reduces
the error rates on the average to 6-7% which is a significant
improvement over existing systems. But if we use a hybrid
of PSO and GA, the average error rates drop to approxi-
mately 2%. This justifies the use of hybrid PSO and GA as
far as the error rates are concerned. The improvement in
error rates is due to the combined use of feedback (inherent
in PSO) and randomness (inherent in GA).

As mentioned earlier, we now show results of the systems,
if they are used as anomaly detectors instead of classifiers.
(An anomaly detector is trained on the profiles of the le-
gitimate user only.) This scenario is more desirable in real-
world. We tabulate the results in Table 4. One can see
that this scenario presents a significant challenge to all clas-
sifiers. The error rates of non-hybrid optimizers drop to
more than 25% which renders these systems totally useless
on real smart phones. We report the results of top perform-
ing systems for this analysis. Other classifiers also provide
an error rate of around 30% which have not been tabulated
for brevity. However, UGuard – even in this challenging sce-
nario – still provides on the average 10% error rates. This
number is high albeit significantly better compared with
other classification systems. In our future work, we want
to focus on this situation to make our system usable even in
this scenario.

It is to be noted that one profile of a user is made once
he/she has made 8 calls and our analysis is done on the basis
of profiles. We believe that two important questions might
come to the mind of a careful reader: (1) what is the effect of
varying the number of calls per profile on the accuracy of our
system?, and (2) what is the relation between the number of
profiles and the accuracy of our system?. We answer these
questions under the heading of scalability analysis.

3.2 Scalability Analysis
Relationship between the size of a profile and the

accuracy of our system:
We select three users x2, x4, and x8 for which our system
provides the best FAR and FRR. We tabulate the results

Table 4: A comparative study of techniques as
anomaly detection

ACO-Fuzzy PSO-Fuzzy GA-Fuzzy UGuard

Users FAR FRR FAR FRR FAR FRR FAR FRR

x1 29.5 21.7 23.2 18.3 22.3 24.1 11.5 12.4
x2 25.2 21.2 25.1 21.2 26.1 27.3 12.4 11.2
x3 26.3 24.1 21.5 22.4 29.5 21.5 9.7 11.6
x4 27.3 25.1 21.4 21.3 24.4 28.4 10.1 10.1
x5 26.1 26.8 22.7 19.9 23.3 22.7 11.2 9.2
x6 28.9 19.7 21.9 21.1 26.5 21.9 9.4 9.1
x7 23.6 21.3 19.1 20.1 24.6 24.6 10.7 10.9
x8 27.1 21.3 20.6 20.7 26.4 31.7 9.8 11.3
x9 27.1 24.1 24.3 19.2 24.1 26.4 12.9 10.2
x10 26.1 25.1 20.6 21.7 31.7 23.1 11.5 10.4

Avg 26.7 23.0 22.0 20.6 25.9 25.2 10.9 10.6

of our experiments in Table 5. It is obvious that the error
rates significantly degrade once we reduce the number of
calls per profile. Our results show that FAR and FRR does
not significantly improve as we increase the number of calls
per profile beyond 8 calls; therefore, we select 8 calls/profile.

Table 5: The relationship between accuracy of our
system and the size of a profile

number of calls constituting a profile
4 6 8 12

Users FAR FRR FAR FAR FAR FAR FAR FAR

x2 11.2 12.1 6.12 7.24 1.71 1.92 1.52 1.73
x4 15.6 10.7 8.21 7.16 1.19 1.38 1.11 1.32
x8 13.8 11.3 7.33 9.32 1.01 1.78 0.99 1.75

The important reason for deteriorating FAR and FRR
with less calls per profile is that the system does not cap-
ture enough information about the behavior of a user to
accurately classify him.

Relationship between the number of profiles and
the accuracy of our system:
We now investigate the minimum number of profiles of a
user needed to achieve acceptable FAR and FRR. We again
select x2, x4, and x8 users because we have relatively large
number of profiles for these users. We tabulate the results of
our experiments in Table 6. We conclude that the error rate
of our system exponentially improves with an increase in the
number of profiles of a user. From Table 6, we can say that a
user is adequately protected once he has generated 9 profiles
(4% error rates). However, if he generates 12 profiles then
the error rates are dropped to less than 2%. The reason for

this behavior is that with the increasing number of profiles
the rule base of our fuzzy system is optimized enough to
understand the behavior of a user.

Table 6: The relationship between the accuracy of
our system and number of profiles

Number of profiles with 8 calls per profile
3 6 9 12

Users FAR FRR FAR FAR FAR FAR FAR FAR

x2 15.7 13.2 8.32 10.3 4.13 4.63 1.71 1.92
x4 16.4 15.1 9.21 9.31 3.13 3.89 1.19 1.38
x8 14.1 17.2 8.01 10.1 2.89 4.23 1.01 1.78

3.3 Training and Testing Time Analysis
We now show the training (Train) and testing (Test) times

of the classifiers in Table 7. Before getting into the details,
it is important to mention here that the results reported
for training and testing times are obtained from the simu-
lations that have been done on a computer with 233MHz
Intel processor and 32MB RAM. The mobile processors of
smart phones have similar processing and memory specifi-
cations. (e.g. Nokia’s N95 has a 330MHz processor and a
64MB RAM). The results are tabulated in Table 7. Fuzzy
system does not have a training phase; therefore, its time is
0. All fuzzy-based systems have same testing time because
these systems ultimately use its rule base for classification.
Note that our system has 28 seconds of training time while
the testing time is just 520 milliseconds. We retrain all clas-
sifiers, including our system, after every 5 profiles. The time
to build 5 profiles is mostly in hours; therefore, we believe
that it is acceptable to spend 28 seconds after few hours.
During this time the response of a smart phone will slightly
degrade. Once trained, we spend just 520 milliseconds for
testing after every 8 calls.

Table 7: The processing overheads of classifiers on
an old 233MHz, 32MB RAM computer

Algorithm Train Test Algorithm Train Test
(secs) (secs) (secs) (secs)

UGuard 28 0.52 ACO-Fuzzy 31 0.52
PSO-Fuzzy 21 0.52 GA-Fuzzy 35 0.52

Fuzzy system 0 0.52 J48 0.23 0.22
BPNN 4.8 2.0 Naive Bayes 0 0.13

4. RELATED WORK
It is important to note that most of the research in the

domain of user authentication systems has been focussed
on desktops and mobile phones have received very little at-
tention. Moreover, the use of evolutionary algorithms are
almost non-present for this purpose. Some of the relevant
work on user authentication system has been reported in
[3], [9] and [8]. However only [10] has done some prelimi-
nary work using GA. To the best of our knowledge no pre-
vious study has used any of the genetic algorithms for user
authentication on smart phones.

5. CONCLUSION
In this paper, we propose our UGuard system in which a

fuzzy classifier is optimized using a hybrid (PSO-GA) Sys-
tem. It takes the diffused input features’ set as an input

based upon the usage behavior of smart phones. We have
evaluated our proposed system on a 8 day real dataset of 10
mobile users coming from different backgrounds. Our sys-
tem is real usable because it correctly detects a legitimate
user or an imposter with less than 2% average error rates
(FAR and FRR). Hence, it satisfies the criteria of real usable
system defined in Section 3. As a result, we suggest that our
system has the potential to become an integral part of an OS
of a smart phone that will not only help in securing sensi-
tive information/data on a smart phone but also reduce the
number of mobile phone thefts. In near future, we will focus
our attention on converting our system to a pure anomaly
detection which is only trained on the profile of a legitimate
user.

6. REFERENCES
[1] Red herring mobiles scream for help: Uk-based mobile

security company adds security to mobile phones,
October 2006.

[2] B. Carse and T.C. Fogarty. A Fuzzy Classifier System
Using the Pittsburgh Approach. In Parallel Problem
Solving from Nature–PPSN III: International
Conference on Evolutionary Computation, the Third
Conference on Parallel Problem Solving from Nature,
Jerusalem, Israel, October 9-14, 1994: Proceedings.
Springer, 1994.

[3] M.T. Carta, B. Podda, and C. Perra. User
Authentication Based on JPEG2000 Images. Lecture
Notes in Computer Science, 3893:207, 2006.

[4] NL Clarke and SM Furnell. Authentication of users on
mobile telephones–A survey of attitudes and practices.
Computers & Security, 24(7):519–527, 2005.

[5] Ernst and Young Global Information Security Survey
2005 : Report on the Widening Gap.

[6] D.E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA,
1989.

[7] EH Mamdani et al. Application of fuzzy algorithms
for control of simple dynamic plant. Proc. IEE,
121(12):1585–1588, 1974.

[8] JM McCune, A. Perrig, and MK Reiter.
Seeing-is-believing: Using camera phones for
human-verifiable authentication. In 2005 IEEE
Symposium on Security and Privacy, pages 110–124,
2005.

[9] J. Rokita, A. Krzyzak, and CY Suen. Cell Phones
Personal Authentication Systems Using Multimodal
Biometrics. Lecture Notes in Computer Science,
5112:1013–1022, 2008.

[10] K. Sung and S. Cho. GA SVM Wrapper Ensemble for
Keystroke Dynamics Authentication. Lecture Notes in
Computer Science, 3832:654, 2006.

[11] I.H. Witten, University of Waikato, and Dept.
of Computer Science. WEKA Practical Machine
Learning Tools and Techniques with Java
Implementations. Dept. of Computer Science,
University of Waikato, 1999.

[12] L.A. Zadeh. Fuzzy sets. Fuzzy Sets, Fuzzy Logic, and
Fuzzy Systems: Selected Papers, 1996.

