
Fixing software bugs in 10 minutes or less
	 using evolutionary computation

University of New Mexico
 Stephanie Forrest
 ThanhVu Nguyen
University of Virginia
 Claire Le Goues
 Westley Weimer

Summary of method

• Assume:

• Access to C source code

• Negative test case that executes the buggy code

• Positive test cases to encode required program functionality

• Construct Abstract Syntax Tree (AST)

• Evolve repair that avoids negative test case and passes positive test case

• Minimize repair using program analysis methods

Repairing the Zune bug using GP

• Infinite loop when input is
last day of a leap year.

• Microsoft sold about 1.2
million units of Zune 30,
generating thousands of
complaints.

• Repair is not trivial.
Microsoft’s recommendation
was to let Zune drain its
battery and then reset.

• GP discovered the repair in
42 seconds.

role of crossover, the effect of varying the number of test cases in
the fitness function, the relative importance of the different genetic
operations, and the effect of path length on time to solution.

In all of the experiments, a standard trial uses the following
setup. The population size is 40, and GP runs for a maximum of 20
generations. For the first ten generations, the global mutation rate
is pm = 0.06, and statements visited on both the positive and neg-
ative test cases are given a weight of 0.01. If no primary repair is
found, the current population is discarded, these rates are adjusted
to 0.03 and 0.00 respectively, and the GP is run for ten additional
generations.

The trial terminates if it discovers an initial repair. We performed
100 trials for each program. We memoize fitnesses such that two
individuals with different ASTs but the same source code are not
evaluated twice. Similarly, individuals that are copied to the next
generation without change are not reevaluated.

3.1 Example: Repairing the Zune Bug
On December 31st, 2008 a widely reported bug was discovered

in the Microsoft Zune media players, causing them to freeze up [8].
The fault was a bug in the following program fragment:4

1 void zunebug(int days) {
2 int year = 1980;
3 while (days > 365) {
4 if (isLeapYear(year)){
5 if (days > 366) {
6 days -= 366;
7 year += 1;
8 }
9 else {
10 }
11 }
12 else {
13 days -= 365;
14 year += 1;
15 }
16 }
17 printf("current year is %d\n", year);
18 }

When the value of of the input days is the last day of a leap year
(such as 10593, which corresponds to Dec 31, 2008), the program
enters an infinite loop on lines 3–16.

We now walk through the evolution of a repair for this program.
We first produce its AST and determine the weighted path, us-
ing line numbers to indicate statement IDs. The positive test case
zunebug(1000) visits lines 1–8, 11–18. The negative test case
zunebug(10593) visits lines 1–16, and then repeats lines 3, 4,
8, and 11 infinitely.

For the purposes of this example, our negative test case consists
of the inputs 366 and 10593, which cause an infinite loop (instead
of the correct values, 1980 and 2008), and our positive test cases
are the inputs 1000, 2000, 3000, 4000, and 5000, which produce
the correct outputs 1982, 1985, 1988, 1990 and 1993.

Here, we focus on one variant, V . V is initialized to be identical
to the original program. In Generation 1, two operations mutate V :
the conditional statement “if (days > 366) { days -=
366; year +=1; }” is inserted between lines 6 and 7 of the
original program; and the statement “days -= 366” is inserted
between lines 10 and 11. Note that the first insertion includes not
just the if but its entire subtree. This produces the following code
fragment:
4Downloaded from http://pastie.org/349916 (Jan. 2009). Note that the
original program source code does not make lines 9–10 explicit: the AST
represents missing blocks, such as those in if statements without else
clauses, as blocks containing zero statements.

5 if (days > 366) {
6 days -= 366;
7 if (days > 366){ // insert #1
8 days -= 366; // insert #1
9 year += 1; // insert #1

10 } // insert #1
11 year += 1;
12 }
13 else {
14 }
15 days -= 366; // insert #2

This modified program passes the negative test case 366 (year
1980) and one positive test case 1000.

V survives Generations 2, 3, 4, 5 unchanged, but in Generation
6, it is mutated with the following operations: lines 6–10 are deleted,
and “days -= 366” is inserted between lines 13 and 14. The re-
sulting program is shown below:

5 if (days > 366) {
6 // days -= 366; // delete
7 // if (days > 366){ // delete
8 // days -= 366; // delete
9 // year += 1; // delete

10 // } // delete
11 year += 1;
12 }
13 else {
14 days -= 366; // insert
15 }
16 days -= 366;

At this point, V passes all of the test cases, and the search ter-
minates with V as the initial repair. The minimization step is in-
voked to discard unnecessary changes. Compared to the original
program (and using the line numbers from the original), there are
three key changes: c1 = “days -= 366” deleted from line 6;
c2 = “days -= 366” inserted between lines 9 and 10; and c3 =
“days -= 366” inserted between lines 10 and 11. Only c1 and
c3 are necessary to pass all tests, so change c2 is deleted:

5 if (days > 366) {
6 year += 1;
7 }
8 else {
9 // days -= 366; // deleted c2

10 }
11 days -= 366;

This produces the final repair, shown below. This is one of the
many possible repairs that the search might produce.

1 void zunebug_repair(int days) {
2 int year = 1980;
3 while (days > 365) {
4 if (isLeapYear(year)){
5 if (days > 366) {
6 // days -= 366; // repair deletes
7 year += 1;
8 }
9 else {

10 }
11 days -= 366; // repair inserts
12 } else {
13 days -= 365;
14 year += 1;
15 }
16 }
17 printf("current year is %d\n", year);
18 }

Figure 1 shows how the average fitness of the population changes
over time in one GP trial. In this run, we used five positive test cases

Downloaded from http://pastie.org/349916 (Jan. 2009).

Example repairs

Initial Repair Minimized Repair
Program LOC |Path| Time fitness Success Size Time fitness Size
gcd 22 1.3 149 s 41.0 54% 21 4 s 4 2
uniq 1146 81.5 32 s 9.5 100% 24 2 s 6 4
look-u 1169 213.0 42 s 11.1 99% 24 3 s 10 11
look-s 1363 32.4 51 s 8.5 100% 21 4 s 5 3
units 1504 2159.7 107 s 55.7 7% 23 2 s 6 4
deroff 2236 251.4 129 s 21.6 97% 61 2 s 7 3
nullhttpd 5575 768.5 502 s 79.1 36% 71 76 s 16 5
indent 9906 1435.9 533 s 95.6 7% 221 13 s 13 2
flex 18775 3836.6 233 s 33.4 5% 52 7 s 6 3
atris 21553 34.0 69 s 13.2 82% 19 11 s 7 3

63249 881.4 184.7 s 36.9 58.7% 53.7 12.4 s 8.0 4.0

Figure 4: Experimental Results: The ‘Positive Tests’ column describes the positive tests (Sec-
tion ??). The ‘|Path|’ columns give the weighted path length. ‘Initial Repair’ gives the average
performance for one trial, in terms of ‘Time’ (the average time of each successful trial, including
compilation time and testcase evaluation), ‘fitness’ (the average number of fitness evaluations in a
successful trial), ‘Success’ (how many of the random trials resulted in a repair). ‘Size’ reports the
average !diff size between the original source and the primary repair, in lines. ‘Minimized Repair’
reports the same information but describes the process of producing a 1-minimal repair from the
first initial repair found; the minimization process is deterministic and always succeeds.

Program Version LOC Time to Program Description Fault
Repair

gcd example 22 153s handcrafted example infinite loop
zune 28 42s media player infinite loop
uniq ultrix 4.3 1146 34s duplicate text processing segfault
look ultrix 4.3 1169 45s dictionary lookup segfault
look svr4.0 1.1 1363 55s dictionary lookup infinite loop
units svr4.0 1.1 1504 109s metric conversion segfault
deroff ultrix 4.3 2236 131s document processing segfault
indent 1.9.1 9906 546s source code processing infinite loop
flex 2.5.4a 18775 230s lexical analyzer generator segfault
atris 1.0.6 21553 80s graphical tetris game loc. stack buffer exploit
nullhttpd 0.5.0 5575 578s webserver rem. heap buffer exploit
openldap io.c 2.3.41 6519 665s directory protocol non-overflow DOS
lighthttpd
fastcgi.c 1.4.17 13984 49s webserver rem. heap buf overflow
php string.c 5.2.1 26044 6s scripting language int overflow
wu-ftp 2.6.0 35109 2256s FTP server format string
total 144933

Figure 5: Benchmark programs used in our experiments, with size in lines of code (LOC).
The ‘Statements’ column gives the number of applicable statements as defined in Section sec-
representation.

3

Why is this human competitive?

• Software is THE (indisputably difficult) problem

• Time to discover a repair

• Quality of repair

Software is THE problem

• Software faults and debugging are expensive:

• US corporate development organizations spend $5.2 - $22 million
annually fixing software defects (IDC Software Quality Survey, 2008)

• Cost of repairing bugs increases throughout the development process. A
$25 fix while the program is under development increases to $16,000 after
the software has gone live (IBM Rational group, 2008)

• Security violations are expensive:

• Average total per-incident costs in 2008 were $6.65 million, compared to
an average per-incident cost of $6.3 million in 2007.

• Monetary loss by 639 companies in 2005 totaled $130 million (FBI 2005)

Software is THE problem

• Bugs are plentiful:

• Mozilla project received 51,154 bug reports in 2002-2006.

• In 2005, a Mozilla developer reported that “almost 300 bugs appear every
day that need triaging.”

• Fixing bugs is time-consuming:

• Industrial software repair: 1/2 of all fixed bugs in Mozilla from 2002-2006
took more than 29 days for developers to fix; Median repair time for
ArgoUML project in 2002-2003 was 190 days; Median repair time per bug
for PostgreSQL was 200 days.

Time to discover repair

• To date, we have repaired 15 programs totaling nearly 150,000 lines of code

• Average time to repair: 3 minutes (for first 11 programs shown)

• Time includes:

• GP algorithm (selection, mutation, calculating fitness, etc.)

• Running test cases

• Pretty printing and memoizing ASTs

• gcc (compiling ASTs into executable code)

Quality of repair

• Manual checks for repair correctness.

• Microsoft requires that security-critical changes be subjected to 100,000 fuzz
inputs (randomly generated structured input strings).

• Used SPIKE black-box fuzzer (immunitysec.com) to generate 100,000 held-
out fuzz requests for web server examples.

• In no case did GP repairs introduce errors that were detected by the fuzz
tests, and in every case the GP repairs defeated variant attacks based on
the same exploit.

• Thus, the GP repairs are not fragile memorizations of the input.

• GP repairs also correctly handled all subsequent requests from indicative
workload.

Why should we win the prize?

• The idea of computational evolution (genetic algorithms) was introduced
nearly 50 years ago (by JHH).

• Led to many successes in engineering and science.

• Yet, the dream of “automatic programming” is still largely unfilled.

• Why does the evolutionary approach to design work throughout nature
and engineering, but not in software?

• A gap in the evolutionary record that needs to be filled.

