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Abstract 
 

The focus of this paper is on designing decision-level 
fusion strategies for correlated biometric classifiers. In 
this regard, two different strategies are investigated. In the 
first strategy, an optimal fusion rule based on the 
likelihood ratio test (LRT) and the Chair Varshney Rule 
(CVR) is discussed for correlated hypothesis testing where 
the thresholds of the individual biometric classifiers are 
first fixed. In the second strategy, a particle swarm 
optimization (PSO) based procedure is proposed to 
simultaneously optimize the thresholds and the fusion rule. 
Results are presented on (a) a synthetic score data 
conforming to a multivariate normal distribution with 
different covariance matrices, and (b) the NIST BSSR 
dataset. We observe that the PSO-based decision fusion 
strategy performs well on correlated classifiers when 
compared with the LRT-based method as well as the 
average sum rule employing z-score normalization. This 
work highlights the importance of incorporating the 
correlation structure between classifiers when designing a 
biometric fusion system. 

1. Introduction 
Biometrics fusion, in the context of a verification 

system, may be posed as a binary hypothesis-testing 
problem involving multiple classifiers (i.e., matchers) [1]. 
In decision level fusion, each classifier operating under a 
binary hypothesis, applies a threshold on the match score 
and renders its decision regarding the presence (=1) or 
absence (=0) of a genuine individual. The decisions from 
multiple classifiers are then fused in order to generate the 
final decision. 

Fusion at the decision-level is bandwidth efficient since 
only decisions, requiring a single bit, are transmitted to the 
fusion engine. Moreover, most commercial biometric 
classifiers grant access to decision-level information rather 
than score-level or feature-level information. Achieving 
optimality at the decision level, however, involves the 
selection of optimal decision thresholds and a fusion rule 
that minimize the classification error1 [2]. There are 
22^Npossible fusion rules for an N-classifier system. Also, 
most decision fusion systems are designed under the 
assumption of independence between constituent 

 
 

 

classifiers. There have been efforts in recent literature 
addressing the problem of fusion in the presence of 
correlated biometric classifiers (e.g., see [4]). The 
procedures typically involve an exhaustive search for 
determining thresholds over a subset of monotonic fusion 
rules. The problem of jointly searching for the optimal 
thresholds and optimal fusion rule is NP hard [2]. 

In this paper, we present two formal designs for 
decision level fusion of correlated biometric classifiers. In 
the first strategy, decision thresholds are first estimated for 
each classifier prior to deducing the fusion rule. Thus, a 
two-step optimization procedure is adopted for this case. 
In the second strategy, an algorithm that can jointly 
optimize the thresholds and the fusion rule is designed.  A 
particle swarm optimization (PSO) algorithm is proposed 
for this joint optimization. The rest of the paper is 
organized as follows. In section 2, decision level fusion for 
correlated biometric classifiers is discussed. Results 
observed on both a synthetic multivariate normal dataset 
and the NIST BSSR1 dataset are presented in Section 3.  
Section 4 concludes the paper. 

2. Decision Level Fusion Strategies for 
Correlated Classifiers  

The biometric verification problem may be posed as a 
binary hypothesis-testing problem with the match score(s) 
serving as observations.  The two hypotheses are H0: 
Score(s) indicates an imposter; H1: Score(s) indicates a 
genuine user. In decision level fusion, each classifier 
applies a threshold on the match score and transmits the 
ensuing decision to the fusion engine. The threshold can, 
in theory, vary over the entire range of possible match 
scores. If a match score exceeds this threshold, the null 
hypothesis is rejected. If the match score falls below the 
threshold, the null hypothesis is accepted. This decision 
process using the threshold, iλ , for sensor i can be 
summarized as, 
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Let [ ]1 2[ ] , ,...... NU u u u= , be the binary vector of decisions 

generated by multiple classifiers based on decision 
thresholds 1 2[ , ..... ]Nλ λ λ . These decisions can then be 

combined using a fusion rule of the form 
                                         ([ ])fu f U= .                          (2)                                                 
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The two errors, known as probability of false acceptance 
(PFA) and probability of false rejection (PFR) can be 
denoted as 
                               0( 1/ )FA fP P u H= =                          (3) 

                             1( 0 / )FR fP P u H= =                           (4) 

where fu  is the final decision rendered by the fusion 

engine based on the decisions output by the individual 
classifiers. The goal is to minimize these errors. 
 

TABLE 1: CONSTRUCTING THE FUSION RULE FOR TWO CLASSIFIERS 
 

1u  2u  f 

0 0 
0d  

0 1 
1d  

1 0 
2d  

1 1 
3d  

 
With two classifiers, the fusion rule consists of 4 bits, as 
shown in Table 1. In this table, 1u is the decision output by 

the first classifier while 2u is that of the second classifier. 

The global fusion rule is of length l bits where 
                                 2logl s= .                                    (5) 

22
N

s =  and N is the number of classifiers. The global 
decision rule replaces { 0d , 1d , 2d , 3d } with 0’s and 1’s 

in their respective locations within f. 
In order to formulate the problem, it is assumed that the 

probabilities of encountering an impostor or genuine score 
are the same (i.e, the prior probabilities are the same). 
Also, the costs of false accept and false reject are defined: 
CFA: cost of false acceptance and CFR: cost of false 
rejection. These are incorporated into a performance 
function for evaluating the fusion methodology.  The 
Bayesian cost (error), which the paper intends to minimize, 
is 
        0 1( ) ( )FA FA FR FRR C P H P C P H P= × × + × ×              (6) 
where 
                                FA FRC C c+ =                                   (7) 
and c is a constant. In this paper we assume c=2. Here, (6) 
is a weighted linear multi-objective function, which needs 
to be minimized. The error probabilities (PFA, PFR) of the 
fused system can be estimated based on the fusion rule and 
the available training data set. They can be computed as:  
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Here, uj
i is used to indicate the value of uj corresponding 

to di (see Table 1). Equations (8) and (9) require the 
calculation of joint probabilities. For example, for 2 
classifiers there are 4 joint probabilities and for 5 
classifiers there are 32 joint probabilities (Equation (5)).  
To reduce the computational effort involved we use the 
Bahadur-Lazarfeld expansion method [6, 7]. The method 
involves the estimation of only N-1 joint probability 
estimates for the N classifiers as shown below.  

Correlation among classifiers is assumed under both 
hypotheses. Let U = [u1, u2, …un] be the vector of local 
decisions of individual classifiers. We first normalize the 
local decisions and generate a random variable zj with zero 
mean and unit variance as 
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where ( 1 | )
hj j hp P u H= = , 1  

h hj jq p j= − ∀  and h denotes 

the hypothesis subscript ‘0’ or ‘1’. Let  

                         
1 1

(1 )
1

1
( ) ( ) ( )j j

N u u
h j j

j
P U p q −

=
=

= ∏                (11) 

and  

                        
0 0

(1 )
0

1
( ) ( ) ( )j j

N u u
h j j

j
P U p q−

=
=

= ∏                 (12) 

represent the joint probability estimates for independent 
classifiers for a given U . For correlated decisions, the 
joint probability estimates can be modified as 
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∏ ’s are the Bahadur-Lazarfeld polynomials given 

in [7]. The variable, γ , is the correlation coefficient, 
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There are 2 1N −  correlation coefficients for N 
classifiers. However, only 2 1N N− − are calculated since 
the correlation coefficients are zero for N terms having 
single z’s.  Note that γ  is independent of the values in U. 
It is the expected value of the product of zj’s conditioned 
on the hypothesis. In (13), γ ’s are multiplied by zj’s.  zj’s 
are a function of the values in U, as given in (15). An 
expansion of γ  in the case of two classifiers results in  
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The fused error probabilities are estimated by replacing 

{ }1 2( , ,.... | )n hP u u u H in (8) and (9) with { }( )hP U as in 

(13).  

2.1. Likelihood Ratio Test Based Decision Fusion 
Strategy  

In this strategy, the optimal threshold for each classifier is 
found by minimizing (6) as in  
                                   arg min

i

i
i R

λ
λ =                            (17) 

The joint probabilities are estimated for these fixed 
thresholds under both the hypotheses, and the optimal 
fusion rule is found using the likelihood ratio test (LRT). 
In the case of independent classifiers, it is merely the result 
of applying the Chair-Varshney rule (CVR) and is given 
by  
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where uj is the decision of the jth classifier. For correlated 
classifiers, the optimal fusion rule is,  
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where Ω  and ( )FACΛ correspond to the left hand side and  
right hand side of (18) respectively. In the subsequent 
sections, the application of (19) is referred to as the LRT 
technique. 

2.2. Particle Swarm Optimization based decision 
fusion Strategy 

 To jointly optimize the fusion rule and thresholds, a 
particle swarm optimization (PSO) based approach [3] is 
proposed. ‘Particles’ representing a possible solution to 
the multi-dimensional problem are ‘flown’ through the 
multi-dimensional search space. Each particle’s fitness is 
evaluated using the Bayesian cost function (6). Each 
particle in the N classifier decision-level problem has N+1 
dimensions. The first N dimensions are the thresholds for 
each classifier and the N+1th dimension is the fusion rule. 
The classifier thresholds are assumed to be continuous. 
While the fusion rule is made of binary digits. Hence, each 
particle has two components, 1 2( , .......... )i i i iNλ λ λ λ=  
representing continuous thresholds and 

1 2( , .......... )i i i ild d d d=  representing the fusion rule, where 

the subscript i represents the particle number. Each 
dimension ‘diq’ in the binary component represents a 
binary bit corresponding to the fusion rule. An example of 
the fusion rule is given in Table 1. The particle for the 
binary component is l bits long.  

The algorithm maintains in memory the state of the 
previous best position (as assessed using the cost function) 
found in the search space, called ‘pbest’ represented as 

1 2( , .......... )p p p p
i i i iNλ λ λ λ= . A velocity term along each 

dimension is defined as 1 2( , ,...., )i i i iNV V V V= .  The 
algorithm is given below.  

1. The particles are initialized randomly. The “pbest” 
solutions are initially assigned the same values as the 
initial positions of the particles.  The best position among 
all the particles, called “gbest”, is determined based on 
their fitness function (6).  

2. In each iteration, the velocity term, for both binary 
and continuous component, is updated. The continuous 
component of the particle is pulled in the direction of its 
own previous best position, p

iλ , and the global best 

position, p
gλ , found so far. This is apparent in the velocity 

update equation,  

     ( 1)  t
iqV + =

( ) ( ) ( )
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( ) ( )
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[0,1] ( )                 

t p t t
iq iq iq

p t t
gq iq

V U

U q
ω ψ λ λ

ψ λ λ

× + × × − +

× × − ∀
   (20) 

where U [0,1] is a sample from a uniform distribution, t 
represents a relative time index, 1ψ and 2ψ , respectively, 

determine the impact of the previous best solution and 
global best solution on the particle’s velocity. 1,ψ 2 ,ψ ω  

are set to 1, 1, and 0.8, respectively, in our simulation. For 
the binary PSO, the values of ‘d’ are binary. A similar 
design and update strategy is used for the velocity vector.  
The position of the particle in the continuous space is 
updated using  

      ( 1) ( ) ( 1)t t t
iq iq iqX X V+ += +  .                      (21) 

For updating the position in binary space, the velocity is 
first transformed into a [0, 1] interval using the sigmoid 
function given by  

                           
1

( )
1 iqiq iq VS sig V

e−= =
+

                      (22) 

where iqV  is the velocity of the ith particle’s qth dimension. 

A random number is generated using a uniform 
distribution which is compared to the value generated from 
the sigmoid function and iqd is estimated in the following 

manner.  
                            ( [0,1])iq iqd u S U= − ,                         (23) 

where u is a unit step function. The decision regarding 

iqd is now probabilistic: that higher the value of iqV  the 

higher the value of Sid, thereby increasing the probability 
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of deciding ‘1’ for iqd . As iqV → ∞ , then 1iqS →  making 

it unlikely that iqd  will become zero again.  

3. Once the particle is moved to the new location as 
determined by (20), (21), and (23), the particles 
representing the solution for the problem are evaluated 
using  (8), (9) and (6). (8) and (9) are evaluated using the 
formulation in (13).  

4. The “pbest” solution vector is updated if a better 
position, as assessed by the fitness function, is found.  

Steps 1-4 are repeated until either convergence occurs 
or a preset performance is achieved. The algorithm can 
also be run for a fixed number of iterations. In our 
experiments, we used 10 particles and 1000 iterations to 
deduce the optimal fusion strategy.  The final solution 
achieved by the PSO algorithm is p

gλ (the thresholds for 

the classifiers) and the p
gd (optimal fusion rule), where ‘g’ 

is the index of the gbest particle. Once the thresholds and 
fusion rule are obtained using the training data, they are 
applied on the test data.  

The technique described above is referred to as the PSO 
technique in the subsequent sections.  

2.3. Score level fusion using Z-norm 
We compare the decision level fusion strategies 

described above to the score level fusion technique 
employing z-normalization [5]. Score level fusion typically 
employs a static threshold after combining the match 
scores originating from multiple classifiers. 

3. Experimental Results   
In this section, we present the results of the 

aforementioned schemes on two data sets. The first dataset 
is a synthetic bi-variate normal (2 classifiers) data set. 
Table 2 shows the values of the parameters for the 
marginal normal density functions under both the 
hypotheses (H0 and H1) for two classifiers (N=2). The 
covariance between the two classifiers is simulated by 
varying the Pearson correlation coefficients between –0.9 
and 0.9 in steps of 0.2. It is assumed that both the genuine 
and impostor distributions have the same correlation 
coefficients. We call this symmetric correlation. In our 
experiments, 100,000 samples are generated using these 
distributions for training and an equal number is used for 
testing.  The second data set is derived from the publicly 
available NIST BSSR database. We use the face classifier 
portion of this dataset that has match scores of 3000 
subjects corresponding to two different face matchers. 
There are 6,000 genuine scores and ~18 million 
(6,000x2,999) impostor scores for each matcher. We use 
50% of the genuine scores (3000) and 0.53% of the 
imposter scores (96,000), from each matcher, to compose 

the training set. The same number of scores is used in the 
test set. The Pearson’s correlation under H0 and H1 for 
both training and testing data is approximately 0.18 and 
0.476, respectively. The PSO technique is then used to 
generate the decision level fusion configuration for 
multiple CFA values ranging from 0.1 –1.9. Subsequently, 
these configurations are applied to the test data set and the 
receiver-operating characteristic (ROC) computed. 

 
TABLE 2.  ARTIFICIAL PARAMETERS OF THE MARGINAL NORMAL 

DISTRIBUTION OF TWO CLASSIFIERS.   
 

Parameter Classifier 1 Classifier 2 

0Hµ  47.3 67.7 

1Hµ  144.5 251.2 

0Hσ  43.8 52.6 

1Hσ  12.8 23 

3.1. Fusion Using the LRT Technique   
The synthetic training data set is used to identify the 
optimal fusion rule using the formulation presented in 
Section 2.3. A search for the threshold for each classifier is 
first performed to minimize (6). The precision of the 
threshold search is varied with different step sizes. Four 
different step sizes, i.e., [0.01, 0.1, 1, 2], were used on the 
training data. We observed that a higher precision in step 
size did not necessarily lead to a better performance. The 
best performance was achieved with a precision of step 
size 1.  Once the thresholds for individual classifiers were 
computed, their values were fixed and the optimal fusion 
rule estimated using (19). The resultant fusion 
configurations were then applied to the test data. 
A similar procedure was used to identify the thresholds 
and optimal fusion rule for the NIST training data set as 
well.  

3.2. Fusion Using the PSO Technique 
The PSO algorithm generates the optimal thresholds and 
the optimal fusion rule using the training dataset. The 
threshold for classifier 1 for the synthetic dataset varied 
from 82, for a correlation of -0.9, to 101, for a correlation 
of +0.9.  The threshold for classifier 2 varied from 110, for 
a correlation of -0.9, to 190 for a correlation of +0.9. The 
PSO scheme converged to the ‘AND’ rule as the optimal 
fusion rule across all the correlation factors. Multiple runs 
of PSO on the same training data set resulted in the same 
configuration.  
The PSO technique was then run on the NIST BSSR 
training data set.   
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3.3. Results on test data 
The fusion configurations deduced using the training data 
are then applied on the test data. Results in this section are 
reported on both datasets. 
Synthetic dataset: Figure 1 compares the Bayesian error 
of the PSO and the LRT techniques. For low (both 
negative and positive) correlation values, the PSO 
technique outperforms the LRT technique. However, at 
high correlation values, the performance of the PSO 
deteriorates and approaches that of the LRT. The main 
reason for poor performance of LRT is the two-step 
optimization procedure adopted. First, the thresholds are 
deduced and then the optimal fusion rule is derived using 
the LRT. The PSO, however, jointly optimizes the 
thresholds for the classifiers and the fusion rule.  

 
 
Figure 1: Bayesian error plot comparing the PSO technique and 

the LRT technique on the synthetic dataset 
  
NIST-BSSR dataset: Table 3 presents the results observed 
on the NIST test set. Once again, the thresholds and the 
fusion rule derived from the training set were used. In this 
case also, the PSO technique outperforms the LRT 
technique for higher costs of false acceptance. The 
performance advantages of PSO over LRT are a function 
of the underlying correlation and the performance of 
constituent classifiers.  In our experiments, the classifier, 
denoted as Face-2 dominates the classifier denoted as 
Face-1.   
 

TABLE 3 COMPARING THE BAYESIAN ERROR FOR DIFFERENT DECISION 
LEVEL FUSION STRATEGIES ON THE NIST DATASET AFTER VARYING THE 

COST FUNCTION  
 

CFA  LRT PSO 

0.4 0.0847 0.08931

0.8 0.113200 0.10408

1 0.109541 0.09922

1.5 0.076512 0.07027

3.4. Comparison with Score Level Fusion 
Techniques  

Figure 2 compares the PSO-technique with a simple score 
level fusion technique (sum-rule using z-normalization) on 
the synthetic dataset. We make the following observations: 
(a) the PSO technique outperforms the score-level fusion 
scheme when the classifiers are positively correlated, (b) 
the performance of the latter further deteriorates as the 
positive correlation value increases, and (c) the PSO 
technique and the sum rule fusion perform identically well 
for negatively correlated values. The PSO technique 
achieves an average of ~45% performance improvement 
over the score-level fusion technique across different 
positive correlation values. 

 
Figure 2: Bayesian error plot comparing the PSO technique with 

the Sum rule on the synthetic dataset 
 

TABLE 4 COMPARING THE BAYESIAN ERROR OF PSO-BASED AND SUM 
RULE FUSION TECHNIQUES ON THE SYNTHETIC TEST DATASET FOR 

POSITIVE CORRELATION VALUES 
 

Correlation  Sum Rule  PSO %   Improvement  
0.1 0.0056 0.004 28.57 
0.3 0.0103 0.0062 39.80 

0.5 0.0176 0.0089 49.43 
0.7 0.0248 0.0123 50.40 
0.9 0.0324 0.0135 58.33 

 
 

TABLE 5 COMPARING BAYESIAN ERRORS OF PSO-BASED AND.SUM RULE 
FUSION TECHNIQUES ON THE NIST BSSR DATASET 

 
CFA Sum Rule   PSO % Improvement  

0.5 0.11281 0.09791 13.2% 

1 0.11409 0.09922 13.03% 

1.4 0.09214 0.08087 12.22% 

 
The receiver operating characteristic curves for the two 
classifiers, the PSO technique and the LRT technique are 
shown in Figure 3 for the NIST dataset. The PSO-
technique outperforms the sum rule using z-normalization.  
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At lower false acceptance probabilities (higher CFA) the 
PSO technique, LRT technique converge to the Face-2 
classifier’s performance. The Face-2 classifier is a better 
performing classifier between the two classifiers. 
Inspection of the fusion rule shows that both techniques 
employed ‘Second classifier’ only rule as the optimal 
fusion rule. This fusion rule ignores the decision from the 
classifier Face-1. Hence only Face-2 classifier is used. The 
sum rule utilizes information (scores) from both the 
classifiers and performs poorly.  The LRT and PSO based 
techniques have capability to switch between fusion 
functions to achieve higher performance benefits. Table 5 
presents the results in terms of the Bayesian error. It is 
observed that the PSO technique achieves a ~13% 
performance improvement across different CFAs. 

 
Figure 3: Receiver Operating Characteristic Curves obtained on 

the NIST BSSR dataset 

4. Conclusions  
In this paper we discussed two multi-classifier decision 

fusion methods for dealing with correlation in biometric 
verification. We presented the optimal fusion rule based on 
the Likelihood Ratio Test (LRT) where the classifier 
thresholds are first independently deduced. The fusion rule 
is based on estimating probability densities of the decision 
vector and applying the LRT after incorporating the 
correlation structure between classifiers. The performance 
of this optimal fusion rule was observed to be sensitive to 
the underlying thresholds of each classifier. To improve 
the performance we presented a PSO-based decision 
fusion strategy. PSO searches simultaneously for the 
optimal thresholds and the fusion rule based on the 
training data.  

We also compared the PSO strategy with score level 
fusion. The PSO strategy performs better than the sum rule 
using z-norm. We achieve significant gains of ~45% on an 
average using the PSO on the synthetic test data for 
positively correlated classifiers, and a gain of ~13% on an 

average on the NIST-BSSR dataset. 
Finally, Figure 4 summarizes our comparisons between 

score level fusion and decision level fusion using the 
symmetrically correlated synthetic data set. The PSO 
technique and the z-norm strategy perform identically well 
for the negative correlation factors. As correlation 
increases the performance of the score level strategy 
deteriorates. However, the score level strategy at lower 
correlation is better than the LRT technique.  

In the future, we will employ the PSO and LRT based 
strategy to achieve optimal configurations under the 
Neyman Pearson criterion. The Neyman Pearson criterion 
will allow the designer to specify a particular false 
acceptance rate whilst designing the fusion module, 
thereby permitting flexibility. 
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Figure 4: Bayesian error plot as a function of correlation on the 
synthetic dataset for the three different strategies discussed in 

this paper 


