A Methodology for Deriving VoIP Equipment Impairment Factors for a mixed NB/WB Context

Adil Raja¹ R. Muhammad Atif Azad² Colin Flanagan¹ Conor Ryan²

¹Wireless Access Research Centre Department of Electronic and Computer Engineering

²Bio-Computing and Developmental Systems Department of Computer Science and Information Sysmetrms

University of Limerick, Ireland

5th Annual "Humies" Awards for Human-Competitive Results Monday, 14th July, 2008

Outline

1 Background and Motivation

2 Our Goal

3 Our Approach

4 Our Results

5 Our Achievements

▲□▶▲□▶▲□▶▲□▶ □ つへで

Background

■ VoIP enables packet-based telecommunication.

- It is cheap and cost effective.
- Supports WB telephony conveniently.
- QoS provisioning remains a problem.
- Speech quality estimation is important.

Background

■ VoIP enables packet-based telecommunication.

- It is cheap and cost effective.
- Supports WB telephony conveniently.
- QoS provisioning remains a problem.
- Speech quality estimation is important.

Figure: Various categories of speech quality assessment methods.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure: Various categories of speech quality assessment methods.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Figure: Various categories of speech quality assessment methods.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

International Telecommunications Union – ITU-T – deals with the standards.

- Intrusive: ITU-T P.862.* NB-PESQ and WB-PESQ.
- Nonintrusive:
 - **1** Parametric: ITU-T G.107 The E-Model.
 - 2 Signal-based: ITU-T P.563.

To derive equipment impairment factors for WB VoIP as described by the E-Model:

$$SpeechQuality = f(Impairments)$$
(1)

$$I_{e,WB,eff} = f(codec, loss, ...)$$
(2)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

To evolve $I_{e,WB,eff}$ using GP.

Table: Input domain parameters used in evolutionary modeling

No.	Input Parameter	Description
1	$I_{e,WB}$	Impairments due to codecs
2	mlr	mean loss rate
3	PI	packetization interval (ms)
4	mbl	mean burst length
5	grad	Coarse estimate of codec specific loss
		robustness factor

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Figure: Simulation system for derivation of $I_{e,WB,eff}$

Figure: Simulation system for derivation of $I_{e,WB,eff}$

Figure: Simulation system for derivation of $I_{e,WB,eff}$

Figure: Simulation system for derivation of $I_{e,WB,eff}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Our Results The Derived Models

$$I_{e,WB,eff} = {11 - mbl + ln(grad) + grad \times mlr + I_{e,WB} -2.log_2(PI) } \times 0.8619 + 9$$

(3)

$$I_{e,WB,eff} = (4)$$

$$\left\{ ln \left(\frac{9 \times (I_{e,WB} + mlr \times grad^2)}{mbl^5 - mlr} \right) + mlr + I_{e,WB} + grad \times mlr \right\} \times 0.8303 + 8.9977$$

$$I_{e,WB,eff} = (5)$$

$$(log_{10}(log_{2}(I_{e,WB} - 2 \times mbl) + mlr)))$$

$$\times 321.7017 + 95.3708$$

Table: Prediction gain over E-Model in various network operating conditions

Loss Type	Train	Test
General (Bursty)	14.54	16.36
Specific (Random)	36.72	35.89

Network conditions:

- Fulfilled by ITU-T G.1050.
- 11,280 input/output patterns.
- training data 70%.
- test data 30%.

Table: Prediction gain over E-Model in various network operating conditions

Loss Type	Train	Test
General (Bursty)	14.54	16.36
Specific (Random)	36.72	35.89

Network conditions:

- Fulfilled by ITU-T G.1050.
- 11,280 input/output patterns.
- training data 70%.
- test data 30%.

Table: Prediction gain over E-Model in various network operating conditions

Loss Type	Train	Test
General (Bursty)	14.54	16.36
Specific (Random)	36.72	35.89

Network conditions:

- Fulfilled by ITU-T G.1050.
- 11,280 input/output patterns.
- training data 70%.
- test data 30%.

Table: The following codecs were employed

Codec	Туре	Modes
ITU-T G.722.1	WB	2
ITU-T G.722.2	WB	9
ITU-T G.729	NB	1
ITU-T G.723.1	NB	1
AMR-NB	NB	2
Total	_	15

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Our model outperforms ITU-T recommendation G.107 i.e. The E-Model – Criterion B.
- Demonstrates superior performance for a wide range of ITU-T recommended NB/WB codecs.
- The E-Model is downloadable from www.itu.int. Criterion C.

The results have been accepted for publication in domain specific IEEE Transactions on Multimedia. Criterion D.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Successful and parsimonious use of a richer feature space.
- Suitable for real-time evaluation.

Past approaches:

- Logarithmic codec specific.
- Quadratic codec specific.
- The E-Model unified, superior.

Our model:

- Unified.
- Superior to all the past models.

Criterion E.

Figure: $I_{e,WB,eff}$ as a function of *mlr* for various NB/WB codecs. Past research proposed codec specific proposals.

Past approaches:

- Logarithmic codec specific.
- Quadratic codec specific.
- The E-Model unified, superior.

Our model:

- Unified.
- Superior to all the past models.

Criterion E.

Figure: $I_{e,WB,eff}$ as a function of *mlr* for various NB/WB codecs. Past research proposed codec specific proposals.

■ GP evolved model is better than a series of enhancements of the E-Model (G.107). Criterion F.

- E-Model: used in transmission planning and live network monitoring.
- Clients: ISPs, network operators, telcos.

■ GP evolved model is better than a series of enhancements of the E-Model (G.107). Criterion F.

- E-Model: used in transmission planning and live network monitoring.
- Clients: ISPs, network operators, telcos.

Thank You