
Evolvable Malware

Sadia Noreen†, Shafaq Murtaza†, M. Zubair Shafiq‡, Muddassar Farooq†,‡

‡Next Generation Intelligent Networks Research Center (nexGIN RC)
†National University of Computer & Emerging Sciences (FAST-NUCES)

Islamabad, 44000, Pakistan
{sadia.noreen,shafaq.murtaza}@nu.edu.pk,{zubair.shafiq,muddassar.farooq}@nexginrc.org

ABSTRACT
The concept of artificial evolution has been applied to nu-
merous real world applications in different domains. In this
paper, we use this concept in the domain of virology to
evolve computer viruses. We call this domain as “Evolv-
able Malware”. To this end, we propose an evolutionary
framework that consists of three modules: (1) a code an-
alyzer that generates a high-level genotype representation
of a virus from its machine code, (2) a genetic algorithm
that uses the standard selection, cross-over and mutation
operators to evolve viruses, and (3) the code generator con-
verts the genotype of a newly evolved virus to its machine-
level code. In this paper, we validate the notion of evolu-
tion in viruses on a well-known virus family, called Bagle.
The results of our proof-of-concept study show that we have
successfully evolved new viruses–previously unknown and
known-variants of Bagle–starting from a random popula-
tion of individuals. To the best of our knowledge, this is the
first empirical work on evolution of computer viruses. In
future, we want to improve this proof-of-concept framework
into a full-blown virus evolution engine.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive Software

General Terms
Experimentation, Security

Keywords
Artificial Evolution, Computer Virus, Genetic Algorithm

1. EVOLVABLE MALWARE: MYTH OR
REALITY

Computer Malware or simply put malware is a software or
program that damages the computer system or does some-
thing unwanted to the computer [1]. Technically, malware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09,July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

is a broader term that includes viruses, worms, backdoors,
exploits, etc. However, the most well-known type of mal-
ware is virus; the term which was coined by Fred Cohen
in 19831 [7]. The fundamental reason of creating such nui-
sances is mostly criminal instinct of bad guys who want to
create chaos or panic in the society–sometimes with ulte-
rior financial motives. In fact, since the dawn of the new
millennium, computer malware creation has emerged as a
commercial industry with revenues skyrocketing to several
million dollars [6].

Computer malware have been a major threat to the com-
puter systems and networks since 1990s. However, the mal-
ware sophistication has significantly improved since the early
days. The advancement in functionality and behavior of
computer malware can be categorized into five distinct gen-
erations2 [17]. The first generation malware were quite sim-
ple, i.e., they caused infection by simply attaching them-
selves to the code sections of benign executables. The mal-
ware in second generation had some additional functionality
such as self -recognition. The malware of third generation
have stealth capabilities that makes them difficult to detect.
The malware belonging to the fourth generation use armor-
ing techniques to protect themselves. Finally, the malware
of the current generation use polymorphic techniques to ob-
fuscate their code with every replication.

The reader should appreciate that the development of
state-of-the-art malware is a fairly laborious task and it usu-
ally takes years of experience for a malware writer to master
this art or science, whichever way you may call it. Moreover,
luck also plays its part in the malware writing process. Keep-
ing this in mind, malware writers have recently developed
“malware creation engines”, which create different variants
of a given malware; mostly by applying compression tech-
niques or by modifying the code section using garbage inser-
tion or instruction substitution. However, such techniques
are mostly näıve, and the developed variants essentially have
the same functionality and semantics.

Some people think that polymorphic viruses are an exam-
ple of the ‘malware evolution process’. However, we believe
that it is not evolution in the true sense. All polymorphic
viruses–as of today–only provide a change in the code struc-
ture but their functionality remains the same [11]. We here

1Throughout this paper, the terms malware and virus are
used interchangeably.
2This classification is not based on the chronological order
but on their characteristics; like how sophisticated a mal-
ware is in its behavior and how much destruction it can
cause.

Figure 1: Architecture of the proposed malware evolution framework

formally define malware evolution as a process which brings
a change in the behavior, functionality or semantics of a
given malware, rather than a mere change in its structure.
Keeping in mind the above-mentioned definition of malware
evolution, many virology experts consider that ‘true evolu-
tion’ in computer malware is still a myth.

2. EVOLVABLE MALWARE FRAMEWORK
In our research, we propose a framework for evolving com-

puter viruses. The architecture of the proposed malware
evolution framework is shown in Figure 1. Our framework
evolves new computer malware from a database of known
malware.

The first step in malware evolution is the high-level ab-
stract representation (or genotype) of a given malware. The
development of high-level representation requires significant
understanding of the functionality and structure of the mal-
ware. This representation determines the ‘quality of evolu-
tion’ achieved by the proposed framework. A sophisticated
representation would include subtle functional details such
as the list of victim applications, the list of ports used for
propagation and the details of registry entries. The first
module of our framework extracts functional details of the
malware.

The second step is the application of evolutionary algo-
rithms to the high-level representation. In our study, we
have used the standard genetic algorithm (GA) for this pur-
pose. GA is an evolutionary algorithm that puts a great deal
of emphasis on selection, recombination and mutation acting
on a genotype that is decoded and evaluated for fitness [21].
Several types of selection, recombination and mutation al-
gorithms are available to choose from. In our study, we have
carried out a comprehensive evaluation of several well-known
selection and recombination algorithms. We have also tried
to determine the optimal combination of selection and re-
combination procedures for our malware evolution process.

After the application of GA, new individuals in the popu-
lation are translated back from high-level representation to
machine-level code. It is effectively a code generator that
converts an abstract representation to a machine-level code.
The other module of our proposed framework translates the
high-level representation back to the machine-level code.

Finally, the generated virus files are tested using commer-
cial antivirus software to check if they are known variants of
the given malware. Even if the generated malware files are

not detected by any antivirus software, it is possible that it
is an unknown working variant of the given malware3. To
establish that the newly generated unknown individual is a
malware, we have to execute it in a real operating system
or a virtual machine. In order to make our current study
plausible, we have restricted the scope of our study to the
generation of known variants of a virus only.

3. PROOF-OF-CONCEPT STUDY USING
BAGLE

In this section, we present the details of our proof-of-
concept study using a well-known virus family called Bagle.
We first provide the functional details of Bagle that will help
a reader to understand its high-level genotype representation
and the process of generating it from the machine-level code.

3.1 With Microscope and Tweezers: Analysis
of Bagle family

It is desirable that the genes in the high-level genotype
representation are common to all variants of the Bagle fam-
ily. To develop a suitable high-level representation, we have
taken the fingerprints of different variants of Bagle family
and closely analyzed their different characteristics such as
their parameters, their functional flow and the specific func-
tions performed by each variant [1], [5], [3]. We have used a
well-known disassembler and debugger, called IDA Pro, to
perform this forensic analysis [2].
Bagle, also known as beagle, is a mass-mailing computer

worm that infects all versions of the Microsoft Windows.
The first strain Bagle.a was not a big success as it did not
propagate widely. However, its next variation i.e. Bagle.b

is far more infectious. It gathers email addresses from a
victim’s computer and emails itself as an attachment to these
recipients. It actually has its own SMTP engine to mass-mail
itself. Moreover, it also opens a backdoor channel on a TCP
port and copies itself to the ‘system directory’.

All variants of the Bagle family are backdoors and we
have taken 15 of them for our research. The results of our
forensic analysis have revealed that the major differences
among different variants of the family are:

3Most of the commercial antivirus software are signature
based, therefore, they might not have the signature of new
malware in their signature database.

• The date prior to which they continue their destructive
activities.

• The port numbers they listen to, for example Bagle.a

uses the port 6777 where as Bagle.b uses the port
number 8866.

• The packers that are used for packing or doing encryp-
tion.

• The applications they execute to conceal themselves
from a user’s suspicion.

• Additional functionalities like killing the antivirus processes
and peer-to-peer propagation.

Figure 2: Activation date of Bagle.a

Figure 2 shows the piece of code that holds the date infor-
mation of Bagle.a in the hex format. This date is equivalent
to 28th January, 2004. The worm first gets the current date
from the system and compares it with the date stored in the
virus file [16]. If it is prior to 28th January, 2004 then the
worm is executed; otherwise it is terminated.

Figure 3: Activation date of Bagle.b

Bagle.b does the same thing but it has a different date
stamp. It checks for the date entry of 25th February, 2004
as shown in the Figure 3. Some variants of Bagle have a
date stamp present in their code but this feature is absent
in several variants.
Bagle also creates the registry entries. The two registry

entries uid and frun are created in HKEY CURRENT USER\
SOFTWARE\Windows98. The presence of frun in the reg-
istry means that virus has run at least once on this machine.
After this entry, Bagle creates another entry d3dupdate.exe
in HKEY CURRENT USER\SOFTWARE\Microsoft\Wind-
ows\CurrentVersion\Run. The objective of this entry is to
make sure that the code automatically starts next time the
Windows is started. All these entries are declared in the
data section of the virus file as shown in Figure 4.

The data section in Figure 4 has an entry titled bbea-
gle.exe; it is the process name of the virus that will be dis-
played in the task manager. Another function that Bagle

performs to conceal is that its different variants use differ-
ent applications. For example, Bagle.a conceals itself into
calc.exe as shown in Figure 4. Similarly, Bagle.b conceals
itself into sndrec32.exe and Bagle.c uses notepad.exe.

Figure 4: Application used by Bagle to conceal itself,
and registry entries

Figure 5: Port Number and DNS for Bagle.a

Figure 5 shows the code section where hard coded DNS
and port numbers for Bagle.a are declared. It is evident
in Figure 5 that the port number for Bagle.a is 1A79h i.e.
6777 and the IP address of the DNS server is 151.201.0.39.
Moreover, Bagle also collects the email addresses from a
victim’s computer and for this purpose it searches for the
files with the extensions .wab, .txt, .htm, .html and avoids
the domains such as @hotmail.com, @msn.com, @microsoft,
@avp as shown in Figure 6. The malware contains an email
subject, email body and contents for these fields are also
defined in the data section of the malware. For Bagle.a, the
email subject is Hi and email body contains the string Test.
The attachment name is randomly selected by Bagle.a. The
extension of attachment is “.exe” which is mentioned in the
data section. All these attributes are common in most of
the variants of the Bagle class and will be used to develop
the high-level abstract representation.

Figure 7 shows the list of websites to which Bagle.a in-
forms about the successful infection. The list of websites
is usually hard-coded in the data segment of the malware.
Virus writers use this functionality to obtain a feedback
about the propagation statistics of the malware. However,
this tactic can also backfire as the list of websites can be
used to trace back the identity of the malware’s author.

3.2 Abstract Representation of Bagle family
To apply GA, we first need to formulate the high-level

abstract genotype representation of the Bagle virus; more
commonly known as the chromosome structure. A good

Table 1: Abstract Representation of Bagle
Feature Description Examples

Date The date checked by Bagle to (de-)activate its process 28 January, 2004
Application The applications used to conceal Bagle calc.exe, notepad.exe, sndrec32.exe

Port Number Port opened by Bagle to send or receive commands 2475, 6777, 2556
Attachment Name of the attachment used by Bagle Random characters

Attachment Extension It specifies the extension of the attachment .rar, .exe, .pif, .zip
Websites Bagle contact the websites to inform about http://www.it-msc.de/1.php,

the infection http://www.getyourfree.net/1.php
Domain Bagle ignores to email itself to the domains specified @hotmail.com, @msn.com

Email Body Contains the email body of Bagle Test=), YoursID<Random Characters>
Email Subject Specifies the subject of the email Hi, Subject:ID <Random Characters>

Registry Variable Contains the name of registry variables used by Bagle au.exe, d3dupdate.exe
Virus Name Name of the Bagle shown in the task manager bbeagle.exe, au.exe, readme.exe

File Extension File extensions to be searched in the fixed directories .wab, .txt, .htm, .php
Process Terminated Processes terminated by Bagle atupdater.exe, aupdate.exe
P2P Propagation Names used by Bagle to copy itself to peer computers ACDSee 9.exe, Ahead Nero 7.exe

Figure 6: File extensions to be searched and do-
mains to be ignored by Bagle.a

representation of a chromosome generally covers majority of
the features of a given virus. Consequently, it helps us to
map each variant of Bagle to its genotype representation
and vice versa.

Some common attributes of Bagle class have been dis-
cussed in the previous subsection. All of these attributes are
also present in the other variants of Bagle class with differ-
ent values. For example, the date stamp attribute is present
in both Bagle.a and Bagle.b but with different dates. Like-
wise, the name of application used to conceal and the port
number are also common attributes of Bagle class. There-
fore, date, application and port number constitute the first
three members of the chromosome representation (see Table
1).

The next gene of the chromosome is the email attachment ;
malware sends messages with an attachment which is cho-
sen randomly for some variants. Moreover, the extension of
this attachment is another member of representation. The
extensions can be .exe, .zip, .src, .rar, .pif and is mentioned
in the data section of the executable file of the malware. The
attribute websites contains the list of websites and the mal-
ware contacts these websites with details of the infection.
The list of these websites is extracted from the data seg-
ment of the malware. Modern malware mostly access some
peer-to-peer network to get the list of websites.

Figure 7: List of websites to inform about infection

The domain parameter of the chromosome representation
scheme specifies the strings that are ignored by the Bagle

i.e., the worm makes sure that the email address does not
contain the strings specified in the domain parameter. Mail
Body is another parameter extracted from the code section
that contains the message. Email Subject is another relevant
parameter.

The Registry Variable parameter makes sure that the mal-
ware automatically initiates itself at system startup. This
parameter has different values for different variants of Bagle
class. The next parameter is virus name. It specifies the
name of the process initiated by malware as shown in the
task manager. Moreover, the worm also searches hard disks
to locate files with the extensions like .wab and .txt in order
to collect the email addresses. The File Extension parame-
ter holds the extensions of the files which it wants to search
on hard disks.

Another important feature present in most of the variants
of Bagle class is termination of several processes to disable
well-known security software. This parameter is specified as
process terminated in our chromosome representation. Fi-
nally we have peer-to-peer propagation which specifies the

Figure 8: Elaborated experimental setup

names–used by Bagle–to copy itself to peer computers. The
complete chromosome representation is summarized with ex-
amples in Table 1. Referring back to the definition of mal-
ware evolution presented in Section 1, a careful reader will
notice that our abstract representation contains attributes
that reflect the behavior and the functionality of Bagle fam-
ily rather than mere code structure. For example, ‘Applica-
tion’ feature determines the application used to conceal the
malware.

4. EXPERIMENTS, RESULTS AND
DISCUSSIONS

In this section, we provide the details of our experimental
setup, results and discussions.

4.1 Experimental Setup
We have obtained 15 unique variants of Bagle from differ-

ent malware sources such as VX Heavens [4] and Offensive
Computing [3]. To formulate our test bed, we have divided
Bagle samples into two categories: training and testing. The
samples in the training category are utilized to guide the
evaluation process: the fitness of the offsprings is a function
of the similarity measure (will be shortly defined) of their
chromosomes with that of training viruses. An exact match
results in a fitness of 1. Moreover, once we have evolved
new individuals that do not match with the training sam-
ples then we might arrive at three conclusions: (1) the new
individual is a malware in the testing category, (2) the new
individual is an unknown Bagle virus, and (3) the new indi-
vidual is not a Bagle virus. We have already mentioned that
the facts 2 and 3 can only be established once we execute
the virus in real operating system or virtual machine. We
argue that if we have generated testing Bagle viruses from a
random population of individuals, then effectively we have
achieved evolution because testing viruses are never used in
guiding the evolution process. Fact 1, therefore, helps us in
establishing the evolution claim in a time efficient fashion.

Figure 8 shows our experimental setup. For all features in
abstract representation, we have developed a gene library.
For example, the gene library for port number contains all
possible values that can be used by the malware of Bagle

family. Similarly for the date feature of the abstract repre-
sentation, the gene library contains all possible date stamps
that can be used by Bagle.

As a first step, our implementation generates an initial
population from the gene library. Then well-known genetic
operators–such as crossover and mutation–are applied on the
individuals of initial population. After applying GA opera-
tors, the genotypes of malware offsprings are obtained. The
fitness (F) of offsprings is evaluated using the samples from
training set. The fitness of an individual is directly pro-
portional to its resemblance to the malware samples in the

training set. The resemblance is calculated by comparing
each parameter of the genotype to the respective genotype
parameter of the training set. Moreover, the fitness is nor-
malized by assigning a weight to every gene of the represen-
tation. For k genes, the fitness F is mathematically given
by:

F =

kX

i=1

fi

k

Here fi is determined by the resemblance of respective
genes of an offspring and a sample virus in the training set.
The generated offsprings are also compared to the testing
set and the statistics are archived. The offsprings from the
population are selected for next generation based on their
fitness.

4.2 Results and Discussions
In our experiments, we have evaluated the performance of

our prototype framework. We have carried out a comprehen-
sive comparative study of different selection and crossover
techniques. The selection methods used in our study are
roulette wheel (R-Wheel), rank and tournament selections.
The different crossover methods used in our study are one
point (1-Pt), two point (2-Pt) and uniform crossovers. A
tangential aim of this study is to evaluate the performance
of our framework using different selection and crossover tech-
niques for our domain. For this study, we have set the
crossover probability at 0.75 and the mutation probability
at 0.005. The population size of 500 individuals is used in
our study.

We have fixed these parameters so that we can explore
other interesting dimensions (such as the type of selection
and crossover) of the design space. Here we emphasize that
the prime focus of this study in not on finding the design
point to evolve an individual with the highest fitness. We
are not using GA to solve a typical optimization problem,
rather we are using it as an evolution tool. Moreover, the
traditional concept of fitness does not pertain for the mal-
ware evolution problem since there is no such malware as
the fittest malware.

Tables 2 and 3 show the the means and the standard de-
viations of finesses obtained after 500 generations. The bold
entries highlight the best results in every row. We are unable
to find any correlation between the fitness of an offspring–
once compared with the viruses in the training set–and the
types of selection and crossover (see Table 2) techniques.
For Bagle.a and Bagle.c and Bagle.e, rank selection with
one-point crossover provides the best results. For Bagle.b

roulette wheel selection with one-point crossover gives the
best average fitness. For Bagle.d rank selection with two-
point crossover provides the best fitness.

For fitness evaluated using the testing set, tournament
selection with two-point crossover gives the best average fit-
ness for Bagle.f, and Bagle.i. For Bagle.j rank selection
with two-point crossover has provided the best average fit-
ness. On the other hand, for Bagle.k and Bagle.n uniform
crossover with rank selection has provided the best fitness.
However, we cannot establish any pattern for best fitness
with respect to the choice of selection and crossover tech-
nique.

To get more detailed insights, we also analyze the fitness
of Bagle.a against training set for different selection and

Table 2: Fitness for training Bagle set using different selection and crossover methods. Bold values in every
row highlight the best fitness.

Selection Rank Rank Rank R-Wheel R-Wheel R-Wheel Tournament Tournament Tournament
Crossover 1-Pt. 2-Pt. Uniform 1-Pt. 2-Pt. Uniform 1-Pt. 2-Pt. Uniform

Bagle.a 0.951 ± 0.948 ± 0.926 ± 0.924 ± 0.941 ± 0.918 ± 0.938 ± 0.900 ± 0.850 ±
0.009 0.015 0.034 0.026 0.110 0.181 0.133 0.084 0.080

Bagle.b 0.897 ± 0.944 ± 0.935 ± 0.957 ± 0.931 ± 0.948 ± 0.930 ± 0.889 ± 0.846 ±
0.147 0.015 0.035 0.036 0.158 0.007 0.165 0.160 0.149

Bagle.c 0.890 ± 0.881 ± 0.887 ± 0.873 ± 0.882 ± 0.883 ± 0.886 ± 0.830 ± 0.806 ±
0.141 0.007 0.031 0.002 0.067 0.103 0.147 0.088 0.058

Bagle.d 0.912 ± 0.928 ± 0.915 ± 0.907 ± 0.901 ± 0.914 ± 0.910 ± 0.853 ± 0.835 ±
0.028 0.026 0.036 0.011 0.104 0.075 0.226 0.094 0.010

Bagle.e 0.862 ± 0.852 ± 0.842 ± 0.848 ± 0.852 ± 0.839 ± 0.846 ± 0.807 ± 0.785 ±
0.113 0.014 0.017 0.009 0.030 0.075 0.049 0.073 0.046

Table 3: Fitness for testing Bagle set using different selection and crossover methods. Bold values in every
row highlight the best fitness.

Selection Rank Rank Rank R-Wheel R-Wheel R-Wheel Tournament Tournament Tournament
Crossover 1-Pt. 2-Pt. Uniform 1-Pt. 2-Pt. Uniform 1-Pt. 2-Pt. Uniform

Bagle.f 0.480 ± 0.499 ± 0.462 ± 0.495 ± 0.463 ± 0.461 ± 0.438 ± 0.611 ± 0.450 ±
0.007 0.002 0.023 0.001 0.035 0.032 0.014 0.021 0.0019

Bagle.i 0.483 ± 0.525 ± 0.524 ± 0.523 ± 0.516 ± 0.492 ± 0.502 ± 0.559 ± 0.530 ±
0.032 0.013 0.001 0.009 0.040 0.021 0.034 0.058 0.004

Bagle.j 0.486 ± 0.525 ± 0.524 ± 0.458 ± 0.507 ± 0.496 ± 0.502 ± 0.496 ± 0.500 ±
0.029 0.013 0.001 0.015 0.053 0.007 0.034 0.040 0.034

Bagle.k 0.461 ± 0.483 ± 0.503 ± 0.431 ± 0.479 ± 0.480 ± 0.492 ± 0.473± 0.484 ±
0.023 0.027 0.001 0.023 0.033 0.012 0.044 0.033 0.040

Bagle.n 0.447 ± 0.458 ± 0.484 ± 0.441 ± 0.477 ± 0.454 ± 0.417 ± 0.443 ± 0.472 ±
0.023 0.028 0.002 0.001 0.004 0.022 0.0021 0.025 0.0150

crossover techniques (see Figure 9). It is clear that the sin-
gle point crossover technique eventually achieves the best
fitness for all selection techniques. On the other hand, the
convergence of two-point crossover method to the best fit-
ness is fastest (i.e. in least number of generations) for all
selection techniques.

Figure 9(a) shows that the solution converges more quickly
in case of two-point crossover as compared to single-point
and uniform crossover methods. Moreover, maximum fit-
ness achieved by the single-point crossover is greater than
the fitness achieved by the other two crossover methods.
This trend is also prevalent for roulette wheel selection as
shown in Figure 9(b) and rank selection (see Figure 9(c)).

We have carried out another useful analysis which pro-
vides answer to a relevant question: what is the relationship
of the number Bagle samples in the evolved population with
respect to different population sizes P . It is evident from
Figure 10(a) that the percentage of offsprings that match
to Bagle samples in the training set increase significantly as
the population size increases. Remember that the training
set is used to guide the evolution process. In comparison,
this trend is not very clear in Figure 10(b). We again em-
phasize that the viruses in the testing set are not used to
guide the evolution process. The percentage of offsprings
that match to Bagles in the testing set oscillate about 50%
for P = 2000. These are effectively the ‘new’ variants of
Bagle that our malware evolution system has generated.
Moreover, our system also generates ‘unknown’ variants of
Bagle which we could not verify because of absence of the
ground truth.

To verify our results, we have tested a sample of evolved
malware with two commercial antivirus softwares: (1) AVG
antivirus, and (2) Symantec antivirus. The results are shown
in the Figure 11. AVG detects 98.98% of the evolved mal-
ware from training set and 1.02% of the evolved malware

remain undetected (see Figure 11(a)). The statistics in Fig-
ure 11(b) shows that 14.46% of the evolved malware are
detected with the name W32.Sality.AE which is not in the
training or testing set. Further 26.64% of the evolved mal-
ware are detected as W32.Beagle!gen by Symantec antivirus
and 58.9% remain undetected. These results prove our claim
that the proof-of-concept malware evolution engine has suc-
cessfully evolved unseen malware.

5. REAL WORLD APPLICATIONS
In this section, we provide some real world applications

of our proposed Evolvable Malware framework. We describe
its applications separately below:

• Though in this paper our proposed framework is posed
as an evolvable malware system, however, it is in fact
an example of ‘software evolution’. Software evolu-
tion is a phenomena associated with modifying existing
software systems [12]. A possible advantage of evolv-
ing software is that it emphasizes reusability of com-
ponents instead of developing them from scratch.

• Our proposed evolving malware framework can be used
to test host-based antivirus software, especially all non-
signature based antivirus products. (Developing non-
signature based techniques for viruses is still an active
area of research.) A robust non-signature based an-
tivirus software will detect the majority of the evolved
malware variants.

• A wide variety of network based malware–commonly
known as worms–can also be evolved by our proposed
framework. These evolved variants can be of great
value in network security research.

0 100 200 300 400 500
0.2

0.4

0.6

0.8

1

Generation

F
itn

es
s

Single Point Crossover
Two Point Crossover
Uniform Crossover

(a) Tournament selection

0 100 200 300 400 500

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

F
itn

es
s

Single Point Crossover
Two Point Crossover
Uniform Crossover

(b) Roulette Wheel selection

0 100 200 300 400 500

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

F
itn

es
s

Single Point Crossover
Two Point Crossover
Uniform Crossover

(c) Rank selection

Figure 9: Fitness plots for different selection and
crossover methods

6. RELATED WORK
To the best of our knowledge, artificial evolution is ap-

plied for the first time in evolving new computer malware.
The concept of artificial life for computer viruses has been
proposed in the past [11]. In [17], the authors carried out
a study to verify different properties of life such as self-
reproduction, metabolism and growth, in computer mal-
ware. The authors concluded that some properties are present
to an extent in existing computer viruses. In [11], the author
proposed the idea of “Darwinian Genetic Mutation Engine”
(DGME). According to [11], DGME will have the ability to
replicate and mutate the computer viruses. This idea still
seems very futuristic and very little work has been done to
evaluate it. We believe that our proposed framework in this
paper is the first practical implementation and demonstra-
tion of the exciting domain of Evolvable Malware.

Apart from evolving computer viruses and software, evo-
lutionary techniques have been extensively applied in a va-

0 100 200 300 400 500
0

20

40

60

80

100

Generation

P
er

ce
nt

ag
e

of
 O

ffs
pr

in
gs

 th
at

 M
at

ch
 to

B

ag
le

s
in

 T
ra

in
in

g
S

et

P =500
P =1000
P =1500
P =2000

(a) Percentage Matches to the Training Set

0 100 200 300 400 500
0

20

40

60

80

100

Generation

P
er

ce
nt

ag
e

of
 O

ffs
pr

in
gs

 th
at

 M
at

ch
 to

 B
ag

le
s

in
 th

e
T

es
tin

g
S

et

P =500
P =1000
P =1500
P =2000

(b) Percentage Matches to the Testing Set

Figure 10: Percentage of offsprings that match to
Bagle samples in the training and testing set

riety of fields to provide solutions to different real world
problems. To maintain focus, we will focus on applications
in which intelligent software behaviors are evolved. In the
field of artificial intelligence, GA has been used in [19] for
computer gaming, e.g., in chess playing GA is used to op-
timize the evaluation function to replicate the behavior of
an intelligent entity or mentor. GA is used to tune the pa-
rameters of evaluation function to mimic the behavior of a
mentor.

In [9], evolutionary programming is used to automatically
programme a robot. In fact, the behavior of robot is evolved
to perform a given task without explicitly programming it.
In another seminal work, evolutionary computation is used
to evolve circuits [10]. In [8], GA is used in the field of music
composing and music mixing. This technology has already
been incorporated into new software. In [20], collaboration
between human musicians and robot musicians utilizes ge-
netic algorithm to produce new and inspiring music.

GA has been successfully used in network security problems–
for example in network intrusion detection systems. In [18],
the authors have successfully deployed GA to extract a sub-
set of traffic features to increase the detection rate. More-
over, GA has also been used for dynamic network redesign-
ing with reconfigurable links in case of a major network fail-
ure [15]. Using GA, the techniques for jamming radars have
also been developed [14]. GA is also applied to web mining–
an application of data mining–to increase the coverage of a
web search engine [13].

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed an evolvable malware

Undected 1.02%

Training Bagles 98.98%

(a) Evolved Bagles scanned with AVG

W32.Beagle!gen 26.64%

W32.Sality.AE 14.46%
Undected 58.9%

(b) Evolved Bagles scanned with Symantec

Figure 11: Results obtained by scanning the evolved
malware by antivirus software

framework. The basic idea is to use evolutionary computa-
tion to evolve computer viruses. For proof-of-concept, we
have used this framework to evolve new variants of Bagle.
To this end, we have developed a high-level feature repre-
sentation of Bagle family and applied GA to the developed
chromosome representation. Our experiments show that
starting from a few training samples we have successfully
evolved new and unknown variants of Balge family. We
have verified our results using real variants of Bagle fam-
ily that were not used to guide the evolution process of our
framework.

In future, we can make our implementation more sophis-
ticated by further developing the code analysis and code
generation modules. A full-blown version of our proposed
framework can be generalized for all types of malware.

8. REFERENCES
[1] F-Secure Virus Description Database, available at

http://www.f-secure.com/v-descs/.

[2] The IDA pro disassembler and debugger, available at
http://www.hex-rays.com/idapro/.

[3] Offensive Computing, available at
http://www.offensivecomputing.net.

[4] VX Heavens Virus Collection, VX Heavens website,
available at http://hvx.netlux.org.

[5] Kaspersky Lab, VirusList.Com, available at
http://www.viruslist.com/en/viruses/encyclopedia/.

[6] J.M. Bauer, J.G. Michel and Y. Wu. “ITU Study on the
Financial Aspects of Network Security: Malware and
Spam”, ICT Applications and Cybersecurity Division,
International Telecommunication Union, Final Report,
July 2008, available at
http://www.itu.int/ITU-D/cyb/cybersecurity/docs/
itu-study-financial-aspects-of-malware-and-spam.
pdf.

[7] F. Cohen, “Computer Viruses”, PhD thesis, University of
Southern California, 1985.

[8] G. Gabrani, P. Bhargava, B. Bhawana and G.S. Gill. “Use
of Genetic Algorithms for Indian Music Mixing”, ACM
Ubiquity, 9(10), Article 1, ACM Press, 2008.

[9] J.R. Koza, F.H.Bennett, D. Andre and M.A. Keane “Reuse,
parameterized reuse, and hierarchical reuse of substructures
in evolving electrical circuits using genetic programming”,
International Conference on Evolvable Systems: From
Biology to Hardware, Volume 1259 of Lecture Notes in
Computer Science, pp. 312-326, Springer, UK, 1996.

[10] J.R. Koza and J.P. Rice, “Automatic Programming of
Robots using Genetic Programming” 10th National
Conference on Artificial Intelligence, pp. 194-201,
Association for the Advancement of Artificial Intelligence
(AAAI), 1992.

[11] M.A. Ludwing, “Computer Viruses, Artificial Life and
Evolution”, American Eagle Publications, 1993.

[12] J.Gray, R. Klefstad, “Adaptive and Evolvable Software
Systems: Techniques, Tools, and Applications”, 38th
Annual Hawaii International Conference on System
Sciences (HICSS), page 274, IEEE Press, 2005.

[13] M.H. Marghny and A.F. Ali, “Web Mining based on
Genetic Algorithm”, IGCST International Journal on
Artificial Intelligence and Machine Learning, Special Issue
on AI Classification & Analysis Techniques, 2006.

[14] H.J.F. Moen and S. Kristoffersen, “Multi-resistant radar
jamming using genetic algorithms”, Genetic and
Evolutionary Computation Conference (GECCO), pp.
1595-1602, ACM Press, USA, 2008.

[15] D. Montana, T. Hussain and T. Saxena, “Adaptive
Reconfiguration Of Data Networks Using Genetic
Algorithms”, Genetic and Evolutionary Computation
Conference (GECCO), pp. 1141-1149, ACM Press, USA,
2002.

[16] K. Rozinov, “Reverse code engineering: An In-depth
Analysis of the Bagle Virus”, 6th Annual IEEE SMC
Information Assurance Workshop (IAW), pp. 380-387,
IEEE Press, USA, 2005.

[17] E.H. Spafford, “Computer viruses as Artificial Life”,
Journal of Artificial Life, 1(3), pp. 249-265, MIT Press,
1994.

[18] G. Stein, B. Chen, A.S.Wu and K.A. Hua, “Decision tree
classifier for Network Intrusion Detection with GA-based
Feature Selection”, 43rd Annual ACM Southeast Regional
Conference, pp. 136-141, USA, 2005.

[19] O.D.- Tabibi, M. Koppel and N.S. Netanyahu, “Genetic
algorithms for mentor-assisted evaluation function
optimization”, Genetic and Evolutionary Computation
Conference (GECCO), pp. 1469-1476, ACM Press, USA,
2008.

[20] G. Weinberg, M. Godfrey, A. Rae and J. Rhoads, “A
Real-time Genetic Algorithm in Human-robot Musical
Improvisation”, 4th International Symposium on Computer
Music Modeling and Retrieval, Sense of Sounds, Volume
4969 of Lecture Notes in Computer Science, pp. 351-359,
Springer, 2008.

[21] D. Whitley, “An Overview of Evolutionary Algorithms:
Practical Issues and Common Pitfalls”, Information and
Software Technology, 43(14), pp. 817-831, 2001.

