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ABSTRACT 
 
Model-based programming was developed to elevate programming to the specification of 
intended states. The specifics of achieving an intended state are delegated to a model-
based executive, such as Titan and Kirk executives. To enable model-based 
programming, a model-based executive needs to be able to translate the intended state 
evolutions to an action plan. This function is provided by PGen and is the central 
contribution of this thesis. 

PGen is a generative activity planner that is able to translate intended state 
evolution to an action plan. PGen supports generative planning with complex processes 
via three main features. First, PGen’s goal plans and activity models are encoded using 
Reactive Model-based Programming Language (RMPL). Second, PGen represents goal 
plans, plan operators and plan candidates with a uniform representation called Temporal 
Plan Networks (TPN). Finally, PGen uses Genetic Algorithms as a novel approach for 
TPN-based planning. PGen has been successfully implemented and tested, results are 
promising. 
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1 Chapter One:  
 

Introduction & Problem Definition 
 

1.1. Introduction 
Autonomous vehicles are turning out to be a progressively important tool for space 
investigation, army, and civilian applications. For instance, NASA needs autonomous 
vehicles as it cannot send human explorers to far-off spots in the solar system. This may 
be very dangerous to their lives, and also for financial reasons. Furthermore, it would be 
helpful to the armed forces to be able to use expendable vehicles to help fight wars rather 
than irreplaceable human beings. In either case, successfully applying vehicles to achieve 
mission goals requires a flexible, yet robust control system. A key requirement for 
controlling mobile autonomous robots is the ability to express vehicle activity models as 
complex processes.  

Model-based programming was developed to elevate programming to the 
specification of intended states. The specifics of achieving an intended state are delegated 
to what is called a model-based executive, such as Titan [4], Moriarty [7] and Kirk [8]. 
The contributions of this thesis are part of Kirk.  

Kirk model-based executive is designed to control mobile autonomous robots in 
rich environments, such as rovers exploring the surface of Mars or unmanned aerial 
vehicles (UAV) flying for search and rescue missions. To enable model-based 
programming, Kirk needs to be able to translate the intended state evolutions specified in 
the control program to an action plan that achieves those state evolutions. This function is 
provided by our planner PGen and is the central contribution of this thesis.  

PGen supports generative planning with complex processes as follows. First, 
PGen’s goal plans and activity models are encoded using the Reactive Model-based 
Programming Language (RMPL) [21]. RMPL is an innovative way for mission 
programmers to easily specify control programs and activity operators. This is because it 
supports a rich set of intuitive process primitives within an object-oriented framework.  

Second, to enable fast planning, RMPL programs are converted into equivalent 
graph structures called Temporal Plan Networks (TPN). TPNs are collections of events 
and episodes between those events, representing processes that may have their own sub-
goals in the form of open conditions represented by ASK constraints. Once a program has 
been converted to a TPN, it can be processed using efficient network algorithms to 
perform search, scheduling, etc... TPNs are useful in that they compactly encode the 
space of possible state evolutions expressed by an RMPL program, thus they improve 
mission robustness [23]. 
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Finally, PGen uses Genetic Algorithms as a novel approach for TPN-based 
planning. Genetic Algorithms are adaptive heuristic search algorithms premised on the 
evolutionary ideas of natural selection and survival of the fittest. Genetic Algorithms 
were invented to simulate processes in natural system necessary for evolution, 
specifically those that follow the principles first laid down by Charles Darwin of survival 
of the fittest. As such, they represent an intelligent (parallel) exploitation of a random 
search within a defined search space to solve a problem. Chapter 5 presents some 
experimental results done to prove PGen's applicability to real life problems. As we will 
see in Chapter 5, Genetic Algorithms showed successful performance when used to 
generate action plans represented as TPNs. 

The remainder of this chapter will provide clear statement for the problem, gives 
an overview of PGen generative planner, and discusses the advantages of using Genetic 
Algorithms and when they should be used, and finally, presents thesis organization. 
 

1.2. Problem Definition 
Achieving robust autonomous control is a challenging problem, as autonomous robots 
typically have hundreds or thousands of interacting components that must be controlled 
and monitored. To encode the relationships between system components, languages such 
as RAPS [38], ESL [33], and TDL [22] allow mission designers to program autonomous 
robots with redundant methods and goal monitoring while simultaneously expressing any 
necessary constraints between system components. 

While these robotic execution languages work well under ideal or anticipated 
circumstances, a problem arises when unforeseen contingencies occur. Robotic execution 
languages require mission designers to hierarchically specify all operator sequences and 
contingencies. If a mission contingency cannot be handled via some expansion of the 
hierarchy, the system will fail. 

Model-based programming was developed to remove dependence on pre-
specified monitoring, diagnosis, and operator sequences, and to elevate programming to 
the specification of state evolutions. In the model-based programming paradigm, a 
mission programmer commands an autonomous robot in terms of intended state. The 
specifics of achieving an intended state are delegated to a model-based executive, such as 
Titan [4], Moriarty [7] and Kirk [8]. This separates a programmer’s goals from the 
implementation, removing unnecessary commitments from the planning process and thus 
improving the flexibility and robustness with which an autonomous robot may perform 
its mission [23]. 

As stated in the previous section, the contributions of this thesis are part of Kirk. 
Kirk is a mission-level model-based executive designed to control mobile autonomous 
robots in rich environments, such as rovers exploring the surface of Mars or unmanned 
aerial vehicles flying for search and rescue missions (see Figure 1.1).  
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Figure  1.1: PGen within Kirk 

 
Kirk takes as an input a high-level goal specification program written in RMPL, 

converts this program to a TPN, generates an actionable plan and finally executes it on 
low-level hardware.  

Mission designers program autonomous missions in Kirk at the level of intended 
states, rather than at the activity level. Given a goal specification and a set of activities 
that can be done, Kirk will find and execute a safe plan, achieving the goal of robust 
execution for mobile autonomous robot missions. To enable model-based programming, 
Kirk needs to be able to translate the intended state evolutions specified in the control 
program to an action plan that achieves those state evolutions. This function is provided 
by PGen generative temporal planner and is the central contribution of this thesis. 

 
 

1.3. PGen Overview 
As stated in the previous section, Kirk needs some inside component that is capable of 
translating the intended state evolutions specified in the input control program to an 
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action plan that achieves those state evolutions. In this thesis, we propose PGen 
generative planner that plays this role. 

PGen's main role inside Kirk is to translate the intended state evolutions specified 
in the mission control program to an action plan that attains those state evolutions. The 
inputs to PGen are the mission control program along with the Activity Library (see 
Figure 1.2).  
 
 

PGen

Activity Library

Solution Plan

Mission
Designer

Control Program

Available Activities

 
Figure  1.2: PGen overview 

 
The Activity Library is a library that contains all possible activities that the 

vehicle can perform. PGen uses the Activity Library to assemble a solution plan. The 
solution plan output by PGen is a consistent and complete plan that achieves the behavior 
specified in the control program. This is done by piecing together activities from the 
Activity Library, while maintaining consistency. 

The input control program is written in RMPL. RMPL allows a programmer to 
specify complex processes in terms of an easy representation that defines the evolution of 
state variables. To enable fast planning, RMPL programs are converted into equivalent 
graph structures called Temporal Plan Networks. TPNs are collections of events and 
episodes between those events, representing processes that may have their own sub-goals 
in the form of open conditions represented by ASK constraints. Once a program has been 
converted to a TPN, it can be processed using efficient network algorithms to perform 
search, scheduling, etc… TPNs are useful in that they compactly encode the space of 
possible state evolutions expressed by an RMPL program [23]. Chapter 3 will present an 
overview of RMPL and its syntax. Besides, it provides an overview of TPNs; provides 
necessary illustrative examples that describe the mapping from RMPL primitives to TPN 
constructs. 

Finally, PGen generates a complete plan by applying Genetic Algorithms search 
techniques (GAs). In the current case, the search space consists of all possible plan 
candidates that could be generated from the Activity Library. 
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1.4. Planning Techniques 
PGen is a generative TPN planner that uses Genetic Algorithms to dynamically search a 
large space of plan candidates for a complete and consistent plan. Furthermore, PGen 
builds upon the field of constraint-based interval planning. This section describes the 
constraints-based interval planning along with other various planning techniques. 
 

1.4.1. Constraint-based Interval Planning 
PGen’s internal plan representation, the Temporal Plan Network (TPN), inherits from 
constraint-based interval plan representations [14]. Similar to constraint-based interval 
plans, a TPN contains episodes of state assignments that have interval durations with 
flexible time-bounds. However, TPNs differ with regard to how these episodes are 
combined to describe complex processes.  

Planning for real-world systems requires using a realistic representation of time. 
Constraint-based interval planners address this need by using plan actions with interval 
durations. To this rich notion of time, constraint-based interval planners add constraints 
between action intervals that allow the expression of mutual exclusion relationships as 
well as preconditions that must hold before, during, or after a particular action interval 
[14]. 

Intervals within a constraint-based interval planner are often ordered using 
Allen’s basic interval relationships: before, meets, overlaps, starts, contains, equals, and 
ends [27] (see Figure 1.3). These relationships are used by a planner to constrain the 
execution of two related actions to ensure that open conditions are satisfied, or that 
conflicting intervals do not co-occur. Furthermore, Allen’s relationships are used when a 
programmer writes an activity model to describe complex interactions within system 
processes. 
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Figure  1.3:  Allen's Interval Relationships [14] [27] 

 
Constraint-based interval planners, such as HSTS [15], usually plan using a goal-

directed search. Planning begins with an initial plan that contains open conditions. The 
planner closes those open conditions by adding actions from its action library. As each 
action is added to the plan, threat resolution ensures that any conflicting state assignments 
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do not co-occur. When all of the open conditions in a plan have been closed, the planner 
returns the plan as a solution. 

In a constraint-based interval plan, the duration of an action is specified with 
temporal flexibility through an upper and lower time-bound. To check for conflicts 
among an interval plan’s temporal constraints, the start and end-points for each interval in 
the plan are represented with variables that can be constrained using the interval 
durations embedded in the plan [14]. These constraints are represented using a constraint 
network, such as a Simple Temporal Network [35] or distance graph [30], which allows 
consistency to be checked using efficient graph-based algorithms [35]. PGen uses a 
similar temporal representation in terms of Simple Temporal Networks [35]. 

Constraint-based interval planners usually describe concurrent processes through 
a fixed set of timelines. We instead build these processes through a process algebra, 
which allows processes to naturally fork and recombine. Constraint-based interval 
planners also include a representation for describing continuous resource utilization. 
However, this falls outside the scope of PGen. 
 

1.4.2. Hierarchical Task Network Planning 
All planners attempt to achieve fast planning, do this by reducing the amount of search 
space that is explored. Hierarchical task network (HTN) planners increase speed by 
searching a plan-space that is restricted to plan candidates which are guaranteed to be 
complete. 

While this limits their flexibility, it also makes them fast by eliminating a large 
portion of the search space. Examples of HTN planners include SHOP2 [11], Aspen [28], 
and the planner that will be introduced in Chapter 3 section 2.3, presented in [31] . 

When using an HTN planner, a programmer uses a library of macro operators, 
which can be decomposed into other macros, primitive operators, or some combination of 
the two. Additionally, there may be a choice between several alternative decompositions 
of a single macro operator, which introduces a non-deterministic branch and a need for a 
search component. 

In HTN planning, mission programmers initiate the planning process after 
specifying an initial plan. The initial plan contains macros that need to be decomposed by 
the HTN planner using the macro library. When an HTN planner has decomposed all the 
macros from the control program into consistent primitive operators, planning is 
complete. 

While HTN planners can be very efficient, their reliance on pre-specified macro 
decompositions limits their flexibility and puts additional programming demands on the 
mission designer. In the spirit of model-based programming, PGen should be able deduce 
solution plans without pre-specified rules.  
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1.4.3. Graph-based Planning 
As opposed to HTN planning, generative planning solves a planning problem by 
combining a set of plan actions to achieve the planning goals. This section will discuss 
graph-based planning, which is one of today’s leading architectures for solving 
generative planning problems. 

Graph-based planners, such as Graphplan [29], Blackbox [16], and LPGP [5], all 
utilize a structure called a plan-graph. Plan-graphs compactly represent the plan-space for 
a given planning problem, allowing graph-based planners to solve planning problems 
without exploring the entire space of plan candidates (see Figure 1.4). 

 

 
Figure  1.4: A Plan Graph 

 
A plan-graph contains alternating fact and action layers, increasing with time. The 

facts in a given fact layer represent an upper bound on the set of all facts that could, in 
theory, be achieved at the time of that fact layer. That is, if a fact is not included in a 
particular fact layer, it is not attainable by the corresponding point in time. 

Plan-graphs also track mutual exclusion relationships (or conflicts) among the 
facts in each fact layer. While each fact in a given fact layer can be achieved via some 
path in the plan-graph, each mutual exclusion relationship indicates that two facts cannot 
be achieved simultaneously without violating plan consistency and completeness. A 
graph-based planner therefore knows that it should only search its plan-graph to find a 
solution when all of the goals in the plan-graph become pair-wise consistent. This is how 
graph-based planners achieve their speed: they avoid searching the subset of the plan-
graph where the goals cannot be simultaneously achieved. 

Graph-based planners perform very well when the facts in a planning problem are 
mutually exclusive on a pair-wise basis. This is because plan-graphs only keep track of 
mutual exclusion relationships between pairs of facts. However, sometimes facts are 
consistent on a pair-wise basis, but mutually exclusive in larger groupings. For example, 
a robot with two arms may be able to move any two objects in one time-step, but cannot 
move a group of three or more objects in a single time-step. In this case, the planner 
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begins searching the plan-graph before a solution exists. When it discovers that no 
solution exists in the plan-graph, the planner adds additional fact and action layers to the 
plan-graph, and continues its search. 

When facts in a planning problem are mutually exclusive in triples or larger 
groupings, a plan-graph has no ability to predict the existence of a complete solution 
plan. Thus, the planner becomes less efficient, as it searches regions of the plan-space 
that do not contain a solution. 

 

1.4.4. Forward Progression Planning 
Forward progression planners and backward propagation planners both perform a search 
over the entire plan-space. Forward progression planners begin at some initial state and 
search towards the goal state, while backward propagation planners begin at the goal and 
search towards the initial state. These approaches allow for expressive plan actions and 
have the ability to plan optimally for arbitrary cost metrics; however, they are also 
inherently slower than HTN or graph-based planners. 

One way of optimizing forward chaining planners is to use expansion rules, as 
demonstrated by TLPlan [32]. Expansion rules inform the planner such that it avoids 
searching redundant or wasteful candidate solutions, thus reducing the search branching 
factor and increasing planning speed.  

Recently, some forward progression planners, such as FF [12] and HSP [13], have 
shown dramatic performance improvements by using relaxed plan-graphs to calculate 
admissible heuristic cost estimates. A relaxed plan-graph is constructed in a manner 
similar to a plan-graph, except that mutual exclusions are ignored. This property allows 
the relaxed plan-graph to act as an admissible heuristic estimate when trying to determine 
the cost to the goal for a particular planning state. 

With the relaxed plan-graph heuristic cost estimate, a forward progression planner 
uses an informed search process, as opposed to a uniform cost search process. This 
improves planner efficiency by focusing the search toward solution states, thus reducing 
the number of states that must be explored in a given planning problem.  
Finally, another method of achieving fast planning when using a forward progression 
plan representation is through local search. While local-search or repair-based planners 
do not use a forward progression planning algorithm, they generally operate on plan 
representations similar to those used in forward progression planning. An example of a 
local-search planner is LPG [10]. LPG plans by using a randomized local search 
algorithm similar to WalkSAT [34], called WalkPlan.  
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1.5. Why Genetic Algorithms? 
A genetic algorithm (GA) is a heuristic global search technique used in computing to find 
exact or approximate solutions to optimization and search problems. Genetic algorithms 
use techniques inspired by evolutionary biology such as inheritance, mutation, selection, 
and crossover (also called recombination) [26]. 

GAs are well-known to be robust and scale relatively well, so they can be useful 
in our case. Moreover, GAs have implicit parallelism; each evaluation provides 
information on many possible candidate solutions [1]. The following points are known to 
be the advantages of using GAs: 

 
1. GAs can work well when there is a large search space. 

 
2. Bad proposals do not affect the end solution negatively as they are simply 

discarded. 
 

3. GAs are very useful for complex or loosely defined problems. 
 

So, based on these known advantages, Genetic Algorithms can be used in the following 
situations [1]: 
 

1. If the space to be searched is large.  
 
2. If the space is known not to be perfectly smooth and unimodal (i.e. unimodal 

space means that it consists of a single smooth “hill”).  
 

3. If the fitness function is noisy (e.g. if it involves taking error-prone measurements 
from a real world process such as the vision system of a robot), a one-candidate-
solution-at-a time search method such as simple hill climbing might be 
irrecoverable led astray by the noise but GAs are thought to perform robustly in 
the presence of small amounts of noise 

 
4. GAs are Excellent for all tasks requiring optimization and are highly effective in 

any situation where many inputs (variables) interact to produce a large number of 
possible outputs (solutions) 

 
We claim that these situations apply to PGen to a great extent. For instance, as we 
will see in Chapter 4, PGen should search the Activity Library for suitable activities 
that satisfies the mission goal. It is expected that in real life situations, this activity 
library will contain thousands of activities that the vehicle can perform. So, the space 
to be searched by PGen is expected to be large. Moreover, for situations where it's 
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required to control mobile autonomous robots, it's expected that the search space will 
not perfectly smooth and unimodal. 
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1.6. Thesis Layout 
This thesis is organized as follows: 
 
• Chapter 2 presents an overview of other temporal planners that preceded PGen.  
• Chapter 3 is divided into three parts; first it provides a brief overview of Kirk model-

based executive, of which PGen is one of its components. Then it presents an 
overview of RMPL and its syntax. Finally it provides an overview of Temporal Plan 
Networks, and describes the mapping from RMPL primitives to TPN constructs. 

• Chapter 4 explains PGen generative planner in full details, including several 
illustrative examples. 

• Chapter 5 discusses PGen’s current implementation, performance and the 
experimental results out of some test problems. 

• Chapter 6 summarizes the conclusions obtained from this research and provides 
suggestions for future work. 

 

1.7. Summary 
Autonomous vehicles are currently turning out to be a progressively important tool for 
many applications. A key requirement for controlling mobile autonomous robots is the 
ability to express vehicle activity models as complex processes. Model-based 
programming was developed to elevate programming to the specification of intended 
states. The specifics of achieving an intended state are delegated to a model-based 
executive, such as Titan, Moriarty and Kirk. PGen generative planner is part of Kirk. Its 
main role inside Kirk is to translate the intended state evolutions specified in the mission 
control program to an action plan that achieves those state evolutions. The inputs to PGen 
are the goal plans and the activity models; they are encoded using the Reactive Model-
based Programming Language (RMPL). Goal plans, plan operators, and plan candidates 
are translated into a uniform representation called a Temporal Plan Networks (TPN). 
Internally, PGen uses Genetic Algorithms for searching for an applicable mission plan.  
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2 Chapter Two: 
 

Related Work 
 
PGen is a generative temporal planner that makes use of Genetic Algorithms. This 
chapter presents an overview of other temporal planners that preceded PGen. Temporal 
planning has some feature over classical planning. The most suitable description for 
temporal planning is that it is planning in situations where actions have nonzero duration 
and may overlap in time, so it needs an explicit representation of time.  
 

2.1 Sapa: A Multi-objective Metric Temporal Planner 
Sapa [25] is a domain-independent heuristic forward chaining planner that can handle 
durative actions, metric resource constraints, and deadline goals.  

2.1.1 Sapa Architecture: 
Figure 2.1 shows the high-level architecture of Sapa. Sapa uses a forward chaining A* 
search to navigate in the space of time-stamped states. Its evaluation function is multi-
objective and is sensitive to both makespan (temporal quality) and action cost. When a 
state is picked from the search queue and expanded, Sapa computes heuristic estimates of 
each of the resulting children states. 
The heuristic estimation of a state S is based on: 
 

1. Computing a relaxed temporal planning graph (RTPG) from S. 
2. Propagating cost of achievement of literals in the RTPG with the help of time-

sensitive cost functions. 
3. Extracting a relaxed plan Pr for supporting the goals of the problem. 

 
The search ends when a state S selected for expansion satisfies the goals. 
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Figure  2.1: Architecture of Sapa 
 

2.1.2 How planning problems are represented in Sapa? 
Sapa uses Planning Domain Definition Language (PDDL) 2.1 for representing actions. 
Let us take an example to have a better understanding of how Sapa represents actions. 
Assume that there is group of students in Tucson needs to go to Los Angeles (LA). There 
are two car rental options. If the students rent a faster but more expensive car (Car1), they 
can only go to Phoenix (PHX) or Las Vegas (LV). However, if they decide to rent a 
slower but cheaper car (Car2), then they can use it to drive to Phoenix or directly to LA. 
Moreover, to reach LA, the students can also take a train from LV or a flight from PHX. 
So, in total, there are 6 movement actions in the domain: 
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1. drive-car1-tucson-phoenix (Dc1t→p, Dur = 1.0, Cost = 2.0),  
2. drive-car1-tucson-lv (Dc1t→lv, Dur = 3.5, Cost = 3.0),  
3. drive-car2-tucson-phoenix (Dc2t→p, Dur = 1.5, Cost = 1.5),  
4. drive-car2-tucson-la (Dc2t→la,Dur = 7.0, Cost =6.0),  
5. fly-airplane-phoenix-la (Fp→la, Dur = 1.5, Cost = 6.0),  
6. use-train-lv-la (Tlv→la, Dur = 2.5,Cost = 2.5) 
 

 
Figure  2.2: The travel example 

 
 

Each move action A (by car/airplane/train) between two cities X and Y requires the 
precondition that the students be at X (at(X)) at the beginning of A. There are also two 
temporal effects: ¬at(X) occurs at the starting time point of A and at(Y) at the end time 
point of A. Unlike actions in classical planning, in planning problems with temporal and 
resource constraints, actions are not instantaneous but have durations. An action A can 
have preconditions Pre(A) that may be required either to be instantaneously true at the 
time point SA or EA, or required to be true starting at SA and remain true for some 
duration d ≤ DA. 
 

2.1.3 Propagating Time-sensitive Cost Functions in a Temporal 
Planning Graph 

The temporal planning graph for a given problem is a bi-level graph, with one level 
containing all facts, and the other containing all actions in the planning problem. Each 
fact has links to all actions supporting it, and each action has links to all facts that belong 
to its precondition and effect lists. Actions are durative and their effects are represented 
as events that occur at some time between the action’s start and end time points. 

At a given time point t, an action A is activated if all preconditions of A can be 
achieved at t. To support the delayed effects of the activated actions (i.e., effects that 
occur at the future time points beyond t), Sapa maintains a global event queue for the 
entire graph, Q = {e1, e2 ...en} sorted in the increasing order of event time. 
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Each event in Q is a 4-tuple e = <f, t, c, A> in which: 

 
1. f is the fact that e will add 
2. t is the time point at which the event will occur 
3. c is the cost incurred to enable the execution of action A which causes e.  

 
For each action A, there are two cost functions: 
 

1. C (A, t): this is the estimate of the cost incurred to achieve all of A’s 
preconditions at time point t.  

2. Cexec(A): this is the execution cost, which is the cost incurred in executing A 
(e.g. ticket price for the fly action, gas cost for driving a car) 

 
For each fact f, a similar cost function C (f, t) = v specifies the estimated cost v incurred 
to achieve f at time point t (e.g. cost incurred to be in Los Angeles in 6 hours) 
 
There is also an additional function SA(f, t) = Af  to specify the action Af that can be used 
to support f with cost v at time point t. 

2.1.3.1 Cost Propagation Procedure 
As a first step, we need to initialize the cost functions C(A, t) and C(f, t) for all facts and 
actions. For a given initial state Sinit, let F = {f1, f2...fn} be the set of facts that are true at 
time point tinit and {(f’1 , t1), ...(f’m , tm)}, be a set of outstanding positive events which 
specify the addition of facts f’ i at time points ti > tinit.  
Sapa uses a dummy action Ainit to represent Sinit where Ainit: 
 

1. Requires no preconditions;  
2. has cost Cexec(Ainit) = 0 
3. Causes the events of adding all fi at tinit and f’i at time point ti.  

 
At the beginning (t = 0), the event queue Q is empty, the cost functions for all facts and 
actions are initialized as: C(A, t) = ∞,C(f, t) = ∞, ∀ 0 ≤ t < ∞, and Ainit is the only action 
that is applicable.  
 
Figure 2.3 summarizes the steps in the cost propagation algorithm. The main algorithm 
contains two interleaved parts: one for applying an action and the other for activating an 
event representing the action’s effect. When an action A is introduced into the planning 
graph, Sapa does the following: 
 

1. Augment the event queue Q with events corresponding to all of A’s effects 
2. Update the cost function C (A, t) of A. 
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When an event e = <fe, te,Ce,Ae> ∈  Q, which represents an effect of Ae occurring at 
time point te and adding a fact fe with cost Ce is activated, the cost function of the fact fe 
is updated if Ce < C(fe, te).  
 
Moreover, if the newly improved cost of fe leads to a reduction in the cost function of any 
action A that fe supports (as decided by function CostAggregate(A, t) in line 11 of Figure 
2.4) then we will (re)apply A in the graph to propagate fe’s new cost of achievement to 
the cost functions of A and its effects. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Function Propagate Cost 
Current time: tc =0; 
Apply (Ainit, 0); 
While Termination-Criteria ≠ true 
Get earliest event e= <fe,te,ce,Ae> from Q; 
tc=te; 
if ce < C(f, tc) then 
Update: C (f, t) =ce 

For all action A: ∈Preconditions (A) 

∞

U

f
NewCostA = CostAggregate (A, tc); 
if NewCostA < C(A, tc) then 

Update: C (A,t) =NewCost (A), tct<; ≤
Apply (A, tc); 
End Propagate Cost; 

 
Function Apply(A,t) 
For all A’s effect that add f at SA + d do 

Q =Q {e = < f, t+ d, C (A, t) + Cexec (A), A>}; 
End Apply (A, t); 

Figure  2.3: Main cost propagation algorithm 
 

At any given time point t, C(A, t) is an aggregated cost (returned by function 
CostAggregate(A, t)) to achieve all of its preconditions. 

When the cost function of one of the preconditions of a given action is updated 
(lowered), the CostAggregate(A, t) function is called and it uses one of the methods 
described above to calculate if the cost required to execute an action has improved (been 
reduced). If C(A, t) has improved, then we will re-apply A (line 12-14 in Figure 2.3) to 
propagate the improved cost C(A, t) to the cost functions C(f, t) of its effects. 
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Returning to our running example, here is an outline of the update process in this 
example: at time point t = 0, four actions can be applied. They are: 

Dc1 t→p, 
Dc2 t→p, 
Dc1 t→lv,  
Dc2 t→la. 
 

These actions add 4 events into the event queue: 
 

Q = {e1 = <at phx, t = 1.0, c = 2.0, Dc1t→p>, 
        e2 = <at phx, 1.5, 1.5,Dc2t→p>, 
       e3 = <at lv, 3.5, 3.0,Dc1t→lv >, 
       e4 = <at la, 7.0, 6.0,Dc2t→la>}.  
 

After we advance the time to t = 1.0, the first event e1 is activated and C(at phx, t) is updated. 
Moreover, because at phx is a precondition of Fp→la, we also update C(Fp→la, t) at te = 1.0 
from ∞ to 2.0 and put an event e = _at la, 2.5, 8.0, Fp→la_, which represents Fp→la’s effect, 
into Q. We then go on with the second event _at phx, 1.5, 1.5,Dc2 t→p_ and lower the cost of the 
fact at phx and action Fp→la. Event e = _at la, 3.0, 7.5, Fp→la_ is added as a result of the newly 
improved cost of Fp→la. Continuing the process, we update the cost function of at la once at time 
point t = 2.5, and again at t = 3.0 as the delayed effects of actions Fp→la occur. At time point t = 
3.5, we update the cost value of at lv and action Tlv→la and introduce the event e = _at la, 6.0, 5.5, 
Tlv→la_. Notice that the final event e_ = _at la, 7.0, 6.0,Dc2 t→la_ representing a delayed effect of 
the action Dc2 t→la applied at t = 0 will not cause any cost update. This is because the cost function 
of at la has been updated to value c = 5.5 < ce_ at time t = 6.0 < te_ = 7.0. 
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Table  2.1: Cexec (A) and Action durations for the travel example 

 
Action Name Cost Duration 

Dc1t→p 2 1 
Dc1t→lv 3 3.5 

Dc2t→p 1.5 1.5 
Dc2t→la 6 7 
Fp→la 6 1.5 
Tlv→la 2.5 2.5 

 
 
 
 
 
 

Table  2.2: C (f, t) for the travel example 
 

Fact C(f,t0) C(f,t1) C(f,t1.5) C(f,t2.5) C(f,t3) C(f,t3.5) C(f,t6) 
at t INF       

at phx INF 2 1.5     
at lv INF     3  
at la INF   8 7.5  5.5 

 
 
 
 

Table  2.3: C (A, t) for the travel example 
 

Action pre-conditions Action C(A,t0) C(A,t1) C(A,t1.5) C(A,t3.5) 
at t Dc1t→p  INF       
at t Dc1t→lv  INF       
at t Dc2t→p INF       
at t Dc2t→la INF       
at phx Fp→la INF 2 1.5   
at lv Tlv→la INF     3 
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Table  2.4: Events Queue for the travel example 
 

 

t0 t1 t1.5 t2.5 t3 
e1 =  at phx, t = 1.0, c = 
2.0,Dc1t→p 

e1 =  at phx, t = 1.0, c = 
2.0,Dc1t→p 

e1 =  at phx, t = 1.0, c = 
2.0,Dc1t→p

e1 =  at phx, t = 1.0, c = 
2.0,Dc1t→p e1 =  at phx, t = 1.0, c = 2.0,Dc1t→p

e2 = at phx, 1.5, 1.5,Dc2t→p e2 = at phx, 1.5, 1.5,Dc2t→p  E2 = at phx, 1.5, 1.5,Dc2t→p  e2 = at phx, 1.5, 1.5,Dc2t→p e2 =at phx, 1.5, 1.5,Dc2t→p 
e3 =  at lv, 3.5, 3.0,Dc1t→lv e3 =  at lv, 3.5, 3.0,Dc1t→lv E3 =  at lv, 3.5, 3.0,Dc1t→lv e3 =  at lv, 3.5, 3.0,Dc1t→lv e3 =  at lv, 3.5, 3.0,Dc1t→lv 
e4 =  at la, 7.0, 6.0,Dc2 t→la e4 =  at la, 7.0, 6.0,Dc2t→la E4 =  at la, 7.0, 6.0,Dc2t→la e4 =  at la, 7.0, 6.0,Dc2t→la e4 =  at la, 7.0, 6.0,Dc2t→la 
 e5 =  at la, 2.5, 8.0, Fp→la  E5 =  at la, 2.5, 8.0, Fp→la  e5 =  at la, 2.5, 8.0, Fp→la  e5 =  at la, 2.5, 8.0, Fp→la 
  E6 =  at la, 3, 7.5, Fp→la  e6 =  at la, 3, 7.5, Fp→la  e6 =  at la, 3, 7.5, Fp→la  
   e7 =  at la, 6, 5.5 , Tlv→la e7 =  at la, 6, 5.5 , Tlv→la 

t3.5 t6 t7 

e1 =  at phx, t = 1.0, c = 2.0,Dc1t→p e1 =  at phx, t = 1.0, c = 2.0,Dc1t→p e1 =  at phx, t = 1.0, c = 2.0,Dc1t→p
e2 = at phx, 1.5, 1.5,Dc2t→p e2 = at phx, 1.5, 1.5,Dc2t→p e2 = at phx, 1.5, 1.5,Dc2t→p 
e3 =  at lv, 3.5, 3.0,Dc1t→lv e3 =  at lv, 3.5, 3.0,Dc1t→lv e3 =  at lv, 3.5, 3.0,Dc1t→lv
e4 =  at la, 7.0, 6.0,Dc2t→la e4 =  at la, 7.0, 6.0,Dc2t→la e4 =  at la, 7.0, 6.0,Dc2t→la 
e5 =  at la, 2.5, 8.0, Fp→la e5 =  at la, 2.5, 8.0, Fp→la e5 =  at la, 2.5, 8.0, Fp→la 
e6 =  at la, 3, 7.5, Fp→la e6 =  at la, 3, 7.5, Fp→la e6 =  at la, 3, 7.5, Fp→la 
e7 =  at la, 6, 5.5 , Tlv→la e7 =  at la, 6, 5.5 , Tlv→la e7 =  at la, 6, 5.5 , Tlv→la
e8 =  at la, 6, 5.5 , Tlv→la e8 =  at la, 6, 5.5 , Tlv→la e8 =  at la, 6, 5.5 , Tlv→la

 
 
 
 
 

 
 



    

2.1.4 Termination Criteria for the Cost Propagation Process 
We will consider now the effect of different criteria for stopping the expansion of the planning 
graph on the accuracy of the cost estimates. There are several rules that can be used to 
determine when to terminate propagation: 

 
1. Deadline termination: The propagation should stop at a time point t if:  

(1)  goal G : Deadline(G) ≤ t,  ∀
(2)   goal G : (Deadline(G) < t) ∃ ∧  (C(G, t) = ∞). 
 
The first rule governs the hard constraints on the goal deadlines. It implies that we 
should not propagate beyond the latest goal deadline (because any cost estimation 
beyond that point is useless), or we can not achieve some goal by its deadline. 
 
 

2. Fix-point termination: The propagation should stop when there are no more events that can 
decrease the cost of any proposition. 
 
The second rule is a qualification for reaching the fix-point in which there is no gain on 
the cost function of any fact or action. 
 

3. Zero-lookahead approximation: Stop the propagation at the earliest time point t where all 
the goals are reachable (C(G, t) < ∞). 
 

4. One-lookahead approximation: At the earliest time point t where all the goals are 
reachable, execute all the remaining events in the event queue and stop the propagation. 
 

 
If we return back to our travel example, we will find that: 
• Zero-lookahead stops the propagation process at the time point t = 2.5 and the goal cost is 

C(in la, 2.5) = 8.0. The action chain giving that cost is {Dc1t→p, Fp→la}. With one-
lookahead (in which the last two events will not be added), we find the lowest cost for 
achieving the goal in la is C(in la, 7.0) = 6.0 and it is given by the action (Dc2 t→la).  

• With two-lookahead approximation, the lowest cost for in la is C(in la, 6.0) = 5.5 and it is 
achieved by cost propagation through the action set {(Dc1t→lv, Tlv→la)}.  
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2.2 Generative Temporal Planning with Complex Processes (Spock) 
 
This is the most similar work to PGen. Spock [23] was done targeting Kirk model-based 
executive, like PGen. Moreover, Spock uses the same representation; Temporal Plan 
Networks. The basic role of Spock inside Kirk is to translate the intended state evolutions 
specified in the control program to an action plan that achieves those state evolutions. Chapter 
5 contains a complete comparison between PGen and Spock. 

2.2.1 Overview 
Spock requires two inputs: a control program and an activity library. The solution plan output 
by Spock is a complete and consistent Temporal Plan Network. Spock generates a complete 
plan by walking over a control program from its start to its end, along the way satisfying any 
open conditions using activities from the activity library. When Spock has a choice as how to 
proceed, it branches, adding each possible expansion to its queue of plan candidates.  

When Spock inserts an activity from the activity library, it is committed to inserting the 
entire activity TPN. Because Spock inserts events and episodes one at a time, each plan 
candidate needs to keep track of the events and episodes that it must inserted in the future. 
These events and episodes are called pending. Thus, Spock internal plan candidate 
representation contains both a candidate TPN, and a set of pending events and episodes. When 
consistent plan is found with no remaining pending events or episodes, the plan candidate is 
complete and is returned as a solution plan. 
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2.2.2 Overall planning process 
 

RMPL Control 
Program

Initial Candidate Generator

Candidate Priority Queue

Initial Candidate

Candidate 
Consistent?

No

Cost Update Child Expansion

Activity Library

Activity
 Data

Child 
Candidate

Candidate 
Complete?

No

Yes

Yes

Return solution plan

RMPL Activity 
Specifications

 
Figure  2.4: Spock overall planning process 

 
Spock planning loop begins by removing the least-cost plan candidate from the queue. This 
candidate is tested for consistency, and if it fails, the candidate is discarded. Spock checks 
to see if the candidate is complete (i.e. if it has no remaining pending events or episodes); it 
will be returned as a solution plan. Else, planning continues with the child expansion 
function. Spock’s child expansion function can either insert a pending event or episode, or 
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instantiate an additional activity from the activity library. Finally, after each child 
candidate is constructed by the child expansion function, its cost is updated and it is 
reinserted into the candidate queue. 

 

2.2.3 Some Definitions 
• Inserted events and episodes: are the events and episodes that Spock has already 

considered (the past). 
• Pending events and episodes: are the events and episodes that Spock will consider 

in the future. 
• Active and Inactive TELLs: Within the set of inserted events and episodes, Spock 

differentiates TELL constraints into active and inactive TELLs. Active TELLs 
represents the part of the solution graph that affects the insertion of new events and 
episodes. Inactive TELLs represents the solution plan’s past. 

• Enabled object: is the one that if we insert it to the solution, the TPN is still 
consistent and complete.  

 
Note that child expansion only inserts enabled events and episodes into a child 
candidate. 

2.2.4 Child Expansion 
Child expansion occurs when the candidate still has some pending episodes or events, or when 
there are some open conditions in the candidate. 
Child expansion grows the plan candidate by either 
 

1. Instantiating a new activity from the activity library. 
2. Inserting an enabled episode 
3. Inserting an enabled event 
 

The expansion that is applied is selected arbitrarily. However, all possible expansions are 
considered and applied in order to create distinct candidates that ensure search completeness. 
 

- 24 - 



    

2.2.4.1 Conditions for enablement  
1. An activity is enabled if the ASK constraints are closed by active TELLs. 

 

 
Figure  2.5: Activity Enablement 

 
2. An event is enabled if its preceding episodes are inserted. 
 

 
Figure  2.6: Event Enablement 

 
3. An episode is enabled if... 

a. Its start event is inserted 
b. Any ASKs it contains are closed by the candidate TPN’s active TELLs 
c. Any TELLs it contains are consistent with the candidate TPN’s active TELLs. 
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Figure  2.7: Episodes Enablement 

2.2.4.2 Instantiating an Activity: 
Instantiating an activity means adding an enabled activity from the activity library to the 
candidate’s set of pending events and episodes. Figure 2.8 shows an example of Activity 
Instantiation. 
 

 
Figure  2.8: An example of activity instantiation 

 
After an activity is instantiated, the candidate is returned to the queue. 
 

2.2.4.3 Inserting Enabled Episodes: 
Spock searches the set of active TELLs to see if an episode’s ASKs are closed and if its 
TELLs are consistent. When an enabled episode in inserted, its ASK and TELL constraints are 
processed to ensure TPN completeness and consistency.  When Spock processes an episode 
ASK constraint, it binds each ASK to its closing TELL in order to ensure plan completeness. 
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2.2.5 Checking Candidate Consistency 
Spock ensures consistency by detecting and pruning inconsistent candidates. A plan candidate 
becomes inconsistent when a combination of the time-bounds on the episodes of the TPN 
conflict. Episodes are never removed from a candidate, so an inconsistent candidate can never 
be made consistent. Therefore, Spock improves efficiency by verifying temporal consistency 
after each candidate is de-queued and pruning inconsistent candidates as soon as they are 
detected.  

2.2.6 Candidate Cost Update 
Spock is designed to support the evaluation of each plan candidate according to a utility 
function, f = g+ h. The g component represents the cost of a candidate solution so far, which is 
the total plan execution time while the h component is an admissible heuristic estimate of the 
remaining cost to the goal. However, the heuristic cost estimate is not yet implemented (i.e. 
h=0). 

2.2.7 Spock Lack of Performance 
Spock is slowed down due to the following reasons: 
 

1. Spock does not yet include a heuristic cost estimate 
2. Spock is slowed by inefficient helper functions. One example of this is Spock’s child 

expansion function, which copies candidates in their entirety each time it branches. 
This process is very inefficient and consumes unnecessary time and memory. 

3. Additionally, Spock detects enabled events and episodes using a simple search process 
that is not efficient within an iterative context. These searches consume a large amount 
of time per iteration, and circumventing them should yield a significant performance 
improvement. 

 
Chapter 5 contains a full comparison of Spock versus PGen, listing all Spock week points. 
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2.3 Executing Reactive, Model-based Programs through Graph-
based Temporal Planning  

 
This planner [31] is built upon the field of Hierarchical Task Network Planning presented in 
Chapter 1, section 1.4.2. It works by searching over the space of all plans to find one that is 
both complete and consistent. It uses activity models which restrict this type of explosion in 
the search-space of plans by specifying, at least partially, the precedence relations of activities 
and by limiting the choices of activities at explicitly defined decision points. The input to this 
planner is a TPN describing an activity scenario. A scenario consists of the TPN for the top-
level activity invoked and any constraints on its invocation. 

Consider the example in Figure 2.9. There is an activity called Enroute, in which a 
group of vehicles fly together from a rendezvous point to the target search area. In this activity, 
the group selects one of two paths for traveling to the target area, flies together along the path 
through a series of waypoints to the target position, and then transmits a message to the 
forward air controller to indicate their arrival, while waiting until the group receives 
authorization to engage the target search area. 

The two paths available for travel to the target area are each only available for a 
predetermined window of time, which is important to consider when selecting one of these 
paths. In addition, the timing of the Enroute activity is bound by externally imposed 
requirements. The following TPN invokes Enroute (nodes 1-13). In a parallel thread it 
constrains the time ranges over which path one is available (nodes 14-15) and over which the 
vehicles may perform search (nodes 16-17). 

Note that activity name labels are omitted to keep the figure clear, but the node pairs 4, 
5 and 6, 7 represent the two Group-Fly-Path activities, and node pairs 9, 10 and 11, 12 
correspond to the Group-Wait and Group-Transmit activities, respectively. Node 3 is a 
decision node that represents a choice between two methods for flying to the search area. 
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Figure  2.9: A temporal planning network activity model of a scenario 

 
Figure 2.10 shows the output of the planner. It consists of a set of paths through the 

input network from the start-node to the end-node of the top-level activity. In the example the 
paths s-1-3-4-5-8-9-10-13-2-e and s-14-15-16-17-e define a consistent execution. The first 
path defines the execution of the group of vehicles, and the second path defines the 
“execution” of the rest of the world in terms of the assertion or requirement of relevant 
conditions over the duration of the scenario. The portion of the TPN not selected for execution 
is shown in gray. 

 

 
Figure  2.10: An example plan 
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2.3.1 Planning Algorithm 
Planning involves two interleaved phases. The first phase resembles a network search that 
discovers the sub-network that constitutes a feasible plan, while incrementally checking for 
temporal consistency. In the second phase threats are detected and resolved and open 
conditions are closed. Consider the following top level activity in Figure 2.11  
 

 
Figure  2.11: An example top level activity 

 
The first phase selects a set of paths from the start-node to the end-node of the top-level 

activity. The planner handles this execution selection problem as a variant of a network search 
rooted at the start-node of the TPN encoding of the top-level activity. This TPN encodes all 
feasible executions of an activity. Initially, node 1 is selected, which is indicated by its darker 
shade, and it is active. In the first iteration, the planner chooses node 1 from the set of active 
nodes, and since node 1 is not a decision node, it selects all out-arcs and adds their tails to the 
selected and active set. This continues until both node 5 and node 15 are selected, see Figure 
2.12. 
 

 
Figure  2.12: An example top level activity- continue (1) 

 
At this point, the planner chooses node 5 from the active set. Since node 5 is a decision 

node, the algorithm must choose either arc (5, 7) or arc (5, 10). It selects arc (5, 7) and 
continues extending until it reaches the following: 
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Figure  2.13: An example top level activity- continue (2) 

 
Note that arc (14, 2) is selected, forming the cycle, 1-3-4-5-7-8-9-6-13-14-2-1, so the 

algorithm checks for temporal consistency. In this example, this selected sub-network is 
temporally inconsistent, so the algorithm backtracks to the most recent decision with open 
options, which is Node 5. Out-arc (5, 10) has not yet been tried, so it is selected and the path 
extend to the end-node. Finally a path through arc (15, 16) is found to the end-node, resulting 
in the temporally consistent sub-network: 

 
Figure  2.14: An example top level activity- continue (3) 

2.3.2 Planner lack of performance 
As we can see, this planner is not generative at all; it always needs some preparation 

for a Top Activity that contains all plans. Moreover, no activities can be added at run time; all 
possible activities should be prepared offline before planning. 

 

2.4 Summary 
This chapter presented some work related to PGen. The common aspect between the three 
planners is that they are temporal planners. Temporal planning is planning in situations where 
actions have nonzero duration and may overlap in time, so it needs an explicit representation 
of time. The first planner, Sapa is a multi-objective metric temporal planner that uses PDDL 
for representing actions. The other two planners, like PGen, use Temporal Plan Networks for 
representation. 
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3 Chapter Three:  
 

Kirk Model-based Executive, RMPL and 
TPN  
 
A modern spacecraft or any unmanned aerial vehicle has hundreds of sensors and actuators, all 
of which must be constantly monitored or commanded. Because of this large number of inter-
dependent variables, managing the complexity of these systems should be quite similar to 
managing the complexity of a modern software project. As such, a robotic execution language 
that includes features of modern programming languages, such as abstraction, inheritance, and 
encapsulation, is needed to ensure that vehicle models can be programmed quickly with 
minimal human error. To meet this demand, Reactive Model-based Programming Language 
[21] was introduced. RMPL is a rich language for describing activity models of autonomous 
reactive systems [21]. Designed to help managing complexity, RMPL is object-oriented and 
supports high-level programming features such as abstraction, encapsulation, and inheritance.  

Another important feature of RMPL is that it was designed to elevate programming to 
the specification of state evolutions. In the model-based programming paradigm, a mission 
programmer commands an autonomous robot in terms of intended state. Systems that execute 
model-based programs are called model-based executives. The specifics of achieving an 
intended state are delegated to a model-based executive such as Titan [4], Moriarty [7] and 
Kirk [8]. As mentioned before, the contributions of this thesis are part of Kirk.  

RMPL allows a programmer to specify complex processes in terms of the evolution of 
state variables. To enable fast planning, RMPL programs should be converted into equivalent 
graph structures called Temporal Plan Networks (TPNs) [8]. TPNs are useful in that they 
compactly encode the space of possible state evolutions expressed by an RMPL program. 
Once a program has been converted to a TPN, it can be processed using efficient network 
algorithms to perform search, scheduling, and to check temporal consistency. 

This chapter is divided into three parts; first it provides a brief overview of Kirk model-
based executive, of which PGen is one of its components. Then it presents an overview of 
RMPL and its syntax. Finally it provides an overview of Temporal Plan Networks, presents an 
illustrative example TPN, and describes the mapping from RMPL primitives to TPN 
constructs. 
 

3.1 Kirk model-based executive 
Kirk is a mission-level model-based executive designed to control mobile autonomous robots 
in rich environments, such as rovers exploring the surface of Mars or unmanned aerial vehicles 
flying search and rescue missions. PGen is designed to play the role of the Generative Activity 
Planner inside Kirk (see Figure 3.1) 
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Figure  3.1: Kirk Architecture 

 

3.1.1 Difference between a typical embedded program and a model-based 
embedded program 

A typical embedded program interacts with a plant through the sensor observations and 
commands as illustrated in Figure 3.2 (a). A programmer for such embedded program must 
predetermine all possible observations and map them to the appropriate commands. This 
mapping between observations and commands, however, may be complex and not at all 
intuitive. Furthermore, as the system becomes more capable and more complex, this mapping 
will surely become more arduous.  

A model-based embedded program eliminates this difficulty through the use of model-
based executive. Unlike the conventional embedded program aforementioned, a model-based 
embedded program interacts directly with the plant state as illustrated in Figure 3.2 (b). Thus, a 
programmer can design an embedded program intuitively in terms of the desired evolution of 
plant state rather than sequence of commands. Since the plant state can be inferred directly, the 
desired evolution of the plant state can also be conditioned on the plant state rather than on 
sensor observations. A model-based executive enables direct inference and direct control of the 
plant state [24]. 
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Figure  3.2: (a) Model of interaction with the physical plant for traditional embedded languages (b) model-

based programming 
 

3.1.2 Kirk Architecture 
Kirk takes as an input a high-level goal specification program written in RMPL, converts this 
program to a TPN, generates an actionable plan and finally executes it on low-level hardware.  

Mission designers program autonomous missions in Kirk at the level of intended states, 
rather than at the activity level. Given a goal specification and a set of activities that can be 
done, Kirk will find and execute a safe plan, achieving the goal of robust execution for mobile 
autonomous robot missions. To enable model-based programming, Kirk needs to be able to 
translate the intended state evolutions specified in the control program to an action plan that 
achieves those state evolutions. This function is provided by PGen generative temporal planner 
and is the central contribution of this thesis. Chapter 4 provides full details of PGen. This 
section provides a brief description of Kirk components. 

3.1.2.1 The Control Sequencer 
The Control Sequencer generates the mission plan in terms of the desired evolution of mission 
state. Kirk must choose the appropriate tactics and strategies given options and contingencies 
to cooperatively achieve the mission objective. In other words, the Control Sequencer 
identifies a consistent goal/strategy plan that establishes the guidelines for a particular mission. 

Consider the following example scenario: a set of firefighting unmanned aerial vehicles 
(UAVs). A "seeker" UAV is equipped with an onboard surveillance camera with which the 
degree of fire containment can be analyzed. A large "water" UAV is equipped to pickup water 
from lakes and drop them at the desired location. The UAVs have finite range and must be 
refueled as necessary. In a mountainous region, fire starts in two distant locations. The mission 
objective is to put out the fire autonomously using the UAVs. While the water UAV's 
responsibility is to drop water over the fire, the progress of the mission can be analyzed.  

In this example, the seeker UAV could be sent out first, and once its task is complete, 
the water UAV could then be sent out to drop water on fire. Finally the seeker UAV can go 
back to take images of the result. Another strategy may be to send the seeker UAV and water 
UAV simultaneously. In this case, however, the seeker UAV must be sure to take images of 
the fire before the water UAV drops water on them. If properly executed, this strategy should 
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accomplish the mission within a shorter period of time. If truly urgent, one may even consider 
not sending out the seeker UAV, i.e. tradeoff time with uncertainty of the mission progress.  

The generation of possible tactics and strategies are the models for the Control 
Sequencer, and its task is to generate the mission plan with an appropriate strategy that can 
accomplish the mission objective.  

3.1.2.2 The Generative Activity Planner  
The Generative Activity Planner takes the mission plan at a high level from the Control 
Sequencer as an input and generates an actionable activity plan. While the mission plan 
describes the desired evolution of the mission state, an activity plan describes the sequence of 
actions, which when executed achieves the desired evolution of mission state, i.e. the mission 
plan. Furthermore, as the state of the mission and/or mission plan change, the generative 
activity planner re-plans as necessary. For example, the mission plan may require water UAV 
to drop water on a fire. Depending on the current state, the UAV may have to first fly over to 
the lake, pick up water, fly over to the fire, then drop the water. The generative activity planner 
determines the sequence of actions necessary to achieve the desired mission state while 
concurrently achieving other subsequent evolution of the mission states. The generative 
activity planner generates an actionable activity plan with flexible time bounds given the 
mission plan from the control sequencer. PGen which is the central contribution of this thesis 
plays this role. 
 

3.1.2.3 The Kino-Dynamic Path Planner 
The Kino-Dynamic Path Planner takes the activity plan from the generative activity planner, 
and for each motion activity, it generates a trajectory through which the desired destination can 
be reached while assuring that its motion is bound by the Kino dynamics of the vehicle. 
 

3.1.2.4 The Road Map Path Planner 
The Road Map Path Planner estimates the distance between two locations. It provides the 
distance estimates to other components like the control sequencer, and the Kino-dynamic path 
planner. 
 
Finally, the solution plan is passed to the plan runner, which schedules activities and executes 
primitive commands on the vehicle hardware. The plan runner is not considered as part of 
Kirk; but rather, it is part of the vehicle hardware. 
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3.2 Reactive Model-based Programming Language 
Controlling complex autonomous systems is a difficult task. Autonomous aerial vehicles and 
robotic spacecraft can have thousands of hardware components, each of which needs to be 
monitored or controlled at all times. To help manage the inherent complexity of autonomous 
systems control, mission programmers have traditionally relied on programming languages 
such as RAPS [38], ESL [33], and TDL [22]. These languages help model the relationships 
between various robot states by incorporating features such as concurrency, metric constraints 
and durations, functionally redundant choice, contingencies, and synchronization. 

While existing languages have proven to be useful through their ability to model the 
activities of real-world autonomous systems, they do little to address the massive complexity 
inherent in such devices. A modern spacecraft or unmanned aerial vehicle has hundreds of 
sensors and actuators, all of which must be constantly monitored or commanded. Because of 
this large number of inter-dependent variables, managing the complexity of these systems is 
quite similar to managing the complexity of a modern software project. As such, a robotic 
execution language that includes features of modern programming languages, such as 
abstraction, inheritance, and encapsulation, is needed to ensure that vehicle models can be 
programmed quickly with minimal human error. To meet this demand, Reactive Model-based 
Programming Language [21] was introduced. RMPL is a rich language for describing activity 
models of autonomous reactive systems [21]. Designed to help manage complexity, RMPL is 
object-oriented and supports high-level programming features such as abstraction, 
encapsulation, and inheritance.  
 

3.2.1 3.2.1 RMPL Overview 
The Reactive Model-based Programming Language, RMPL, is a high-level language used to 
describe activity models of autonomous reactive systems. To support encapsulation and 
abstraction, RMPL is object-oriented, and thus RMPL code is contained in object methods 
with the following structure: 
 

Method-Name (arguments) {method body} 
 

All RMPL methods have a name, as well as two important specification sections: the 
arguments list and the method body. 

As required by any functional programming language, the arguments list in an RMPL 
method contains variables that the method body uses to customize its behavior. For example, a 
Move method might take a start and end position as arguments, allowing the method to 
determine the proper trajectory and temporal bounds for the specified move activity. 

The RMPL method body is coded using a process algebra consisting of a set of 
primitives that supports conditional execution, concurrency, pre-emption, maintenance 
conditions, state assertion, activity timing, and non-deterministic choice. 
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3.2.2 Example Scenario with RMPL Program 
To illustrate the primitives of RMPL, we present the following scenario. A family hiking in the 
woods is threatened by a nearby forest fire. The decision is made to send an autonomous 
rescue helicopter to recover the family. Simultaneously, another autonomous helicopter will be 
sent to fight the forest fire. For safety purposes, the family should only be rescued after the 
nearby flames have been extinguished. We can encode this scenario with the RMPL code in 
Figure 3.3. 
 
Rescue-Helicopter.Retrieve(group g) // activity 1 
{// activity / method body 

do pickup(g) maintaining { threat = low } [300,+INF]; 
g = safe 

} 
 
Fire-Helicopter.Extinguish-Fire(location loc)//activity 2 
{// activity / method body 

do { 
if (retardant = present) then 
drop-retardant() 
else 
call-for-assistance() 

   } watching { fire = controlled }; 
threat = low 

} 
 
Rescue-Family() // control program 
{ // method body 

{ // thread 1 
Rescue-Helicopter.fly-to(rescue-point); 
Rescue-Helicopter.Retrieve(family)[400,500]; 
Rescue-Helicopter.fly-to(hospital); 

}, 
{ // thread 2 
Fire-Helicopter.fly-to(forest-fire); 
Fire-Helicopter.Extinguish-Fire(forest-fire)[300,400]; 
Fire-Helicopter.fly-to(base); 
}, 
[0,1200] 

} 
Figure  3.3: Example RMPL Program 

 
This example contains three RMPL methods: two macro activity declarations (Rescue-

Helicopter.Retrieve and Fire-Helicopter.Extinguish-Fire), and a top-level program (Rescue-
Family). The macro activity declarations are high-level methods that are called by the top-level 
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program, while the other methods referenced in the RMPL code (in lowercase) are primitive 
activities understood by the system executive. 

The Rescue-Helicopter.Retrieve activity method demonstrates “do-maintaining” 
maintenance conditions, sequential composition, and episode timing. The first statement in the 
method body, ”do pickup (g) maintaining {threat = low} [300, +INF],” executes the pickup 
primitive activity for at least 300 seconds, given that the threat condition remains low. This 
statement is sequentially combined with the state assertion, ”g = safe,” which asserts that the 
group being rescued, g, is indefinitely safe once the pickup activity is complete. 

The next activity method, Fire-Helicopter.Extinguish-Fire, demonstrates do-watching 
maintenance conditions, sequential composition, and conditional execution. The first root-level 
statement in the method body, ”do {…} watching {fire = controlled},” instructs the system to 
fight the fire until the fire is under control. 
The interior of this statement, ”if (retardant = present) then dropretardant () else call-for-
assitance(),” tells the system how to fight the fire. Specifically, it says to drop retardant on the 
fire if possible, and otherwise call for help when retardant is not available. This complex 
statement is combined using sequential composition with the goal state assertion, ”threat = 
low,” which informs the system that the environment is safe once the fire has been 
extinguished.  

This example also includes a top-level program, “Rescue-Family,” which is the 
primary method that directs the execution of the rescue mission. The top-level program 
demonstrates sequential and parallel composition, macro activity calls, and episode timing. 
The body of the “Rescue-Family” method contains two parallel threads of execution that are 
both constrained to take no more than 1200 seconds to execute. The first sequence commands 
the rescue helicopter to fly to the rescue point, retrieve the family in 400-500 seconds, and 
finally fly to the hospital to drop off any injured people. The second sequence commands the 
fire helicopter to fly to the forest fire, extinguish it in 300-400 seconds, and then return to base. 
 

3.2.3 RMPL Primitives 
This section presents each RMPL primitive and describes its semantics. The list of such 
primitives is shown in Figure 3.4. 
 

A := A [l,u] | 
c | 
A; A’ | 
A, A’ | 
{ A } | 
if c then A | 
when c then A | 
do A maintaining c | 
do A watching c | 
choose { A, A’, … } 
c := assignment to state variable 

Figure  3.4: RMPL Primitives 
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3.2.3.1 Episode Timing - A [l,u] 
Given an RMPL sub-activity, A, the statement A [l, u] informs the executive that the episode, 
or interval, during which the activity occurs must take at least l time-units and no more than u 
time-units. This construct can be used to constrain the durations of activity episodes, or the 
episodes between activities. 

Note that, by default, an episode has time-bounds of [0, +INF]. Moreover, if an episode 
is constrained by more than one set of time-bounds, the intersection of those bounds is used. 

3.2.3.2 State Assertion - c 
RMPL is a language for interacting with hidden state. Thus, it needs a mechanism for asserting 
assignments to state variables. This mechanism is state assertion. Within 
RMPL activity code, a programmer can assert the value of a state variable by simply writing 
the state variable xi = vij, where xi is a declared variable and vij is an element of xi’s 
domain. 

Note that, as RMPL is a language for describing the evolution of state variables 
through time, every state variable assignment has a corresponding episode during which it 
persists. 

3.2.3.3 Sequential Composition - A; A’ 
Programmers frequently want to constrain two activities such that one occurs immediately 
after another. In this situation, the sequential composition construct is used. For example, the 
code {cook ( ); eat ( )} would instruct a system to perform the cook activity, and then 
immediately execute the eat activity. 

3.2.3.4 Parallel Composition - A, A’ 
RMPL includes a parallel composition construct to allow the expression of concurrent 
activities. Parallel activities are constrained to begin and end at the same time. For example, 
the code {sneeze (), close-eyes ()} would instruct a system to simultaneously begin the sneeze 
and close-eyes activities, and then simultaneously end both activities. 

3.2.3.5 Conditional Execution - if c then A [else A’] 
RMPL’s conditional execution construct, if-then, allows sub-activities to be executed when a 
specified state assignment is true. This construct, along with the other control statements, is 
particularly important as it enables RMPL to react to environmental conditions. For example, a 
programmer might encode the program “if (environment = 
safe) then fly-mission ( ) else abort ( ).” 

Note that if-then only requires a state assignment to hold at the beginning of the 
embedded activity. That is, after the activity begins, the state assignment is free to change. The 
primitive that maintains a state assignment throughout the execution of an activity is do-
maintaining. 

Also, note that the if-then primitive is only supported within Kirk’s strategy selection 
algorithm, and not within PGen. 
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3.2.3.6 Pre-emptive Execution - when c then A 
Another type of control statement is when-then. When a programmer wants a particular sub-
activity to be executed every time a particular state assignment holds, he can use a when-then. 
For example, suppose a programmer wants to implement a simple obstacle avoidance routine 
that halts a robot’s motors whenever its proximity sensors register an object within a certain 
threshold. This obstacle-avoidance routine might be coded as “when (distance = below-
threshold) then all-stop ( )”. 

Note that the when-then primitive is only supported within Kirk’s strategy selection 
algorithm, and not within PGen. 

3.2.3.7 Maintenance Conditions - do A maintaining c, do A watching c 
One of the most important activity constraints for programming autonomous vehicles is that of 
maintenance conditions. Frequently, mission programmers want to encode execution 
sequences with maintenance (or guard) conditions that require a particular state assignment for 
the duration of the activity. To express these guard conditions in RMPL, programmers use the 
do-maintaining construct. For example, to express the constraint that a thruster only be fired 
while its fuel is pressurized, an RMPL programmer might write “do fire-thruster ( ) 
maintaining (fuel = pressurized)”. 

3.2.3.8 Non-deterministic Choice - Choose {A, A’, …} 
RMPL also includes support for non-deterministic contingency selection. This allows mission 
programmers to specify functionally-redundant procedures that improve robustness by 
encoding contingency sequences. To encode a non-deterministic choice, one uses the choose 
construct followed by a list of possible execution threads. For example, to encode the scenario 
where a UAV selects from a series of three surveillance targets, an RMPL programmer would 
encode the following, “{choose { fly-over ( target1 ) }, { fly-over (target2 ) }, { fly-over 
(target3) } }”. 
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3.3 TPN Overview 
Temporal Plan Networks are inspired by the history-based process representations used in 
qualitative physics [22] and concise histories [11], and by interval representations from 
constraint-based interval planning [31]. As such, the episodes (or arcs) in a TPN represent state 
variable assertions and requests that hold for a given interval of time. The end-points of these 
episodes are called events, which are represented in the TPN using graph vertices. To be 
temporally flexible, a TPN’s episodes are bound with simple temporal constraints that include 
both a lower and upper-bound for the corresponding interval of time (or episode). To encode 
state queries and assertions, episodes are labeled with Ask and Tell constraints, respectively. 
Episodes can also be labeled with primitive activity operators. Finally, TPNs add decision 
nodes, which allow non-deterministic choice within the plan representation  
 

1  2

ASK (personSatus = underCureStatus) 
TELL (currentLocation = accidentLocation) 

remove-crashes () 
 

[50,100] 

Nodes that represents events in time 

An episode comprised of state queries (ASKs), state assertions (TELLs) and primitive 
activities 

Decision node – only one out-arc 
needs to be selected 

Simple temporal constraints 
50 ≤ (time (2) – time (1)) ≤ 100  

 
Figure  3.5: Temporal Plan Networks Constructs 

 
Figure 3.5 illustrates the constructs in a Temporal Plan Network. In this example, nodes 1 and 
2 represent events in time, while the arc from Node 1 to Node 2 represents the episode during 
which the remove-crashes primitive action is being executed. The label [0,100] 
below the arc represents the time-bounds attached to the episode. These time-bounds constrain 
the episode between events 1 and 2 to take at least 50 and not more than 100 time units. 
A state assertion and state request are also attached to the episode arc. Tell 
(currentLocation = accidentLocation )asserts that the system’s location 
variable is defined to be the accident location for the duration of the remove-crashes 
episode, while Ask (personStatus = undercureStatus) requests that the person 
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injured in this accident is under cure status. Finally, Node 2 is a decision node. This means that 
the model-based executive must select only one of its out-arcs for execution. Note that the end 
event of an episode does not have to be a decision node, and that the start event of an episode 
is allowed to be a decision node. Lastly, we reiterate that TPNs within the PGen planner do not 
include decision nodes, as PGen does not perform conditional planning. 
 

3.3.1 Example TPN 
An example TPN is shown in Figure 3.6 corresponding to the example RMPL code shown in 
Figure 3.3. Just like the original RMPL code, this graph has three distinct parts: the top-level 
program, and two macro activities that are expanded into the control program. 
 

 
Figure  3.6: Example Temporal Plan Network 

 
In this TPN, the top-level program sub-section contains two parallel threads of execution, (1-3-
4-2 and 1-5-6-2). There is also a total mission time-bound of 1200 seconds. The top-level 
program also demonstrates both primitive activities (the four fly-to activities) and macro 
activities (the Rescue-Helicopter.Retrieve and Fire-
Helicopter.Extinguish-Fire activities). While primitive activities are simply 
included in the solution plan, macro activities need to be expanded into the TPN. 

The TPN within sub-network Macro 1 corresponds to the expansion of the Rescue-
Helicopter.Retrieve activity. In this sub-network, the episode between events 7 and 8 
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shows the expansion of the RMPL do-maintaining combinator. In this example, the command 
is pickup, while the state to maintain is (threat = low). Thus the do-maintaining 
RMPL code is expanded into a TPN sub-network that asks that the mission threat remain low 
for the duration of the embedded rescue activity. Finally, when the pickup command (which is 
constrained to take at least 300 seconds) is finished, the state family = safe is asserted. 

Macro 2 corresponds to the expansion of the Fire-Helicopter.Extinguish- 
Fire activity. The bulk of this activity is nested within a do-watching activity, which is 
similar to a do-maintaining. The difference between the two is that do-maintaining commands 
ask for a particular state to hold, while do-watching commands execute as long as a particular 
state does not hold. Moreover, a do-watching statement is specified to halt its execution when 
the embedded condition becomes true. Thus Macro 2 executes as long as fire = 
controlled remains false.  

The code embedded in Macro 2’s do-watching statement instructs the system with an 
if-then-else statement about how to fight the fire. As the if-then-else statement requires a 
decision to be made, the corresponding TPN sub-graph contains a decision node (denoted with 
a double-circle). The choice at the decision node is based on the state of the retardant 
variable due to the Ask constraints attached to both out-arcs. The (12-14-13) thread requires 
that retardant = present is true, in which case the dropretardant primitive is 
executed, while the (12-15-13) thread requires that retardant = present is not true, in 
which case the call-for-assistance primitive is executed. 

3.3.2 RMPL to TPN Mapping 
This section summarizes the mapping from RMPL primitives to TPN constructs. By using the 
translations in this section, any RMPL program can be compiled in a TPN that is suitable for 
planning and execution tasks. 
 

Table  3.1: RMPL Primitives to TPN Sub-networks 
  

 
Interval: 
[l, u] 

 
 

Interval + Assertion: 
c[l ,u] 

 
 

Interval + Activity: 
A[l ,u] 

 

    
A 
  

[l ,u] 

    
TELL(c) 

  
[l ,u] 

    

[l ,u] 
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Table 3.1 shows the mapping from RMPL to TPN primitives. Using the three shown primitive 
statements, mission programmers can express delays, timed assertions, and timed primitive 
actions in RMPL programs. Each of these primitive statements has a corresponding primitive 
TPN construction that represents the same information in graph form. 
 

Table  3.2: RMPL Combinators to TPN Sub-networks 
  

 
Sequential Composition: 

A[l1,u1]; B[l2,u2] 

 

 
Parallel Composition: 

A[l1,u1], B[l2,u2] 

 
 
Conditional Execution: 
if c then A[l1,u1] 

else B[l1,u1] 

 
 
Reactive Execution: 
when c then A[l ,u] 

 

 
Condition Maintenance: 
do A[l,u] maintaining c 

 

    
ASK(c) 

 
A  

[l ,u] 

    
 
 

[0, INF] 
    

ASK(c) 
 

[0, 0] 

A 
 

[l, u] 

    
A 
 

[l1, u1] 
  

    

ASK(c) 
[0, 0] 

ASK (not(c)) 
[0, 0] 

    
A 
 

[l1, u1] 
    

[0, 0]     

[0, 0] [0, 0] 

[0, 0] 

    
A 
 

[l1, u1] 
    

 
 

[0, 0] 

B 
 

[l2, u2] 

B 
 

[l2, u2] 

B 
 

[l2, u2] 
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Preemption: 
do A[l, u] watching c 

 

 
Choice: 
choose{ A[l1,u1], 
B[l2,u2] } 

 

ASK (not(c)) 
     

A  
[l ,u] 

A 
     

 
 
Table 3.2 shows the mapping from RMPL primitives to TPN sub-networks. Using the shown 
primitives, mission programmers can combine RMPL primitives to represent complex 
processes. As the graph-based equivalent of RMPL, TPNs can represent all of the process 
primitives using various graph constructions.  
 

3.4 Summary  
Kirk is a mission-level model-based executive; it is designed to control mobile autonomous 
robots in rich environments, such as rovers exploring the surface of Mars or unmanned aerial 
vehicles flying for search and rescue missions.  
RMPL is an effective tool for mission programmers that allow them to express constraints 
while efficiently managing complexity. Rooted in proven execution and modern object-
oriented languages, RMPL is a process algebra that enables programmers to easily encode 
arbitrarily complex activity models and mission control programs. The input to Kirk is an 
RMPL control program.  
Temporal Plan Networks are a compact graph encoding of the constraints expressed in an 
RMPL program. Representing complex processes in network form, TPNs can be quickly 
processed via graph search algorithms to determine temporal consistency and perform 
scheduling. Finally, there is a direct mapping between the primitives in RMPL and the 
constructs in a TPN, allowing the easy translation from human-generated code to a machine-
understandable graph format. 
 

[l1, u1] 
[0, 0] [0, 0] 

    

[0, 0]     [0, 0] 
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4 Chapter Four: 
 

PGen Planning Algorithm 
 
 
PGen is a generative TPN-based planner, designed to support strategic-level control of 
autonomous mobile systems as part of Kirk model-based executive. This chapter describes 
PGen planning algorithm in details. As a first step, an overview is presented, followed by a 
discussion of PGen's control flow. Next, PGen’s Genetic Algorithm's operators are described. 
Finally, a complete description of PGen's fitness function is discussed. Throughout the chapter, 
illustrative examples are used to help convey the relevant concepts. 
 

4.1 Overview 
PGen is designed to integrate Genetic Algorithms, heuristic search, temporal flexibility, 

and the composition of complex processes. PGen's inputs are expressed in Reactive Model-
based Programming Language (RMPL), which allows mission designers to specify the 
evolution of state variables within complex processes by using process algebra with a rich set 
of activity combinators. After that, goal plans, goal operators, and plan candidates are 
represented using Temporal Plan Networks (TPN). TPN are significant in that they support 
temporal flexibility using simple temporal constraints, which enable dynamic scheduling and 
improve mission robustness. PGen is novel in using Genetic Algorithms for TPN-based 
planning.  

4.1.1  PGen Algorithm 
PGen requires two inputs: a control program that describes a system’s intended state 

evolutions and an Activity Library that contains all possible activities that the vehicle can 
perform. PGen uses the Activity Library to assemble a solution plan. The solution plan output 
by PGen is a consistent and complete TPN that achieves the behavior specified in the control 
program by piecing together activities from the Activity Library, while maintaining 
consistency. 

PGen uses TPN as a uniform representation for representing control programs, 
activities, and plans. As described previously, TPNs are collections of events and episodes 
between those events, representing processes that may have their own sub goals in the form of 
open conditions represented by ASK constraints. PGen generates a complete plan by applying 
Genetic Algorithms (GA) techniques. Genetic Algorithms are adaptive heuristic search 
algorithms premised on the evolutionary ideas of natural selection and survival of the fittest. 
The basic concept of Genetic Algorithms is designed to simulate processes in natural system 
necessary for evolution, specifically those that follow the principles first laid down by Charles 
Darwin of survival of the fittest. As such, they represent an intelligent (parallel) exploitation of 
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a random search within a defined search space to solve a problem. So, in our case, the search 
space consists of all possible plan candidates that can be generated from the Activity Library.  

The evolution usually starts from a population of randomly generated individuals, 
individuals are represented as TPNs. In each generation, the fitness of every individual in the 
population is evaluated based on its consistency and completeness, multiple individuals are 
stochastically selected from the current population (based on their fitness), and modified 
(recombined and possibly randomly mutated) to form a new population. The new population is 
then used in the next iteration of the algorithm. The algorithm terminates when either a 
maximum number of generations has been reached, or a satisfactory fitness level has been 
achieved. If the algorithm has been terminated due to a maximum number of generations, a 
satisfactory solution may or may not have been reached. 

PGen’s planning algorithm is shown in high level form in Figure 4.1. The input to 
PGen is an RMPL control program that describes the intended states and timing constraints for 
the operation. PGen keeps history for previous missions in the form of pairs like (Input, 
solution plan). It keeps them in a database so that when a new mission arrives, it looks up to 
see if this case was encountered previously or not. If yes, it returns it as a solution plan and 
does not proceed. Else, it proceeds and transforms the input control program from the RMPL 
code into a Temporal Plan Network structure. PGen uses Temporal Plan Networks as a 
uniform representation for representing control programs, activities, and plans. The Activity 
Library is a library that contains all the possible activities that the vehicle can perform. These 
activities are represented as Temporal Plan Networks. The planner uses this library in the 
initial candidate generation and in mutation operators.  PGen Search Assistant is a sub-
component inside PGen responsible of implementing a Genetic Algorithm to search for a 
consistent and complete solution plan. PGen Search Assistant decides whether a solution could 
be found or not.  
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RMPL Control Program  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  4.1: PGen Block Diagram
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PGen Search Assistant 
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Activity Library 

TPN Control Program
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Return that PGen failed 
to find a solution plan 

Return Solution Plan  
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4.1.2 Example Generative TPN Planning Problem 
Consider the following example scenario. A ship was sailing in a sea and suddenly it 

sank, it had many people on its surface. The rescue marshal wants to send an Unmanned 
Swimming Vehicle (USV) to search for sunken persons and bring them back for medical 
treatment. So, the rescue marshal writes a control program requiring that final status for each 
found person is to be under cure status. He wants each rescue mission to be done within 100 
time units (See Figure 4.2.a). 

 

 

(a)  RMPL Control Program 

  
ASK (personSatus = undercureStatus) 

 
[0,100] 

(b) TPN Control Program 

Persons-Rescue () 
{ 

personSatus = underCureStatus [0,100]; 
} 

Figure  4.2: RMPL Control Program and TPN Control Program for Sunken Persons Rescue Mission 
 

Along with the control program, the rescue marshal gives PGen an activity library with 
the activity models for the rescue USV. In this scenario, the activity library includes three 
activities: Search-For-Sunken-Object, Determine-Object-Type and Rescue-Sunken-Person (see 
Figure 4.3). Search-For-Sunk-Object activity simply instructs the USV to swim randomly until 
some object appears in its view. Determine-Object-Type activity recognizes that the object 
appears in view is a person, and then it sends a signal to the medical ship to be in a nearer 
point in order to rescue the found person. Finally, Rescue-Sunken-Person picks the person and 
swims along with him to the medical ship that is supposed in a near place. Note that one of the 
time-bounds in the Rescue-Sunken-Person activity [distance [location, Medical-Ship-Loc], 
INF] is parameterized based on the locations of the USV and Medical Ship. This allows the 
time-bound for this activity to vary depending on the distance that the vehicle must travel. 
Note also, as discussed in Chapter 3, the interpretation of RMPL state assertion is different for 
a control program and an activity model. In the control program, state assertions become ASK 
constraints representing planning goals, while in an activity, state assertions become TELL 
constraints representing operator effects.  
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Given the scenario control program and activity library as inputs, PGen generates and 
returns a consistent and complete solution plan that achieves the control program using 
activiti

 

es from the activity library (see Figure 4.3). For this scenario, the solution plan achieves 
the control program by commanding the USV to swim randomly until an object appears. Then, 
if it recognizes that this object is a person; it should call the medical ship in order to come to a 
near point. Finally, USV should carry the person to the medical ship; hence the person status is 
under cure status (see Figure 4.4). 
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Search-for-Sunken-Object () 
sea.swim-randomly () 

 
[0, +INF] 

TELL (USVView=objectView) 
 

[0, 0] 

{ 
    do 
    { 

         sea.swim-randomly () [0 ,+INF]; 
    }  
    watching (USVView =objectView); 
    USVView = objectView [0, 0]; 

ASK (not (USVView =objectView)) } 

Search-for-Sunken-Object Activity RMPL code Search-for-Sunken-Object Activity TPN 

Determine-Object-Type (obView) 
{ 
    do 
    { 
          decide-object-type (obView) [5,15] call-medical-ship () 

 
[1, 1] 

ELL (USV ersonView) View=pTdecide-object-type (obView) 
 

ASK (USVView=objectView) 
[5 , 15] 

[0, 0] 

    }  
    maintaining (USVView =objectView); 
    USVView = personView [0, 0]; 
    call-medical-ship () [1,1]; 
 
} 

Determine-Object-Type Activity RMPL code Determine-Object-Type Activity TPN 

Rescue-Sunken-Person (location, Medical-Ship-Loc) 
{ 
    do 
    { 
           pick–sunken-person () [10,20] 

sea.swim-to (Medical-Ship-Loc) 
TELL (personStatus=undercureStatus) 

 
[distance [location , Medical-Ship-Loc],+INF] 

 
ASK (USVView =personView) 

[10, 20] 

pick–sunken-person ()
    }  
    maintaining (USVView =personView); 
 
    sea.swim-to (Medical-Ship-Loc)    , 
    personStatus=undercureStatus 
 
    [distance [location, Medical-Ship-Loc], +INF]; 
} 

Rescue-Sunken-Person Activity RMPL code Rescue-Sunken-Person Activity TPN 

 
 

Figure  4.3: Activity Library RMPL code and TPN for Sunken Persons Rescue Mission 
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Figure  4.4: Solution TPN for Sunken Persons Rescue Mission 

sea.swim-to (Medical-Ship-Loc) 
pick–sunken-person () TELL (personStatus=undercureStatus) 

ASK (USVView =personView) 
[10, 20]  

 
[distance [location , Medical-Ship-Loc],INF] 

ASK (personStatus=undercureStatus) 
 

          [0, 100] 

TELL (USVView=personView) 
 

[0, 0] 

call-medical-ship () 
 

[1, 1] 

decide-object-type (obView) 
 

ASK (USVView=objectView) 
[5 , 15] 

Person-enSunk-Rescue 

Control Program 

swim-randomly () 
 

[0, INF] 

TELL (USVView=objectView) 
 

[0, 0] 

ASK (not (USVView =objectView)) 

tObjec-enSunk-For-Search 

Type-Object-Determine 

 
 

4.2 PGen Search Assistant 
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Collect all Primitive Activities (PAs) & Non-Primitive Activities 
(NPAs) from the activity library 

Apply TEC check (Temporal Constraints are 
not violated) 

Apply COMP check (each ASK in a TPN 
has a closing TELL within its time range) 

Solution 
found?

TPN Crossover 

TPN Mutation 

Tournament Selection 

Apply SYCC check (Check contradicting 
states) 

Return Solution 

N

Y

Initialize the first population of TPNs; select NPAs randomly with their 
temporal and symbolic constraints. Episodes' constraints are the same 

as their NPAs’ 

Connect goal TPN to each TPN candidate 

Calculate fitness value 

Load Goal 

Load Environment 
 

Evaluate generation     

Form new generation 

 



    

Figure  4.5 :PGen Search Assistant Control Flow 

4.3 Loading Environment Model  
At startup, PGen Search Assistant loads Environment Model into memory. 

Environment model is represented by the activity library and the goal control program. The 
activity library contains non-primitive activities, primitive activities, constraints and attributes. 
The main concern is about non-primitive activities which are composed of primitive activities, 
constraints and attributes. Goal is loaded and constructed in memory as a TPN to be used later 
in the evolution. Another structure is loaded at startup, which is the Register. The Register 
contains some parameters required by PGen to work properly (See Table 4.1). 
 

Table  4.1: Register Contents 
 

ID Parameter Name 
Structure-based Parameters 

1 Minimum Events per Path  
2 Maximum Events per Path  
3 Minimum Parallel Paths  
4 Maximum Parallel Paths 

Genetic Algorithm Parameters 
5 Population Size 
6 Maximum Generations 
7 Minimum Fitness (fitness is minimized) 
8 Elitism Size 
9 Tournament Size 
10 Crossover Probability 
11 Mutation Probability 

 

4.4 Chromosome Structure and Initialization 
A chromosome is in the form of a Temporal Plan Network (TPN). TPN serves as a 

representation of activity models used by PGen. A TPN activity model encodes the behavior of 
an activity by defining the set of feasible executions.  

PGen starts its genetic loop by creating an initial population of chromosomes; each one 
consists of a TPN structure contains events and episodes. Each TPN has a start and an end 
event. Each episode has zero or more (Non-Primitive Activities) NPAs collected from the 
activity library. The following parameters are generated randomly with uniform distribution 
for each TPN candidate:  
 

• Number of parallel paths. This is a generated random number between the two values 
collected from the Register; Minimum Parallel Paths and Maximum Parallel Paths. 

• Number of events per path. This is a generated random number between the two values 
collected from the Register; Minimum Events per Path and Maximum Events per Path. 
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• For each episode, an NPA is selected randomly. 
 
There are two forms of chromosomes; collapsed and expanded. The description of both forms 
will come later in details. Initially, for each TPN candidate, NPAs are put within episodes in 
collapsed forms, i.e. NPA's internal structure and characteristics are hidden, except its name 
and temporal constraint. They remain hidden during all genetic stages except at fitness 
calculation. In fitness calculation, PGen needs to have a look on the internal structure of the 
TPN candidate in order to evaluate it effectively. 

4.5 Selection 
Selection is the stage of a Genetic Algorithm in which individuals are chosen from a 

population for later breeding (crossover). Based on earlier research results [2], PGen uses 
Tournament Selection rather than other selection strategies like Roulette Wheel Selection. 

Tournament Selection is one of many methods of selection in Genetic Algorithms 
which runs a "tournament" among a few individuals chosen at random from the population and 
selects the winner (the one with the best fitness) for crossover. Selection pressure can be easily 
adjusted by changing the tournament size. If the tournament size is larger, weak individuals 
have a smaller chance to be selected and vice versa. Figure 4.6 shows tournament selection 
pseudo code. 
 

• choose k (the tournament size) individuals from the 
population at random 

• choose the best individual from pool/tournament with 
probability p 

• choose the second best individual with probability p*(1-p) 
• choose the third best individual with probability p*((1-

p)^2) 
     And so on... 
 

Figure  4.6: Tournament Selection Pseudo Code 

Deterministic tournament selection selects the best individual (when p=1) in any 
tournament. A 1-way tournament (k=1) selection is equivalent to random selection. The 
chosen individual can be removed from the population that the selection is made from if 
desired; otherwise individuals can be selected more than once for the next generation. 
Tournament selection has several benefits: it is efficient to code, works on parallel 
architectures and allows the selection pressure to be easily adjusted [18]. 

4.6 TPN Crossover  
In Genetic Algorithms, crossover is a genetic operator used to vary the programming of 

a chromosome or chromosomes from one generation to the next. It is an analogy to 
reproduction and biological crossover, upon which Genetic Algorithms are based [19]. 
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Many crossover techniques exist for organisms which use different data structures to 
store themselves. Crossover is easy to implement for strings and trees because these data 
structures can be divided into two pieces at any point. Crossover for TPN is a little bit complex 
because:  

• TPN crossover cannot trivially divide the data structure at any point, because any 
episode may be a member of one or more cycles. All of these cycles may need to be 
broken to divide the TPN into two pieces if the episodes to break are chosen at random 
to avoid biasing the search. One cannot avoid breaking episodes involved in cycles, 
because then the cycle structure will not evolve. 

• TPN fragments produced by division may have more than one crossover point ("broken 
episodes") that requires reattachment during fragment combination.  

• When two fragments are combined they may have different numbers of broken 
episodes to be merged.  

• For a TPN crossover operator to potentially reach any possible TPN from an initial 
random population, the crossover operator must be able to create and destroy individual 
cycles, fused cycles (cycles that share episodes), cages (two or more cycles, each pair 
of which share at least two episodes), and combinations of fused cycles and cages.  

So, we introduce TPN Multiple Points Crossover; a novel crossover operator for TPN. It 
divides a TPN at some randomly generated cut sets. A cut set consists of episodes that divide a 
TPN into two parts. PGen uses another crossover operator inspired from some crossover 
operator implemented for tree data structure. It is TPN Single Activity Swap Crossover in 
which an episode is selected at random from each chromosome and contents are swapped. 
 

4.6.1 TPN Multiple Points Crossover 
To divide a TPN into two fragments, PGen applies the following procedure to the two parents: 
 

• Set source event=Start Event and destination event=End 
Event.(remember that each TPN has a start and an end 
events) 

• Loop until no path exist between source and destination 
events: 

o Get shortest path between source and destination 
events. 

o Select a random episode in this path. 
o Copy its data, remember its source and end events, 

and remove this episode from TPN (this episode 
becomes a Cut Edge and is added to the Cut Set) 

 
Figure  4.7: TPN Multiple Points Crossover-Division Procedure 

 
Now each parent is cut into two fragments, one fragment contains a Start Event (Head Part) 
while the other one contains an End Event (Tail Part). 
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To combine fragments and create children, PGen uses the following procedure: 
 

• Swap the Tail Parts between the two parents. 
• Do the following for each child:  

o Loop until all Cut Edges in the Head Part are 
processed: 

 Get a random Cut Edge from the Head Part 
 If at least one Cut Edge exists in the Tail 
Part: 

o Get a random Cut Edge from the Tail Part. 
o Weld the two parts at this point to form 

a new episode. 
o The new episode’s data inherits one of 

the two parents’ data. The choice is done 
with random probability. 

 Else, weld this Cut Edge to the Tail Part's 
End Event 

 
o If there are some cut edges remaining in the Tail 

Part, weld them to the Head Part's Start Event. 
 

Figure  4.8: TPN Multiple Points Crossover-Recombination Procedure 
 
Example 

Consider the scenario in Figure 4.9. First, two TPN candidates are selected for 
crossover. PGen gets shortest path for parent 1 between the Start and End events. The shortest 
path is the one that contains {1, 6, 7, 5}. Then it chooses a random episode in this path, take 
the one that carries F data for example. When it gets the shortest path again, it gets the one that 
contains {1, 2, 3, 4, 5}. It chooses B episode this time to cut at. Two data structures are created 
for this parent; the first one contains the cut episodes along with their source events that lie in 
the Head Part, while the other one contains the cut episodes along with their end events that lie 
in the Tail Part. Same procedure is applied to the parent 2 (see Figure 4.9.c). After that, the two 
tails are swapped and recombination should take place. Child 1 is formed by combining Parent 
1 Head with Parent 2 Tail, while Child 2 is formed by combining Parent 2 Head with Parent 1 
Tail. Cut edges from the two mates are welded together. The new episodes’ data inherits just 
one of the two parents’ data; the choice is done with random probability. Note that in forming 
Child 1, number of cut edges in Tail is larger than number of cut edges in Head, hence, there 
was one cut edge from Tail remains without welding while all cut edges in Head had already 
been welded. In this case, it should be welded to the start event in Head. The same situation 
was repeated in forming Child 2 (see Figure 4.9.e). So, the remaining cut edge in Head should 
be welded to the end event in Tail. 
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Figure  4.9: TPN Multiple points Crossover Operator 

4.6.2 TPN Single Activity Swap Crossover 
In this operator, an episode is selected at random from each parent and contents are 

swapped. Remember that in crossover operators, TPN candidates are still in its collapsed form. 
So the swapped contents are the NPAs in its encapsulated form, internal structure is still 
hidden. 
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Example 
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(b)  Random Episodes are chosen in both mates 
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Figure  4.10: TPN Single Activity Swap Crossover Operator 
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4.7 TPN Mutation  
PGen depends much on mutation operators so as to investigate the search space. It uses the 

following proposed mutation operators: 
 

1. TPN Activity Addition Mutation: An NPA is selected from the activity library and inserted 
at a random episode with no NPA. 

2. TPN Activity Deletion Mutation: An episode is selected at random in the TPN candidate 
and its NPA is removed. 

3. TPN Internal Activity Swap Mutation: Two episodes are selected at random in the TPN 
candidate and contents are swapped.  

4. TPN Activity Change Mutation: An episode is selected at random and its NPA is replaced 
with another one selected from the activity library. 
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Figure  4.11: Different TPN Mutation Operators 

4.8 TPN Fitness  
Candidates are evaluated against some criteria. PGen gives each one a score based on 

its consistency and completeness. Before we define what is meant by consistency and 
completeness, we have to know that not all TPN candidates are executable on mission 
hardware. This is either because some open conditions (ASK) within the TPN are not satisfied, 
or some combinations of TPN constraints are conflicting. The resulting solution TPN is said to 
be executable if it is both consistent and complete. PGen gives each one a score based on its 
Temporal Consistency (TEC), Symbolic Constraints Consistency (SYCC) and Completeness 
(COMP). TEC requires that a valid temporal assignment to each event exists such that no 
temporal constraints are violated.  SYCC ensures that there are no two overlapping intervals 
that have conflicting constraints. COMP requires that all open questions represented by ASK 
constraints are satisfied by other TELL constraints within their time ranges. Fitness is 
minimized, if a TPN candidate is consistent and complete, its fitness value is zero. If it's not 
consistent, its fitness is a big value tends to ∞. Otherwise, it takes a value based on the number 
of events and the number of open conditions. 
 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∞
+=

TEC failed candidate                                                         
COMP failedbut  SYCC and TEC passed candidate      ASKsopen  of No  Events of No

COMP and SYCC TEC, passed candidate                                                          0
F  

 
Equation 4.1: TPN Candidate Fitness  

 
Candidate’s fitness is done on three phases as shown in Figure 4.12. 
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Figure  4.12: Fitness calculation phases 

 

4.8.1 TPN Candidate Expansion 
There are two forms of chromosomes; collapsed and expanded. Initially, in each TPN 

candidate, NPA are put within episodes in a collapsed form, i.e. NPA's internal structure and 
characteristics are hidden, except its name and temporal constraint. They remain hidden during 
all genetic stages except at fitness calculation. In fitness calculation, PGen needs to have a look 
on the internal structure of the TPN candidate for effective calculation.  
 
Example  

Assume that the activity library contains two activities: Search-For-Sunk-Object and 
Rescue-Sunk-Person (see Figure 4.13). Figure 4.14.a contains a TPN candidate initialized with 
both activities in two of its episodes. It remains collapsed in all stages until it comes to fitness 
calculation. The first step in fitness calculation is to expand it and show the internal structure. 
Figure 4.14.b contains the TPN candidate expanded. 
 

sea.swim-randomly () 
 

[0, INF] 

TELL (USVView=objectView) 
 

 [0, 0] 

ASK (not (USVView =objectView)) 

 
(a) Search-For-Sunken-Object Activity TPN 

 

 
 

(b) Rescue-Sunken-Person Activity TPN 
 

Figure  4.13: Activity Library 
 

 

sea.swim-to (Medical-Ship-Loc) 
pick–sunken-person () TELL (personStatus=underCureStatus) 

 
[distance [location , Medical-Ship-Loc],INF] ASK (USVView =personView) 

[10, 20]  
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Search-For-Sunken-Object () 

 
(a) Collapsed TPN candidate 

 
 

 
 

(b) Expanded TPN candidate 
 

Figure  4.14: A TPN candidate in both collapsed and expanded forms 
 

 [0, INF] 

sea.swim-randomly () 
 

TELL (USVView=objectView) 
 

 [0, 0] 

ASK (not (USVView =objectView)) 

pick–sunken-person () 
sea.swim-to (Medical-Ship-Loc) 

TELL (personStatus=underCureStatus) 
 

[distance [location , Medical-Ship-Loc],INF] ASK (USVView =personView) 
[10, 20]  

[0, 0]  

[0, 0]  [0, 0]  

[0, 0]  

Search-For-Sunken-Object

Rescue-Sunken-Person

 
[0, INF]  

Rescue-Sunken-Person () 

[0, 0]  [0, 0]  

[0, 0]  [0, 0]  
 

[10, INF] 
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4.8.2 TEC 
 
 
 
 
 
 
 
 
 

 

3[0, 0] [0, 0] 

[0, 0] 

Extinguish-Fire () 
 

[300, + INF] 

Rescue-Family-in-Fire () 
 

[0, 120] 

2 

[0, 0] 

1  4

5 6 

Figure  4.15: A temporally inconsistent TPN 
 

It is possible for a Temporal Plan Network to represent a temporally infeasible mission 
plan that is therefore not executable. For example, in Figure 4.15, the vehicle was commanded 
to perform two simultaneous jobs. The first one is to extinguish a big fire, and in order to 
ensure that the fire will be stopped successfully; it’s required to remain at least 300 time units 
dropping water and trying to putting it out. The second one requires rescuing the family in fire, 
but for their safety, it must complete the mission in at most 120 time units. 

These two constraints conflict; there is no possible time for the two jobs to occur 
without violating one of their temporal requirements. Thus we say that the plan is temporally 
inconsistent. 

Graph algorithms can be applied in order to determine TPN temporal consistency. As 
shown in [35], the temporal constraints of a TPN can be reformulated into an equivalent graph, 
called a distance graph. A distance graph is a graphical encoding of each upper and lower 
bound in a graph with simple temporal constraints. Consistency checking for a graph with 
simple temporal constraints corresponds to negative cycle detection within the associated 
distance graph. 

A graph with simple temporal constraints can easily be converted into a distance graph 
(See Figure 4.16). First, all the nodes from the input graph are copied into the distance graph. 
Then, each upper bound in the input graph is converted into a directed arc with the same value 
and direction as the simple temporal constraint. Then, each lower bound in the input graph is 
converted into a directed arc with the negative value and opposite direction as the simple 
temporal constraint. Figure 4.17 shows an example for Inconsistent TPN with corresponding 
distance graph 
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• Let d = distance graph 
• For each event, i, in input TPN 

 add node i to d 
• For each episode from i to j in input TPN 

 add arc (i,j) to d with episode upper bound 
as weight 

 add arc (j,i) to d with negative episode 
lower bound as weight 

 
Figure  4.16: TPN to Distance Graph Algorithm 
 

 
As mentioned above, temporal consistency in a TPN corresponds to negative cycle detection in 
the associated distance graph. Once the distance graph for a given TPN has been constructed, 
one can easily determine temporal consistency by using a negative cycle detection algorithm. 
The input to this algorithm is the distance graph and the output is the distance matrix. PGen 
checks this output matrix’s diagonal elements, it anyone of them is negative, so this graph is 
temporally inconsistent. We will discuss which all-pairs shortest path algorithm used by PGen 
in section 4.8.3.3. 

 
 

Figure  4.17: Inconsistent TPN with corresponding distance graph 
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4.8.3 SYCC 

TELL (accidentRoadStatus=blockedStatus) 
3[0, 0]  

[0, 0] [0, 60] 

[0, 0] TELL (Not (accidentRoadStatus=blockedStatus)) 
 

[0, 120] 

2 

[0, 0] 

1  4 

5  6

 
Figure  4.18: TPN that have inconsistent symbols 

 
An incompatibility exists when there are two arcs in the network, representing overlapping 
intervals of time, which are labeled with symbolic constraints that conflict. Two symbolic 
constraints conflict if one is either asserting or requesting that a condition is true, while the 
other one is asserting or requesting that the same condition is false. For example, in Figure 
4.18 TELL (Not (accidentRoadStatus=blockedStatus)) and TELL 
(accidentRoadStatus=blockedStatus) conflict, as do ASK 
(Not(accidentRoadStatus=blockedStatus)) and ASK ((accidentRoadStatus=blockedStatus)). 
Since such condition pairs can never both be satisfied at the same time, they represent one 
form of plan inconsistency.  
 

4.8.3.1 Conflict Detection 
In order to detect incompatibilities, first PGen computes the feasible time bounds for 

each temporal event in the TPN, and then use these bounds to identify potentially overlapping 
intervals that are labeled with conflicting symbolic constraints. These bounds can be computed 
by solving an all-pairs shortest path problem over the distance graph representation of the 
partially completed plan. The upper bound of the feasible time range for each temporal event is 
given by the shortest path distance from the origin node to the node representing the temporal 
event. The lower bound is given by the negative shortest path distance from the node 
representing the temporal event to the origin. This bounds the time of the event with respect to 
the fixed time of the origin node. 
 
Example 
Consider the plan fragment in Figure 4.19.a 
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3[1, 1] [3, 3] 

[0, 4] 

TELL (A) 
 

[4, 8] 

ASK (not (A)) 
 

 [6, 10] 

2 

[2, 6] 

1  4

65

 
 (a) 

-1 

+1 

+6 

-2 

+3 

-3 

0 

+4 

+8

+10

-6

-4 

2 3

1

5

4

6

 
(b) 

 
0 1 9 12 6 12

-1 0 8 11 5 11
-5 -4 0 3 -3 3
-8 -1 -3 0 -6 0
-2 -1 7 10 0 10
-8 -7 1 4 -6 0

 (c) 
 

2 3

1
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4

6

< 5, 9 > < 1, 1 > 

< 0, 0 > < 8, 12 > 

< 2, 6 > < 8, 12 > 

Tell (A) 

Ask (not (A)) 

 
(d) 

Figure  4.19: (a) Plan fragment (b) Distance graph representation of the plan fragment (c) All-pairs shortest 
path distance matrix (d) Plan fragment with feasible time bound labels 
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PGen transforms this TPN into the corresponding distance graph shown in Figure 

4.19.b, then it applies all-pairs shortest path algorithm and obtains the distance matrix, shown 
in Figure 4.19.c. Negative cycles can be detected by checking the diagonal elements of the 
matrix. In the current matrix, there are no negative elements, i.e. there are no negative cycles in 
this graph, and so, PGen continues to the next step. It calculates the feasible time bounds for 
the graph events. Figure 4.19.d shows the calculated feasible times bounds. 

Now, it’s easy to get the overlapping intervals, apply SYCC check and detect conflicts if 
there are any (See Figure 4.19). 
 

• Use three arrays: 
1. First one keeps <constraint, episode> pairs 
2. Second one keeps <negated constraint, episode> 

pairs 
 
3. Third one keeps the contradictions' information 
<constraint, its negated constraint, constraint 
episode, negated constraint episode> 
 

• Parse the TPN, and do the following for each episode: 
o If it has some constraint, remember its information 

and its episode in the first array. 
o If it has some negated constraint, remember its 

information and its episode in the second array. 
 

• For each element in the first array, do the following: 
o Search for its negative in the second array, if 

found: 
 Using the help of the distance matrix of current 
TPN, get the feasible time bounds of source and 
end events of the episode labeled by current 
constraint. Let us call them S1FT and E1FT 

 Get the feasible time bounds of source and end 
events of the negated constraint's episode. Let 
us call them S2FT and E2FT 

 Check their overlapping in time: 
If ((E1FT.max < S2FT.min) || (S1FT.min> 
E2FT.max)) 
Then they don’t overlap 
Else they overlap and PGen will keep their 
information in the third array. 
 

Figure  4.20: SYCC algorithm 
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4.8.3.2 Conflict Resolution 
Usually fitness calculation doesn’t involve any action; it just contains some checks that 

return the fitness value for the current candidate. However, if we have some candidate that 
contains some conflicts (i.e. failed to pass SYCC check) it will remain with this status in 
subsequent generations until it is changed by crossover or mutation operators. What if we 
could improve the situation by resolving these incompatibilities and hence helping this 
candidate to have better fitness? We believed this would save much time and help to reach the 
solution faster. We applied some fine tuning by trying to resolve the incompatibilities detected 
by SYCC check. 
PGen resolves symbolic conflicts by one of the following methods: 
 

1. It chooses one of the two contradicting constraints at random, and then it deletes its 
NPA from the TPN candidate. Remember that SYCC check is done on expanded 
TPNs, so conflicting constraints originally are parts of NPAs. 

 
2. It constrains the time ranges of the start and end points of the intervals to ensure that 

they will not overlap. This is done by adding a special type of links called “Causal 
Links”. A Causal Link is an episode with [0, +INF] time-bounds and no attached 
ASKs, TELLs, or primitive activities. They never contain state assignments or 
constrained time-bounds of their own. They are mainly used to order plan activities 
and force a certain sequence of events to occur. Hence, they help to avoid conflicts if 
the two constraints contain conflicting information at the same time instance by 
ensuring that the two activities will be executed one after another. For example, for 
plan fragment in Figure 4.19.d, both Figure 4.21.a and Figure 4.21.b are valid 
executions of these planned activities according to the feasible time ranges of their 
start and end events. Since ASK (not (A)) and TELL (A) cannot both be satisfied over 
the period from time 2 to time 9, the execution illustrated in Figure 4.21.a is invalid. 
However, the execution shown in Figure 4.21.b is valid, which demonstrates that it is 
possible to resolve incompatibilities in some cases by further constraining the feasible 
time ranges of events. Rather than arbitrarily constraining the time ranges of the 
interval start and end points, PGen uses orderings to resolve each incompatibility. An 
ordering pushes one interval before another interval by adding a non-negative 
temporal constraint from the end-point of the first to the start-point of the second, or 
vice versa. Note that the temporal constraint used to represent this ordering cannot 
have a zero lower bound because that would still allow for the end-time of the first 
activity to be the same as the start-time of the second. Therefore, the temporal 
constraint used to represent the ordering has a lower bound of ε, where ε represents the 
granularity ε of the time representation. For example, if time were represented in 
milliseconds, then ε would equal 1 millisecond. Figure 4.21.c shows an ordering, with 
ε=1, which would have resolved the incompatibility of the plan fragment in Figure 
4.19. Using orderings to constrain the temporal events can repair a plan while retaining 
as much temporal flexibility as possible. 
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Tell (A) 

0       1       2       3       4       5 6       7 0       9      10     11     12     13     14     15     16 

Ask (not (A))

 
(a) 

0       1       2       3       4       5 6       7 8       9      10     11     12     13     14     15     16    

Ask (not (A))

Tell (A) 

 
(b) 

2 3

1

5

4

6

< 5, 9 > < 1, 1 > 

< 0, 0 > < 8, 12 > 

< 2, 6 > < 8, 12 > 

Tell (A) 

ASK (not (A)) 

[1, +INF] 

 
(c) 

 
Figure  4.21: (a) & (b) Two possible scenarios of how two contradicting activities may be performed. (c) The 
temporal constraint between 3 and 5 represents an ordering used to resolve the incompatibility illustrated 

in Figure 4.19 
 

4.8.3.3 All-pairs shortest path problem 
PGen has to solve all-pairs shortest path algorithm in order to detect negative cycle in 

TPN as part of TEC check. It needs also to get the distance matrix and calculate events’ 
feasible times as part of SYCC check.. All-pairs shortest path algorithms can be used to get 
shortest path between all graph nodes as well as to detect negative cycles. An example of all-
pairs shortest path algorithm is Floyd-Warshall algorithm [36]; it runs in O (n³) where n is the 
number of nodes in graph.  There is another algorithm that has better asymptotic running time 
than Floyd-Warshall on networks in which the number of arcs is much less than O (n²); it is 
Johnson’s algorithm [9] [37]. Johnson’s algorithm can be implemented to run in O (n²logn + 
mn), which becomes O (n²logn) if m=O (n) where m is the number of arcs in graph. PGen uses 
Johnson’s algorithm to detect negative cycles in addition to getting shortest path between all 
events in TPN candidates. 
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4.8.4 COMP 
For a Temporal Plan Network to be executable, it must be complete. A TPN is 

complete when all of its embedded open conditions (ASKs) are satisfied. Specifically, TPN 
completeness corresponds to a control program TPN being successfully combined with a 
TPN environment model and a set of activity TPNs from the activity library in order to achieve 
the mission designer’s planning goals. 

In a Temporal Plan Network, ASK constraints represent open conditions that the 
system must satisfy. Therefore, the planning goals within a scenario’s control program and 
activities always take the form of ASK constraints. Recall that whereas ASK constraints 
request state assignments, TELL constraints assert state assignments. Thus for the open 
condition in an ASK constraint to be closed, a TPN must guarantee that this ASK constraint is 
entailed by some TELL constraint in the network. Also, as ASK and TELL constraints are 
assigned temporal episodes, a TELL can only close an ASK if its time-bounds subsume (or 
contain) the time-bounds of the ASK constraint. When all of the ASK constraints in a TPN are 
closed by TELL constraints and any conflicting TELL constraints are ordered so as to not co-
occur, we say that the TPN is complete. 

As discussed in section 4.8.3.2, PGen follows a certain strategy in fitness calculation; 
not only it performs some checks and return a fitness value for candidates, but rather, it 
improves the performance by trying to resolve the detected incompatibilities if possible. As 
was done in SYCC check, PGen tries to resolve conflicts in COMP check as well. 

PGen first checks to see how many ASKs are satisfied by closing TELLs. Once an 
interval that may satisfy this open condition is found, it tries to satisfy or close these open 
conditions by adding causal links. Causal links force the TELL interval to contain the interval 
of the open condition. Figure 4.22 shows COMP algorithm in details 
 

• Use five arrays: 
1. The first one is for ASK constraints. Each element 

has two components; a constraint and a pointer to 
an array. This array contains all episodes labeled 
with this constraint. 

2. The second one has the same structure as the 
previous one but it’s for TELL constraints. 

3. The third one is an array of episodes. It contains 
the episodes labeled with ASKs that have some 
closing TELLs found in TPN candidate. 

4. The fourth one is an array of pointers. Each one 
points to an array of episodes that contain closing 
TELLs for the corresponding element in the third 
array. 

 
Note that each element in the third and fourth arrays 
contains information related to its corresponding element 
in the other array. 
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5. The fifth one contains successful pairs. Each 
element has two components; an episode that has an 
opening ASK and another episode that contain its 
closing TELL. The two episodes overlap in time. 

 
• Parse the TPN, and do the following for each episode: 

o If it has an ASK, search for this constraint in the 
first array, if found, append this episode to its 
array of episodes. Else, add it as a new item along 
with its episode. 

o If it has a TELL, search for this constraint in the 
second array, if found, append this episode to its 
array of episodes. Else, add it as a new item along 
with its episode. 

 
• For each element in the first array, do the following: 

o Search for the same constraint in the second array, 
if found: 

 Get the array of episodes that resides as a 
second component in the first array element. Let 
us call it EpArr1. 

 Get the array of episodes that resides as a 
second component in the second array element. 
Let us call it EpArr2. 

 For each element in EpArr1: 
 Add it to the third array. 
 Add EpArr2 to the fourth array. So, each 
element in the third array is corresponding 
to the fourth array. 

 Remove current element from the first array. 
 

• Delete all elements in the second array. 
• If the first array size >0, then there are some open 

conditions in this TPN candidate with no closing TELLs. So 
this TPN is not complete. Return this size as the fitness 
value. 

• Else, check that ASKs overlap with their closing TELLs. 
For each episode in the third array: 

o Get the feasible time bounds of source and end 
events. Let us call them S1FT and E1FT 

o Get its corresponding element in the fourth array 
which is an array of episodes, let us call it EpArr4. 
For each element in EpArr4: 
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 Get the feasible time bounds of source and 
end events. Let us call them S2FT and E2FT 

 Check its overlapping in time against S1FT 
and E1FT: 

If ((E1FT.max < S2FT.min) || (S1FT.min> 
E2FT.max)) 
Then  

 They don’t overlap 
Else 

 They overlap; hence add the two 
episodes to the fifth array. 

 Delete current element from the third 
array. 

 Delete current element from EpArr4 
 

• If the third array size >0, then there are some ASKs can’t 
be satisfied. Then delete third array and return this size 
as its fitness. 

• Else it’s a complete TPN, therefore for each successful 
pair in the fifth array close open ASK. This is done by 
adding two causal links (episodes with [0, +INF] temporal 
constraint). The first causal link goes from the start 
node of the first episode to the start node of the second 
episode. The second causal link goes from the end node of 
the second to the end node of the first. 

• Return 0 as this TPN fitness. 
 

Figure  4.22: COMP Algorithm 
 

Example 
Consider the plan fragment in Figure 4.23.a, episode between events 5 & 6 has an open 
condition. PGen finds that it has a closing TELL in episode between events 2 & 3. So, as 
shown in Figure 4.23.b, it adds two causal links in order to force the TELL interval to contain 
the interval of the open condition.  
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[0, +INF] [0, +INF] 

 
(b) 

 
Figure  4.23: (a) Plan fragment in which episode between events 5 & 6 has an open condition (b) Causal 
links are used to satisfy the open condition. 

4.9 Summary 
As described in this chapter, PGen generative TPN planning algorithm finds solution plans 
when given an input control program and activity library. This chapter introduced PGen 
components in details. PGen supports rich activity operators and goal specifications, flexible 
time-bounds, and it uses Genetic Algorithms for TPN-based planning. It must be noted that 
some Genetic operators have been modified to suit the TPN representation. Genetic 
Algorithms have shown successful performance when used to generate action plans 
represented as TPNs as will be discussed in more details in the next chapter. 
 

- 77 - 



    

5 Chapter Five: 
 

Experimental Results 
 
 
This thesis presented PGen planning algorithm, which enables generative planning with 
complex processes by means of Genetic Algorithms. PGen supports generative planning with 
complex processes via three main aspects. First, PGen represents operators using the RMPL 
language that describes behaviors as a parallel and sequential composition of states and 
activity episodes. Second, PGen uses a uniform operator and plan-space representation of 
processes in terms of Temporal Plan Networks. Third, PGen uses Genetic Algorithms as a 
novel approach for TPN-based planning. Genetic Algorithms showed successful performance 
when used to generate action plans represented as TPNs. This chapter discusses PGen’s 
implementation, performance and the experimental results using 66 test problems and finally, 
it concludes by a comparative discussion to Spock, the closest existing module to PGen. 

 

5.1 Implementation Issues 
PGen generative TPN planner described in this thesis was built on Open BEAGLE Framework 
version 2.1.3 [20]. Open BEAGLE is a versatile C++ environment designed to execute any 
Evolutionary Computations. PGen was implemented using C++ and tested on Pentium IV 3 
GHz processor with 1 GB of RAM running Windows XP SP2.  

As previously described, PGen is designed to be part of Kirk model-based executive. 
The primary components of Kirk are the Control Sequencer, the Generative Activity Planner, 
the Kino-Dynamic Path Planner and the Road Map Path Planner. The Control Sequencer 
identifies a consistent goal/strategy plan that establishes the guidelines for a particular mission. 
Then, the Generative Activity Planner takes the mission plan in high level from the Control 
Sequencer as an input and generates an actionable activity plan. The Kino-Dynamic Path 
Planner takes the activity plan from the generative activity planner, and for each motion 
activity, it generates a trajectory through which the desired destination can be reached. The 
Road Map Path Planner provides distance estimates to other components.  Finally, the solution 
plan is passed to the plan runner, which schedules activities and executes primitive commands 
on the vehicle hardware. PGen is designed to play the role of the Generative Activity Planner 
inside Kirk. 

While PGen’s planning algorithm is complete, it still needs to be integrated with the 
rest of the Kirk model-based executive. The current implementation of PGen contains a 
Graphical User Interface application called PGen Manager. It was implemented to help the 
mission designer to specify the goal plan and the possible activity models so that they would 
be fed into PGen core. PGen core functionality is implemented in a component called PGen 
Engine (See Figure 5.1). The solution plan TPN is dumped to XML files. Integration with the 
rest of the Kirk model-based executive will be completed in the near future. 
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Figure  5.1: PGen current implementation 

 

5.1.1 PGen Engine 
PGen implementation described in this thesis contains the following C++ classes: 

 
1. CPGen 
2. CXMLRegisterReader 
3. CEnvironmentLoader 
4. CTPNSystem : public Beagle::System 
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5. CTPNContext : public Beagle::Context 
6. CTPNEvolver :public Beagle::Evolver 
7. CTPNVivarium : public Beagle::Vivarium 
8. CTPNInitOp :public InitializationOp 
9. CTPNCrossoverOp : public Beagle::CrossoverOp 
10. CTPNMutationOp : public MutationOp 
11. CTPNEvalOp :public Beagle::EvaluationOp 
12. CTPNIndividual :public Beagle::Individual 
13. CTPN : public  Beagle::Genotype 
14. CTPNComponent :public CObject 
15. CTPNOperator :public CTPNComponent 
16. CTPNEpisode :public CTPNComponent 
17. CTPNEvent :public CTPNComponent 
18. CTPNPrimitiveActivity :public CTPNOperator 
19. CTPNNonPrimiveActivity:public CTPNOperator 
20. CTPNConstraint :public CTPNComponent 
21. CTPNAskConstraint :public CTPNConstraint 
22. CTPNTellConstraint :public CTPNConstraint 

 
PGen architecture follows the principles of Object Oriented Programming (OOP). 

Concepts like inheritance, abstraction and composition are used extensively by PGen. Figure 
5.2 shows PGen class diagram; a layout for all classes with their inter-relationships. CPGen is 
the main class that invokes the evolution process. CXMLRegisterReader is used by CPGen to 
load register parameters. As discussed in Chapter 4, some parameters that are required for 
proper setup are loaded at startup; these are specified in Table 5.1. As shown in Figure 5.2 
there is a dependency relationship between class CPGen and CXMLRegisterReader. 

 
Table  5.1: Register Contents 

 
ID Parameter Name 

Structure-based Parameters 
1 Minimum Events per Path  
2 Maximum Events per Path  
3 Minimum Parallel Paths  
4 Maximum Parallel Paths 

Genetic Algorithm Parameters 
5 Population Size 
6 Maximum Generations 
7 Minimum Fitness (fitness is minimized) 
8 Elitism Size 
9 Tournament Size 
10 Crossover Probability 
11 Mutation Probability 
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CEnvironmentLoader is used to load the Environment Model into memory. 

Environment model is represented by the activity library and the goal control program. The 
activity library contains non-primitive activities, primitive activities, constraints and attributes. 
The main concern is about non-primitive activities which are composed of primitive activities, 
constraints and attributes. Goal is loaded and constructed in memory as a TPN in order to be 
used later in the evolution. As shown in Figure 5.2 there is a dependency relationship between 
class CPGen and CEnvironmentLoader. 

CTPNSystem implements class Beagle::System; a fundamental class in Open 
BEAGLE framework. The System is the structure that holds and gives access to the state of the 
genetic engine. It centralizes references to four important entities: the context, the register, the 
logger and the randomizer. These entities are fundamental because they are used as entry 
points to the data of the evolution. PGen has class CTPNContext that implements class 
Beagle::Context. During the evolutionary processes, a context gives the current state of the 
evolution such as the current individual, genotype and generation. As shown in Figure 5.2 
there is a "one to one" composition relationship between class CTPNSystem and class 
CTPNContext. 

The evolver is the component that supervises the evolution process. This object is 
implemented in class CTPNEvolver that implements Beagle::Evolver. The evolver mainly 
comprises two major operator sets: the bootstrap operator set and the main-loop operator set. 
The bootstrap operator set contains an ordered list of operators to apply on each vivarium for 
the initial generation. PGen adds CTPNInitOp as a boot strap operator. For more details about 
the functionality of CTPNInitOp, see section 4.4 Chromosome Structure and Initialization in 
Chapter 4.  

The main-loop operator set is an ordered list of operators to apply iteratively on each 
generation. PGen adds SelectTournamentOp, CTPNCrossoverOp, CTPNMutationOp and 
CTPNEvalOp as main-loop operators to the evolution. PGen could launch an evolution by 
calling method “evolve” in class Evolver with the vivarium as argument. As shown in Figure 
5.2, there is a dependency relationship between class CTPNEvolver and class CTPNVivarium. 
Also, there are dependency relationships between class CTPNEvolver and classes 
CTPNInitOp, CTPNCrossoverOp, CTPNMutationOp and CTPNEvalOp. 

CTPNVivarium implements Beagle::Vivarium that contains the population. A vivarium 
is composed of individuals that are themselves composed of genotypes. An individual is 
composed of one or more genotypes and a fitness value. Class CTPNIndividual represents an 
individual. The genotype is the basic data structure used for coding individuals. For PGen, this 
data structure is a Temporal Plan Network defined by class CTPN. As shown in Figure 5.2, 
there is a "one to many" composition relationship between class CTPNVivarium and class 
CTPNIndividual. Also, there is a "one to one" composition relationship between class 
CTPNIndividual and class CTPN. Also, there is a dependency relationship between class 
CTPNIndividual and class CTPNEvalOp. 

Class CTPNComponent is an abstract representation for any Temporal Plan Network 
component. A Temporal Plan Network component can be an operator, an Episode, an Event or 
a constraint. An Operator can be a Primitive Activity or a Non-Primitive Activity. A constraint 
can be an ASK constraint (state query) or a TELL constraint (state assertion). An Episode can 
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contain a Primitive Activity, a Non-Primitive Activity and some constraints. A Non-Primitive 
Activity can contain further episodes, events and constraints. PGen puts these specifications 
into practice as shown in Figure 5.2.  

Classes CTPNOperator, CTPNEpisode, CTPNEvent and CPNConstraint implement 
CTPNComponent. Classes CTPNPrimitiveActivity and CTPNNonPrimitiveActivity 
implement CTPNOperator. Classes CTPNAskConstraint and CTPNTellConstraint implement 
CPNConstraint. There is "one to many" composition relationships between class 
CTPNEpisode and classes CTPNPrimitiveActivity and CPNConstraint. There is a binary 
association between class CTPNEpisode and class CTPNNonPrimitiveActivity . Also there is 
a "one to many" composition relationship between class CTPNNonPrimitiveActivity and class 
CTPNEvent. Finally, class CTPN have two "one to many" composition relationships with 
CTPNEpisode and CTPNEvent. 
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Figure  5.2: PGen Class Diagram 

5.2 Performance Analysis 
PGen was run on 66 test problems to track its effectiveness. Mainly, three basic test bed 
problems with different complexities have been used throughout this research: 

 
1.  The first problem, “Railway Accident Problem”, is concerned with some scenarios 
related to a Railway Accident.  Consider that there is an Accident on a railway and it is 
required to send one RUV (Running Unmanned Vehicle) to collect some information about 
the accident. Then it is expected to call the Railway Check Point in order to block this 
railway so that other trains change their directions to another railway. 
 
2. The second problem, “Fire Suppression Problem”, is concerned with some scenarios 
related to a Fire Accident. Consider that there is a fire in some location and it is required to 
send some FFUV (Fire Fighting Unmanned Vehicle) to suppress it.  
 
3. The third problem, “Wrecks Collection Problem”, is concerned with some scenarios 
related to a Ship Sinking. There is some ship that sunk in the sea and it is required to send 
some SUV (Swimming Unmanned Vehicle) to collect its wrecks. The SUV should search 
for sunken objects related to this ship. Then it should identify that these object are some 
wrecks. Other existing objects may be dead bodies or passing fishes. After it identifies the 
wrecks, it should pick them and swim back to the Wrecks Ship Location.  

 
These three problems are different in complexity. Complexity is measured as the 

number of Primitive Activities and Non-Primitive Activities required solving the problem. In 
that sense, the “Wrecks Collection Problem” is more complex than the “Fire Suppression 
Problem”. Also the “Fire Suppression Problem” is more complex than the “Railway Accident 
Problem”.  

These problems were used to validate PGen’s correctness and demonstrate its 
applicability to actual autonomous vehicle control scenarios. We also monitored the change of 
some parameters on PGen’s performance for each category of problems. Section 5.2.2 
describes in full details the effect of changing these parameters on PGen’s performance. 
Section 5.2.1 explains some performance analysis accompanied by the amount of required 
processing to solve a problem using PGen.  

5.2.1 Amount of processing required to solve a problem 
One way to measure the amount of computational resources required by a Genetic 

Algorithm is to determine the number of independent runs needed to yield a success with a 
certain probability (99% for example) [6]. Once we determine the likely number of 
independent runs required, we can then multiply by the amount of processing required for each 
run to get the total amount of processing.  
The amount of processing required for each run depends primarily on the product of: 
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• The number of individuals M in the population 
• The number of generations executed in that run, and 
• The amount of processing required measuring the fitness of an individual.  

 
First, we obtained experimentally an estimate of the probability  that a particular run 
with population size 

),( iMY
M yields, for the first time, on a specified generation i, an individual 

satisfying the success predicate of the problem (an individual has fitness=0 in case of PGen). 
Once we get  for each generation i, we can compute the cumulative probability of 
success  for all generations between generation 0 and i. 

),( iMY
),( iMP

 
The probability to reach a solution by generation i at least once in R  runs is  
 
 

[ ]RiMPz ),(11 −−=  
Equation 5.1: Probability to reach a solution by generation i at least once in R  runs 

 
 
So, if we want to reach a solution with probability of 99 %, so  should equal 99%. z
After taking logarithms, we find 
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Equation 5.2: Required runs to reach a solution with probability of 99% 
 
 
Where 01.01 =−= zε  
 
In the following two sub-sections, we will analyze the role of Number of Generations and the 
role of Population Size in PGen’s performance. We will apply this analysis to the most 
complex problem among our test problems; “Wrecks Collection Problem”. 

5.2.1.1 Role of Number of Generations 
For a fixed population size, the cumulative probability  of reaching a solution 

inevitably increases (or at least does not decrease.) if a particular run is continued for 
additional generations. In principle, any point in the space of possible outcomes can eventually 
be reached by any genetic method if mutation is available and the run continues for a 
sufficiently large number of generations. However there is a point after which the cost of 
extending a given run exceeds the benefit obtained from the increase in the cumulative 
probability of success . 

),( iMP

),( iMP
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Table  5.2: Total number of individuals that must be processed by different generations with population 
size M=900 for the “Wrecks Collection Problem” 

Generation 
Number (i) 

Probability of 
success Y(M, i) 

Cumulative 
probability 
of success 
P(M, i) 

Number of 
independent 
runs R(z) 
required 

Total number of 
individuals that 
must be 
processed  
I (M, i, z) 

1 3% 3% 151 135900
2 30% 33% 11 19800
3 22% 55% 6 16200
4 12% 67% 4 14400
5 7% 74% 3 13500
6 8% 82% 3 16200
8 3% 85% 2 14400

12 2% 87% 2 21600
18 2% 89% 2 32400
20 2% 91% 2 36000
23 2% 93% 2 41400
24 2% 95% 2 43200
25 2% 97% 1 22500
26 2% 99% 1 23400

 
 

As we can see from Table 5.2, the cumulative probability of success is highest at 
generation 26. However the computational effort required yielding a solution to this problem 
with 99% probability is higher at generation 26 than at many earlier generations having lower 
values of . Figure 5.3 shows the cumulative probability of success and the number of 
individuals to be processed in terms of the generation number.  

),( iMP

Between generations 1 and 5 the  curve has a rather steep slope. The curve 
rises rapidly from generation to generation, causing the required number of independent runs 

 to drop rapidly from generation to generation. Meanwhile, the product  increases 
only linearly from generation to generation. Thus, between generations 1 and 5 the total 
number of individuals that must be processed  drops steadily until it reaches the 
minimum that occurs at generation 5. At generation 5 the cumulative probability of success is 
74%, so the number of independent runs  is 3. Thus, processing only 13,500 individuals 
(i.e. 900 ×   5 generations ×  3 runs) is sufficient to yield a solution for this problem with a 99% 
probability.  

),( iMP

)(zR iM ×

),,( ziMI

)(zR

After generation 5, the increase in the cumulative probability of success  above 
74% is slower from generation to generation. Consequently, the decrease in  occurs very 
slowly and we find that the number of individuals to be processed increases.   

),( iMP
)(zR
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Figure  5.3 : (a) Cumulative probability of success P(M, i) with population size M=900 for generations 1 
through 26 for the “Wrecks Collection Problem” (b) Individuals to be processed I(M,i,z) with population 
size M=900 for generations 1 through 26 for the “Wrecks Collection Problem” 
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5.2.1.2 Role of Population Size 
Our experience is that a larger population size M  increases the cumulative 

probability  of satisfying the success predicate of a problem. However, there is a point 
after which the cost of a larger population (in terms of individuals to be processed) begins to 
exceed the benefit obtained from the increase in the cumulative probability of success . 

),( iMP

),( iMP
Table 5.3 shows the total number of individuals that must be processed by different 

generations with population size M=50 for the “Wrecks Collection Problem”. Figure 5.4 
shows the performance curves for a population size 50. The numbers 6, 27000 in the rectangle 
indicate that, if this problem is run through to generation 6, processing a total of 27000 
individuals (i.e. 50 individual ×  6 generations ×  90 runs) is sufficient to yield a solution of this 
problem with 99% probability. 

 
Table  5.3: Total number of individuals that must be processed by different generations with population 

size M=50 for the “Wrecks Collection Problem” 
 

Generation 
Number (i) 

Probability 
of success 
Y(M, i) 

Cumulative 
probability 
of success 
P(M, i) 

Number of 
independent 
runs R(z) 
required 

Total number of 
individuals that 
must be processed  
I (M, i, z) 

4 3% 3% 151 30200
6 2% 5% 90 27000

12 2% 7% 63 37800
37 1% 8% 55 101750
38 1% 9% 49 93100
53 1% 10% 44 116600
80 1% 11% 40 160000
92 1% 12% 36 165600

141 1% 13% 33 232650
152 1% 14% 31 235600
157 1% 15% 28 219800
189 1% 16% 26 245700
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Figure  5.4: (a) Cumulative probability of success P(M, i) with population size M=50 for generations 4 
through 189 for the “Wrecks Collection Problem” (b) Individuals to be processed I(M,i,z) with population 
size M=50 for generations 4 through 189 for the “Wrecks Collection Problem” 
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Table 5.4 shows the total number of individuals that must be processed by different 
generations with population size M=100. Figure 5.5 shows the performance curves for 
population size 100. The numbers 4, 13200 in the rectangle indicate that if this problem is run 
through to generation 4, processing a total of 13200 individuals (i.e., 100 individual ×  4 
generations ×  33 runs) is sufficient to yield a solution of this problem with 99% probability. 

 
 

Table  5.4: Total number of individuals that must be processed by different generations with population 
size M=100 for the “Wrecks Collection Problem” 

 
 

Generation 
Number (i) 

Probability 
of success 
Y(M, i) 

Cumulative 
probability 
of success 
P(M, i) 

Number of 
independent 
runs R(z) 
required 

Total number 
of individuals 
that must be 
processed  
I (M, i, z) 

2 3% 3% 151 30200
3 7% 10% 44 13200
4 3% 13% 33 13200
6 2% 15% 28 16800
10 2% 17% 25 25000
11 2% 19% 22 24200
12 2% 21% 20 24000
16 2% 23% 18 28800
18 3% 26% 15 27000
20 2% 28% 14 28000
22 2% 30% 13 28600
29 3% 33% 11 31900
44 3% 36% 10 44000
56 2% 38% 10 56000
61 2% 40% 9 54900
93 2% 42% 8 74400
98 2% 44% 8 78400
100 2% 46% 7 70000
108 2% 48% 7 75600
117 2% 50% 7 81900
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Figure  5.5 (a) Cumulative probability of success P(M, i) with population size M=100 for generations 2 
through 117 for the “Wrecks Collection Problem” (b) Individuals to be processed I (M,i,z) with population 
size M=100 for generations 2 through 117 for the “Wrecks Collection Problem” 
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Table 5.5 shows the total number of individuals that must be processed by different 

generations with population size M=200. Figure 5.6 shows the performance curves for 
population size of 200. The numbers 4, 9600 in the rectangle indicate that if this problem is run 
through to generation 4, processing a total of 9600 individuals (i.e., 200 individual ×  4 
generations ×  12 runs) is sufficient to yield a solution of this problem with 99% probability. 

 
 

Table  5.5: Total number of individuals that must be processed by different generations with population 
size M=200 for the “Wrecks Collection Problem” 

 
Generation 
Number (i) 

Probability 
of success 
Y(M, i) 

Cumulative 
probability 
of success 
P(M, i) 

Number of 
independent 
runs R(z) 
required 

Total number of 
individuals that 
must be processed  
I (M, i, z) 

1 2% 2% 228 45600
2 12% 14% 31 12400
3 10% 24% 17 10200
4 8% 32% 12 9600
5 5% 37% 10 10000
6 2% 39% 9 10800
7 3% 42% 8 11200
8 2% 44% 8 12800
9 2% 46% 7 12600

10 2% 48% 7 14000
11 3% 51% 6 13200
21 2% 53% 6 25200
25 2% 55% 6 30000
35 2% 57% 5 35000
38 2% 59% 5 38000
40 2% 61% 5 40000
41 2% 63% 5 41000
50 2% 65% 4 40000
54 2% 67% 4 43200
56 2% 69% 4 44800
69 2% 71% 4 55200
77 2% 73% 4 61600
94 2% 75% 3 56400
97 2% 77% 3 58200

101 2% 79% 3 60600
121 2% 2% 228 45600
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Figure  5.6: (a) Cumulative probability of success P(M, i) with population size M=200 for generations 1 
through 121 for the “Wrecks Collection Problem” (b) Individuals to be processed I(M,i,z) with population 

size M=200 for generations 1 through 121 for the “Wrecks 
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Table 5.6 shows the total number of individuals that must be processed by different 

generations with population size M=300. Figure 5.7 shows the performance curves for 
population size 300. The numbers 3, 7200 in the rectangle indicate that, if this problem is run 
through to generation 3, processing a total of 7200 individuals (i.e., 300 individual ×  3 
generations  8 runs) is sufficient to yield a solution of this problem with 99% probability. 
Note that until now increasing the population size increases the cumulative probability of 
success and decreases the total number of individuals to be processed. 

×

 
Table  5.6: Total number of individuals that must be processed by different generations with population 

size M=300 for the “Wrecks Collection Problem 
 

Generation 
Number (i) 

Probability 
of success 
Y(M, i) 

Cumulative 
probability 
of success 
P(M, i) 

Number of 
independent 
runs R(z) 
required 

Total number of 
individuals that 
must be processed  
I (M, i, z) 

1 2% 2% 228 68400
2 17% 19% 22 13200
3 25% 44% 8 7200
4 2% 46% 7 8400
5 2% 48% 7 10500
6 2% 50% 7 12600
9 2% 52% 6 16200

11 2% 54% 6 19800
16 2% 56% 6 28800
19 2% 58% 5 28500
21 2% 60% 5 31500
24 2% 62% 5 36000
26 2% 64% 5 39000
42 2% 66% 4 50400
43 2% 68% 4 51600
46 2% 70% 4 55200

 
 

- 94 - 



    

3, 44%

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Generation

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

 
(a) 

3, 7200
0

10000

20000

30000

40000

50000

60000

70000

80000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Generation

In
di

vi
du

al
s 

to
 b

e 
pr

oc
es

se
d

 
(b) 

 
Figure  5.7: (a) Cumulative probability of success P(M, i) with population size M=300 for generations 1 

through 46 for the “Wrecks Collection Problem” (b) Individuals to be processed I(M,i,z) with population 
size M=300 for generations 1 through 46 for the “Wrecks Collection Problem” 
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Table 5.7 shows the total number of individuals that must be processed by different 
generations with population size M=400. Figure 5.8 shows the performance curves for 
population size 400. The numbers 3, 8400 in the rectangle indicate that, if this problem is run 
through to generation 3, processing a total of 8400 individuals (i.e., 400 individual ×  3 
generations  7 runs) is sufficient to yield a solution of this problem with 99% probability. 
Note that the cumulative probability of success is still increasing which is a good behavior. 
However the total number of individuals to be processed begins to rise which is a bad 
behavior. 

×

 
 

Table  5.7: Total number of individuals that must be processed by different generations with population 
size M=400 for the “Wrecks Collection Problem” 

 

Generation 
Number (i) 

Probability 
of success 
Y(M, i) 

Cumulative 
probability 
of success 
P(M, i) 

Number of 
independent 
runs R(z) 
required 

Total number of 
individuals that 
must be processed  
I (M, i, z) 

1 2% 2% 228 91200
2 17% 19% 22 17600
3 27% 46% 7 8400
4 3% 49% 7 11200
5 5% 54% 6 12000
7 2% 56% 6 16800
8 3% 59% 5 16000
9 2% 61% 5 18000

13 2% 63% 5 26000
14 2% 65% 4 22400
15 2% 67% 4 24000
19 2% 69% 4 30400
20 2% 71% 4 32000
27 2% 73% 4 43200
89 2% 75% 3 106800

108 2% 77% 3 129600
155 2% 79% 3 186000
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Figure  5.8: (a) Cumulative probability of success P(M, i) with population size M=400 for generations 1 

through 155 for the “Wrecks Collection Problem” (b) Individuals to be processed I(M,i,z) with population 
size M=400 for generations 1 through 155 for the “Wrecks Collection Problem” 
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Table 5.8 shows the total number of individuals that must be processed by different 
generations with population size M=500. Figure 5.9 shows the performance curves for 
population size 500. The numbers 3, 12000 in the rectangle indicate that, if this problem is run 
through to generation 3, processing a total of 12000 individuals (i.e., 500 individual ×  3 
generations  8 runs) is sufficient to yield a solution of this problem with 99% probability. 
Note that the total number of individuals that must be processed is still increasing. 

×

 
Table  5.8: Total number of individuals that must be processed by different generations with population 

size M=500 for the “Wrecks Collection Problem” 
 

Generation 
Number (i) 

Probability 
of success 
Y(M, i) 

Cumulative 
probability 
of success 
P(M, i) 

Number of 
independent 
runs R(z) 
required 

Total number of 
individuals that 
must be processed  
I (M, i, z) 

1 2% 2% 228 114000
2 10% 12% 36 36000
3 30% 42% 8 12000
4 7% 49% 7 14000
5 3% 52% 6 15000
6 3% 55% 6 18000
8 2% 57% 5 20000

10 2% 59% 5 25000
15 2% 61% 5 37500
16 2% 63% 5 40000
27 5% 68% 4 54000
37 2% 70% 4 74000
74 2% 72% 4 148000
91 2% 74% 3 136500

131 2% 76% 3 196500
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Figure  5.9: (a) Cumulative probability of success P(M, i) with population size M=500 for generations 1 

through 131 for the “Wrecks Collection Problem” (b) Individuals to be processed I(M,i,z) with population 
size M=500 for generations 1 through 131 for the “Wrecks Collection Problem” 
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Table 5.9 shows information about all the previous runs, from which we can 

conclude the best population size that should be chosen for this problem. Between population 
sizes 50 and 300  curve has a rather steep slope. The curve rises rapidly from one 
value to another, causing the required number of independent runs  to drop rapidly from 
one value to another. Thus, between population sizes 50 and 300 the total number of 
individuals that must be processed  drops steadily until it reaches its minimum at 
population size 300. At population size 300 the cumulative probability of success is 44%, so 
the number of independent runs  is 8. Thus, processing only 7200 individuals (i.e. 300 

),( iMP
)(zR

),,( ziMI

)(zR ×  
3 generations ×  8 runs) is sufficient to yield a solution of this problem with a 99% probability. 
After population size 300, the increase in the cumulative probability of success  from 
44% is slower from one to another. Consequently, the decrease in  occurs very slowly 
and we find that the number of individuals to be processed increases.  

),( iMP
)(zR

So, to conclude, we can say that a larger population size M increases the cumulative 
probability  of satisfying the success predicate of a problem. However, there is a point 
after which the cost of a larger population begins to go beyond the profit obtained from the 
increase in the cumulative probability of success . 

),( iMP

),( iMP
 

Table  5.9: Cumulative probability of success P(M, i) and Individuals to be processed I(M,i,z) with 
population size 50 through 700 for the “Wrecks Collection Problem” 

 
Population Size M Cumulative 

probability of success 
P(M,i) 

Total number of 
individuals that must 
be processed  
I (M, i, z) 

50 5% 27,000 
100 13% 13,200 
200 32% 9,600 
300 44% 7,200 
400 46% 8,400 
500 42% 12,000 
600 53% 13,800 
700 52% 16,200 
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Figure  5.10: (a) Cumulative probability of success P(M, i) with population size 50 through 700 for the 

“Wrecks Collection Problem” (b) Individuals to be processed I(M,i,z) with population size 50 through 700 
for the “Wrecks Collection Problem” 

 
At the end, we can say that this computational effort can be considered as a basis for 
measuring the difficulty of solving a particular problem and also a basis for comparing the 
relative difficulty of solving different problems. Moreover, it may be useful in planning future 
runs if one believes that some new problem is similar in difficulty to a problem for which the 
performance curves have already been established. In this case, the performance curves may 
provide some general guidance on the choice of the population size and the maximum 
generations. 
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5.2.2 Effect of Changing Some Parameters on PGen’s performance 
In this section we provide full analysis for the effect of changing some parameters on 

PGen’s performance. We chose to study the effect of changing the following parameters: 
 

• Number of NPAs 
• Elitism Size 
• Tournament Size  
• Mutation Probability 
• Crossover Probability 
 
We used two parameters as a manifestation of PGen’s performance; probability to reach a 
solution and average solution generation.  

To calculate the probability to reach a solution, we made 20 runs for the same problem 
then get number of successful runs that found a solution. Failed runs are those that didn’t reach 
a solution. To calculate the average solution generation we get the generation at which each 
run reached a solution, and then get the average. 

Because Crossover Probability is the most important operator that PGen rely on, we 
decided to use other third indicative parameter which is total number of individuals that must 
be processed (Processing Amount). We calculated the Processing Amount in the same way we 
did in the last section.  
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5.2.2.1 The effect of changing Number of NPAs 
Tables 5.10 (a) and (b) show the Number of Non-Primitive Activities, Total Number of 

Events, Total Number of Episodes and Number of Primitive Activities against probability to 
reach a solution and average solution generation. Figure 5.11 shows the graphical depiction of 
these results. As we can see from Figure 5.11.a that the probability to reach solution decreases 
when the Number of Non-Primitive Activities gets higher and we find this very logical; 
increasing the search space decreases the probability to find a solution. Also, Figure 5.11.b 
shows that PGen finds the solution slower when the search space gets bigger.  

 
 

Table  5.10: (a) Probability to reach a solution (No of solutions out of 20 different runs) against Number of 
NPAs, total Number of Events, total Number of Episodes and Number of PAs for the “Railway Accident 

Problem”, “Fire Suppression Problem” and “Wrecks Collecton Problem” (b) Average solution generation 
among those runs that found a solution out of 20 runs against Number of NPAs, total Number of Events, 
total Number of Episodes and Number of PAs for the “Railway Accident Problem”, “Fire Suppression 

Problem” and “Wrecks Collection Problem” 
No of 
NPAs 

Total 
No of 

Events 

Total No 
of 

Episodes 

No 
of 

PAs 

Probability to 
reach a 

solution for the 
“Railway 
Accident 
Problem” 

Probability to 
reach a solution 

for the “Fire 
Suppression 

Problem” 

Probability to 
reach a solution 
for the “Wrecks 

Collection 
Problem” 

7 30 25 13 100% 100% 100% 
16 60 47 25 80% 95% 50% 
25 102 83 45 100% 65% 10% 
34 143 118 66 55% 40% 0% 
43 182 150 87 45% 35% 5% 

 
(a) 
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No of 
NPAs 

Total 
No of 

Events 

Total No 
of 

Episodes 

No 
of 

PAs 

Average 
solution 

generation for 
the “Railway 

Accident 
Problem” 

Average solution 
generation for 

the “Fire 
Suppression 

Problem” 

Average solution 
generation for the 

“Wrecks 
Collection 
Problem” 

7 30 25 13 0 0.2 0.9 
16 60 47 25 1.4 1.8 6.6 
25 102 83 45 0.7 9.8 0 
34 143 118 66 3 11.6 - 
43 182 150 87 3 15.7 0 

 
(b) 
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(b) 

Figure  5.11: (a) Number of NPAs against probability to reach a solution (No of solutions out of 20 different 
runs) for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
(b) Number of NPAs against average solution generation among those runs that found a solution out of 20 

runs, for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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5.2.2.2 The effect of changing Elitism Size  
Tables 5.11 (a) and (b) show the Elitism Size against probability to reach a solution and 

average solution generation out of 20 runs. Figures 5.12 (a) and (b) show the graphical 
depiction of these results. As a general conclusion, increasing the Elitism Size increases the 
probability to reach a solution till some point, and then it drops. This means that it is good to 
keep some of the best candidates found aside, but after some point and when the size of these 
kept candidates is getting bigger, i.e. less genetic operations are done, this will make the 
situation worse. We can get another conclusion; if we look at the optimum points, we can find 
that the optimum point for the “Railway Accident Problem is at 70% Elitism Size and the 
optimum point for the “Fire Suppression Problem” and the “Wrecks Collection Problem” is at 
50% Elitism Size. This means that as the problem gets more complex, the optimum Elitism 
Size gets smaller. This is because it’s necessary in this case to apply genetic operations on 
larger number of candidates, i.e. it’s necessary to have a larger search space. 
 
Table  5.11: (a) Elitism Size against probability to reach a solution (No of solutions out of 20 different runs) 
for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” (b) 

Elitism Size against Average solution generation among those runs that found a solution out of 20 runs, for 
the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 

Elitism 
% 

Probability to 
reach a solution 
for the “Railway 

Accident 
Problem” 

Probability to 
reach a solution

for the “Fire 
Suppression 

Problem” 

Probability to 
reach a solution 
for the “Wrecks 

Collection 
Problem” 

30% 70% 50% 20% 
50% 70% 65% 30% 
70% 100% 50% 20% 
90% 90% 50% 15% 

 
(a) 

 
 

Elitism % Average solution 
generation for the 
“Railway Accident 

Problem” 

Average solution 
generation for the 
“Fire Suppression 

Problem” 

Average solution 
generation for the 

“Wrecks Collection 
Problem” 

30% 5.29 6.40 82.5 
50% 0.57 7.23 142.33 
70% 1.50 6.50 54 
90% 3.60 9.90 17.5 

 
(b) 
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Figure  5.12: (a) Elitism Size against probability to reach a solution (No of solutions out of 20 different runs) 
for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” (b) 

Elitism Size against Average solution generation among those runs that found a solution out of 20 runs, for 
the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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5.2.2.3 The effect of changing Tournament Size 
Tables 5.12 (a) and (b) show the Tournament Size against probability to reach a solution and 
average solution generation. Figures 5.13 (a) and (b) show the graphical depiction of these 
results. As a general behavior, and for the three problems in hand, increasing the Tournament 
Size increases the probability to reach a solution and decreases the average solution 
generation. It is clear that the larger the Tournament Size is, the more likely we are to select a 
highly fit individual from the population, and hence we reach a solution faster. 

 
 

Table  5.12: (a) Tournament Size against probability to reach a solution (No of solutions out of 20 different 
runs) for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
(b) Tournament Size against Average solution generation among those runs that found a solution out of 20 
runs, for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 

 
Tournament 

Size % 
Probability to 

reach a solution 
for the “Railway 

Accident 
Problem” 

Probability to reach 
a solution for the 
“Fire Suppression 

Problem” 

Probability to reach a 
solution for the 

“Wrecks Collection 
Problem” 

20% 50% 35% 20% 
40% 83% 35% 40% 
60% 80% 60% 60% 
80% 80% 58% 55% 

 
(a) 

 
Tournament 

Size % 
Average solution 
generation for the 

“Railway 
Accident 
Problem” 

Average solution 
generation for the 
“Fire Suppression 

Problem” 

Average solution 
generation for the 

“Wrecks Collection 
Problem” 

20% 7.50 8.17 84.00 
40% 3.75 9.25 51.00 
60% 0.56 5.80 50.75 
80% 1.80 1.70 8.50 

 
(b) 
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(b) 

Figure  5.13: (a) Tournament Size against probability to reach a solution (No of solutions out of 20 different 
runs) for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
(b) Tournament Size against average solution generation among those runs that found a solution out of 20 
runs, for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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5.2.2.4 The effect of changing Mutation Probability 
Tables 5.13 (a) and (b) show the Mutation Probability against probability to reach a 

solution and average solution generation. Figure 5.14 shows the graphical depiction of these 
results. As we can see that increasing the Mutation Probability increases the probability to 
reach a solution, however it causes PGen to reach a solution slower. Actually we find this 
behavior logical somehow. Increasing the mutation rate enhances the search and prevents 
PGen from sticking into local minima. Moreover, it allows having more investigation in the 
search space, so it increases the probability to reach a solution. However, it causes more 
operations to happen and thus causes the solution to be reached slower. 
 

Table  5.13: (a) Mutation Probability against probability to reach a solution (No of solutions out of 20 
different runs) for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection 

Problem” (b) Mutation Probability against Average solution generation among those runs that found a 
solution out of 20 runs, for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks 

Collection Problem” 
 

Mutation 
Probability 

Probability to 
reach a solution 
for the “Railway 

Accident 
Problem” 

Probability to 
reach a solution 

for the “Fire 
Suppression 

Problem” 

Probability to 
reach a solution 
for the “Wrecks 

Collection 
Problem” 

0.02 0.9 0.7 0.2 
0.03 1 0.75 0.7 
0.04 1 0.75 0.6 
0.05 1 0.85 0.8 

 
(a) 

 
Mutation 

Probability 
Average solution 
generation for the 

“Railway 
Accident 
Problem” 

Average solution 
generation for the 
“Fire Suppression 

Problem” 

Average solution 
generation for the 

“Wrecks 
Collection 
Problem” 

0.02 3.7 4.9 3.0 
0.03 6.7 6.5 29.9 
0.04 8.1 6.6 79.2 
0.05 5.9 6.5 29.5 

 
(b) 
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(b) 

 
Figure  5.14: (a) Mutation Probability against probability to reach a solution (No of solutions out of 20 

different runs) for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection 
Problem” (b) Mutation Probability against average solution generation among those runs that found a 

solution out of 20 runs, for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks 
Collection Problem” 
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5.2.2.5 The effect of changing Crossover Probability 
Tables 5.14 (a) and (b) show the Crossover Probability against probability to reach a 

solution and the total number of individuals that must be processed to solve each problem 
(Processing Amount). Figure 5.15 (a) and (b) show the graphical depiction of these results. We 
can conclude from the figure that increasing the Crossover Probability enhances the 
probability to reach a solution, and reduces the required processing amount for the three 
problems in hand. This shows how strong the crossover operator is; it really enhances the 
performance and helps to reach the solution with higher probability. 
 

Table  5.14: (a) Crossover Probability against probability to reach a solution (No of solutions out of 50 
different runs) for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection 
Problem” (b) Crossover Probability against total number of individuals that must be processed (Processing 

Amount), for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection 
Problem” 

 
Crossover 
Probability 

Probability to 
reach a solution for 

the “Railway 
Accident Problem” 

Probability to 
reach a solution 

for the “Fire 
Suppression 

Problem” 

Probability to reach 
a solution for the 

“Wrecks Collection 
Problem” 

0.3 0.68 0.46 0.06 
0.5 0.7 0.5 0.12 
0.7 0.8 0.56 0.08 
0.9 0.79 0.66 0.16 

 
(a) 

 
Crossover 
Probability 

Processing 
Amount for the 

“Railway Accident 
Problem” 

Processing 
Amount for the 

“Fire Suppression 
Problem” 

Processing 
Amount for the 

“Wrecks 
Collection 
Problem” 

0.3 600 9600 22200 
0.5 600 9600 16500 
0.7 400 7200 10800 
0.9 400 5400 7800 

  
(b) 
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Figure  5.15: (a) Crossover Probability against probability to reach a solution (No of solutions out of 20 

different runs) for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection 
Problem” (b) Crossover Probability against total number of individuals that must be processed (Processing 

Amount), for the “Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection 
Problem” 
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5.3 PGen's Results 

5.3.1 PGen's complete set of test results 
Table 5.15 shows the parameters’ settings used to run PGen on 66 different test problems. We 
categorized them into 6 categories. Category “A” aims to monitor PGen’s performance when 
used to solve problems of different complexities. Problem 1 is the "Railway Accident 
Problem", Problem 2 is the "Fire Suppression", and finally Problem 3 is the "Wrecks 
Collection Problem" described above. Category “B” aims to monitor the effect of changing 
number of Non-Primitive Activities in the Activity Library. Category “C” aims to monitor the 
effect of changing the Elitism Size. Category “D” aims to monitor the effect of changing the 
Tournament Size. Category “E” aims to monitor the effect of changing Crossover Probability. 
And finally category “F” aims to monitor the effect of changing Mutation Probability. 

Table 5.16 shows the results of running the test problems. The results are categorized 
into three categories. The first results category can be considered is an indication of how far 
PGen can reach a solution. It contains three results:   
 

1. Probability to reach a solution: for each one of the 66 problems, 20 runs were made and 
the number of successful runs that found a solution was recorded. 
2. Average generation among those runs that found a solution. 
3. Average running time among  those runs that found a solution 

 
The second results category is a manifestation of the solution complexity. It consists of two 
results:  
 

1. Average number of Events in solution among  those runs that found a solution 
2. Average number of Episodes in solution among  those runs that found a solution 

 
The last results category is used as a measurement for solution accuracy. It consists of one 
result; Average additional NPAs that have no use among those runs that found a solution. Due 
to the randomness nature of Genetic Algorithms, some NPAs may be chosen to be put in a 
candidate while they are not necessary for the logic of the solution. 

In section 5.2.2 some of these results were presented graphically; probability to reach a 
solution and average solution generation. Figures 5.16 to 5.35 that follow Tables 5.15 and 5.16 
show the graphical depiction of the rest of the results in table 5.16; average running time, 
average number of Events in solution, average number of Episodes in solution, and average 
additional NPAs that have no use among those runs that found a solution.  
 



    

Table  5.15:  PGen's test problems parameters’ settings 
 

        Activity Library Specifications GA Parameters 
Problem 
Category 

Category Goal Unique 
Problem 

ID 

Problem 
# in 

Category 
A 

Total No 
of Events 

Total No 
of 

Episodes 

No of Non-
Primitive 
Activities 

(NPA) 

No of 
Primitive 
Activities 

(PA) 

Population 
Size 

Maximum 
Generations 

Elitism 
Size (%) 

Elitism 
Size  

Tournam
ent Size 

(%) 

Tournam
ent Size 

Crossover 
Probability 

Mutation 
Probability 

1              1 182 150 43 87 150 200 60% 90 30% 45 0.5 0.01

2              2 182 150 43 87 150 200 60% 90 30% 45 0.5 0.01

A  

              

To monitor
PGen 

performance 
on some 

problems with 
different 

complexities 
3 3 182 150 43 87 150 200 60% 90 30% 45 0.5 0.01

4 182 150 43 87 25 25 8% 2 23% 6 0.5 0.01 

5 143 118 34 66 25 25 8% 2 23% 6 0.5 0.01 

6 102 83 25 45 25 25 8% 2 23% 6 0.5 0.01 
7 60 47 16 25 25 25 8% 2 23% 6 0.5 0.01 
8 

1 

24 18 7 10 25 25 8% 2 23% 6 0.5 0.01 
9 182 150 43 87 100 50 8% 8 23% 23 0.5 0.01 

10 143 118 34 66 100 50 8% 8 23% 23 0.5 0.01 
11 102 83 25 45 100 50 8% 8 23% 23 0.5 0.01 
12 60 47 16 25 100 50 8% 8 23% 23 0.5 0.01 
13 

2 

24 18 7 10 100 50 8% 8 23% 23 0.5 0.01 
14 182 150 43 87 100 50 8% 8 23% 23 0.5 0.01 
15 143 118 34 66 100 50 8% 8 23% 23 0.5 0.01 
16 102 83 25 45 100 50 8% 8 23% 23 0.5 0.01 
17 60 47 16 25 100 50 8% 8 23% 23 0.5 0.01 

B To monitor 
the effect of 

decreasing no 
of NPAs on 

each problem 
in category A 

18 

3 

30 25 7 13 100 50 8% 8 23% 23 0.5 0.01 

C               To monitor 19 1 182 150 43 87 50 50 90% 45 15% 8 0.5 0.01
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20       182 150 43 87 50 50 70% 35 15% 8 0.5 0.01
21       182 150 43 87 50 50 50% 25 15% 8 0.5 0.01
22       182 150 43 87 50 50 30% 15 15% 8 0.5 0.01
23            182 150 43 87 300 200 90% 270 15% 45 0.5 0.01
24          182 150 43 87 300 200 70% 210 15% 45 0.5 0.01
25            182 150 43 87 300 200 50% 150 15% 45 0.5 0.01
26 

2 

182           150 43 87 300 200 30% 90 15% 45 0.5 0.01
27            182 150 43 87 300 200 90% 270 15% 45 0.5 0.01
28            182 150 43 87 300 200 70% 210 15% 45 0.5 0.01
29            182 150 43 87 300 200 50% 150 15% 45 0.5 0.01

the effect of 
changing 

Elitism Size 
on each 

problem in 
category A 

30 

3 

182           150 43 87 300 200 30% 90 15% 45 0.5 0.01
31 182 150 43 87 50 50 20% 10 80% 40 0.5 0.01 
32 182 150 43 87 50 50 20% 10 60% 30 0.5 0.01 
33 182 150 43 87 50 50 20% 10 40% 20 0.5 0.01 
34 

1 

182 150 43 87 50 50 20% 10 20% 10 0.5 0.01 
35 182 150 43 87 300 200 20% 60 80% 240 0.5 0.01 
36 182 150 43 87 300 200 20% 60 60% 180 0.5 0.01 
37 182 150 43 87 300 200 20% 60 40% 120 0.5 0.01 
38 

2 

182 150 43 87 300 200 20% 60 20% 60 0.5 0.01 
39 182 150 43 87 300 200 20% 60 80% 240 0.5 0.01 
40 182 150 43 87 300 200 20% 60 60% 180 0.5 0.01 
41 182 150 43 87 300 200 20% 60 40% 120 0.5 0.01 

D To monitor 
the effect of 

changing 
Tournament 
Size on each 
problem in 
category A 

42 

3 

182 150 43 87 300 200 20% 60 20% 60 0.5 0.01 
43           182 150 43 87 50 50 20% 10 20% 10 0.9 0.01 
44           182 150 43 87 50 50 20% 10 20% 10 0.7 0.01 
45           182 150 43 87 50 50 20% 10 20% 10 0.5 0.01 
46 

1 

182          150 43 87 50 50 20% 10 20% 10 0.3 0.01 

E  

            

To monitor
the effect of 

changing 
Crossover 

Probability on 
each problem 
in category A 47 2 182 150 43 87 300 200 20% 60 20% 60 0.9 0.01 
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48           182 150 43 87 300 200 20% 60 20% 60 0.7 0.01 
49           182 150 43 87 300 200 20% 60 20% 60 0.5 0.01 
50           182 150 43 87 300 200 20% 60 20% 60 0.3 0.01 
51           182 150 43 87 300 200 20% 60 20% 60 0.9 0.01 
52           182 150 43 87 300 200 20% 60 20% 60 0.7 0.01 
53           182 150 43 87 300 200 20% 60 20% 60 0.5 0.01 
54 

3 

182          150 43 87 300 200 20% 60 20% 60 0.3 0.01 
55 182 150 43 87 50 50 20% 10 20% 10 0.5 0.02 

56 182 150 43 87 50 50 20% 10 20% 10 0.5 0.03 
57 182 150 43 87 50 50 20% 10 20% 10 0.5 0.04 
58 

1 

182 150 43 87 50 50 20% 10 20% 10 0.5 0.05 
59 182 150 43 87 300 200 20% 60 20% 60 0.5 0.02 
60 182 150 43 87 300 200 20% 60 20% 60 0.5 0.03 
61 182 150 43 87 300 200 20% 60 20% 60 0.5 0.04 
62 

2 

182 150 43 87 300 200 20% 60 20% 60 0.5 0.05 
63 182 150 43 87 300 200 20% 60 20% 60 0.7 0.02 
64 182 150 43 87 300 200 20% 60 20% 60 0.7 0.03 
65 182 150 43 87 300 200 20% 60 20% 60 0.7 0.04 

F To monitor 
the effect of 

changing 
Mutation 

Probability on 
each problem 
in category A 

66 

3 

182 150 43 87 300 200 20% 60 20% 60 0.7 0.05 
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Table  5.16: The results of running PGen on 66 test problems 
  

Problem Specification How far PGen can reach a solution Solution Complexity 
Solution 
Accuracy 

Problem 
Category 

Category Goal Unique 
Problem 

ID 

Problem 
# in 

Category 
A 

Probability to 
reach a 
solution 
(No of 

solutions/20) 

Average 
generation 

among those 
runs that found a 

solution 

Average time 
among those 

runs that found 
a solution (sec) 

Average 
number of 
Events in 
solution 

Average 
number of 
Episodes in 

solution 

Average 
additional NPAs 
that have no use 

among those 
runs that found 

a solution 

1     1 100% 0.80 0.14 9 11 1.00 

2     2 50% 23.38 0.80 12 13 0.00 

A To monitor PGen 
efficiency on 

some problems 
with different 
complexities 

3     3 40% 33.40 0.85 25 31 3.00 

4 45% 3.00 0.21 7 8 1.00 
5 55% 3.00 0.08 9 11 1.00 
6 100% 0.70 0.07 8 10 1.00 
7 80% 1.38 0.07 10 12 1.00 
8 

1 

100% 0.00 0.08 12 12 1.00 
9 35% 15.71 0.84 11 10 0.00 

10 40% 11.63 0.70 14 13 0.00 
11 65% 9.85 0.27 17 15 0.00 
12 95% 1.84 0.33 12.4 13.8 0.80 
13 

2 

100% 0.16 0.27 13.6 14.2 1.20 
14 5% 0.00 1.32 23 28 3.00 
15 0% - - - - - 
16 10% 0.00 0.73 27 33 3.00 
17 50% 6.60 0.69 23 29 3.00 

B To monitor the 
effect of 

decreasing no of 
NPAs on each 

problem in 
category A 

18 

3 

100% 0.90 0.69 25 31 3.00 
19 90%   3.60 0.13 9 11 1.00 C To monitor the 

effect of 20 

1 

100%   1.50 0.12 8 10 1.00 
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21 70%   0.57 0.12 12 14 1.00 
22 70%   5.29 0.14 10 12 1.00 
23 50%   9.90 1.98 12.25 13.5 0.50 
24 50%   6.50 2.05 14 15 0.00 
25 65%   7.23 2.27 11 12 0.00 
26 

2 

50%   6.40 2.12 13 14 0.00 
27 15%   17.50 1.04 25 31 3.00 
28 20%   54.00 1.77 28 34 3.00 
29 30%   142.33 4.73 23 29 3.00 

changing Elitism 
Size on each 
problem in 
category A 

30 

3 

20%   82.50 4.31 26 32 3.00 

31 50% 1.80 0.17 8 10 1.00 

32 90% 0.56 0.11 9 11 1.00 
33 80% 3.75 0.13 11 13 1.00 
34 

1 

80% 7.50 0.16 10 12 1.00 
35 35% 1.70 2.01 12.5 15 1.00 
36 35% 5.80 3.18 13.25 14.5 0.50 
37 60% 9.25 2.05 12.17 13.33 0.40 
38 

2 

55% 8.17 2.10 14 15 0.00 
39 20% 8.50 0.83 25 31 3.00 

40 40% 50.75 1.91 20 25 3.00 
41 60% 51.00 2.00 27 33 3.00 

D To monitor the 
effect of 
changing 

Tournament Size 
on each problem 

in category A 

42 

3 

50% 84.00 2.51 20 25 3.00 
43 79%   0.7368 0.27 10 12 1.00 
44 80%   0.775 0.20 8.8 10 1.00 
45 70%   1.0857 0.22 9.5 10.1 1.00 
46 

1 

68%   1.0294 0.24 11 13.2 1.00 
47 66%   1.9394 3.43 10.25 10.5 0.50 
48 56%   2.1786 3.29 10.3 10.6 0.60 
49 50%   2.24 2.96 10 10 0.00 
50 

2 

46%   2.087 2.94 10.2 10.4 0.40 
51 16%   0 5.14 23 28 2.00 
52 8%   0 3.88 24.2 30 1.50 

E To monitor the 
effect of 
changing 
Crossover 

Probability on 
each problem in 

category A 

53 

3 

12%   0 4.59 26 30.7 3.00 
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   54 6% 0 2.96 23 28 3.00 
55 90% 3.67 0.14 9 11 1.00 
56 100% 6.70 0.16 10 12 1.00 
57 100% 8.10 0.16 9 11 0.50 
58 

1 

100% 5.90 0.15 9.7 11.2 1.00 
59 70% 4.86 2.13 12 13 0.00 
60 75% 6.53 2.29 12 13 0.00 
61 75% 6.60 2.22 12.2 13.33 0.33 
62 

2 

85% 6.53 2.03 12.13 13.25 0.25 
63 20% 3.00 0.80 25 31 2.10 
64 70% 29.86 1.53 24.3 30 3.55 
65 60% 79.17 3.05 25 31 2.00 

F To monitor the 
effect of 
changing 
Mutation 

Probability on 
each problem in 

category A 

66 

3 

80% 29.50 2.21 27 33.4 3.00 
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Figure  5.16: Number of NPAs against average running time for the “Railway Accident Problem”, 

“Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.17: Number of NPAs against average number of Events for the “Railway Accident 

Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.18: Number of NPAs against average number of Episodes for the “Railway Accident 

Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.19: Number of NPAs against average additional NPAs that have no use for the “Railway 

Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.20: Elitism Size against average running time for the “Railway Accident Problem”, “Fire 

Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.21: Elitism Size against average number of Events for the “Railway Accident Problem”, 

“Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.22: Elitism Size against average number of Episodes for the “Railway Accident Problem”, 

“Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.23: Elitism Size against average additional NPAs that have no use for the “Railway Accident 

Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.24: Tournament Size against average running time for the “Railway Accident Problem”, 

“Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.25: Tournament Size against average number of Events for the “Railway Accident 

Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.26: Tournament Size against average number of Episodes for the “Railway Accident 

Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.27: Tournament Size against average additional NPAs that have no use for the “Railway 

Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.28: Crossover Probability against average running time for the “Railway Accident 

Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.29: Crossover Probability against average number of Events for the “Railway Accident 

Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.30: Crossover Probability against average number of Episodes for the “Railway Accident 

Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.31: Crossover Probability against average additional NPAs that have no use for the 

“Railway Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure 5.32: Mutation Probability against average running time for the “Railway Accident Problem”, 

“Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.33: Mutation Probability against average number of Events for the “Railway Accident 

Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.34: Mutation Probability against average number of Episodes for the “Railway Accident 

Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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Figure  5.35: Mutation Probability against average additional NPAs that have no use for the “Railway 

Accident Problem”, “Fire Suppression Problem” and “Wrecks Collection Problem” 
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5.3.2 Comparison between PGen and Spock 
As described previously, PGen is part of the Kirk model-based executive for 

mobile autonomous systems. The primary components of Kirk are the Control Sequencer, 
the Generative Activity Planner, the Kino-Dynamic Path Planner and the Road Map Path 
Planner. PGen acts as the generative planner; its main role is to take a goal plan and form 
a solution plan by combining the goal plan with a set of activities from the activity library 
and search for a consistent and complete solution plan using Genetic Algorithms. As 
mentioned in Chapter 2, among all work done in this area, we see that the most similar 
work done was Spock [23]. We find it very worthy to compare our results with Spock's. 
 

Table  5.17: Performance of Spock 
 

 
 
 
In general, PGen's performance was not less than Spock. Moreover, more complicated 
problems are presented on PGen. Actually, we claim that PGen's implementation and the 
performance analysis done in this thesis is better than Spock’s. All the deficiencies found 
in Spock are overcome in PGen. To conclude, we find our planner presented in this thesis 
is better than Spock for the following reasons: 
 

1. PGen was run on 66 different test problems while Spock was run on just 7 test 
problems. Actually we find that 7 test problems are too little to provide full study 
of Spock's performance. 

 
2. Full and complete performance analysis was presented for PGen (see section 5.2) 

while not any was presented for Spock 
 
3. The activity library used in PGen's test problems consists of 43 activities while 

the one used for Spock consists of just 2 activities. This shows how solid the test 
phase prepared for PGen was, and how simple the test phase prepared for Spock 
was. Hence, because PGen was exposed to more complex missions in testing, this 
makes it more reliable than Spock. We cannot judge at the moment how Spock 
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will react when it is exposed to these complicated missions that PGen was 
exposed to. 

 
4. As an indication of PGen’s complexity of implementation, PGen consists of 22 

C++ classes, while Spock consists of just 5 C++ classes. 
 

5. Wide range of results was given for PGen. 6 different results were presented (see 
section 5.3) while Spock results were very poor. 

 
The following three points are mentioned in the thesis in which Spock was originally 
formulated [23], as inefficient points that worsen its performance:  

 
6. Spock does not yet include a heuristic cost estimate. 

 
7. Spock is slowed by inefficient helper functions. One example of this is Spock’s 

child expansion function, which copies candidates in their entirety each time it 
branches. This process is very inefficient and consumes unnecessary time and 
memory. 

 
8. Additionally, Spock detects enabled events and episodes using a simple search 

process that is not efficient within an iterative context. These searches consume a 
large amount of time per iteration, and circumventing them should yield a 
significant performance improvement.  

 

5.4 Summary 
PGen enables generative planning with complex processes by means of Genetic 
Algorithms. Genetic Algorithms showed successful performance when used to generate 
action plans represented as Temporal Plan Networks. This chapter discussed PGen’s 
implementation, performance and the experimental results out of large number of test 
problems. A comparison was presented between PGen and Spock; the most similar work 
done in this area. 
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6 Chapter Six: 
 

Conclusion & Future Work 
 
 
PGen is designed to be part of Kirk model-based executive architecture. It supports 
generative planning with complex processes by means of Genetic Algorithms. This 
chapter concludes and discusses some possible directions for future research. 

 

6.1 Conclusion 
Autonomous robots are becoming an increasingly important tool for military, space 
exploration, and civilian applications. A key requirement for controlling mobile 
autonomous robots is the ability to express vehicle activity models as complex processes.  

Model-based programming was developed to elevate programming to the 
specification of intended states. The specifics of achieving an intended state are delegated 
to a model-based executive, such as Titan [4] and Kirk [8]. The contributions of this 
thesis are part of Kirk.  

Kirk is designed to control mobile autonomous robots in rich environments, such 
as rovers are exploring the surface of Mars or unmanned aerial vehicles (UAV) flying for 
search and rescue missions. To enable model-based programming, Kirk needs to be able 
to translate the intended state evolutions specified in the control program to an action 
plan that achieves those state evolutions. This function is provided by our planner PGen 
and is the central contribution of this thesis.  

PGen supports generative planning with complex processes via three main 
aspects. First, PGen’s goal plans and activity models are encoded using the Reactive 
Model-based Programming Language (RMPL) that describes behaviors as a parallel and 
sequential composition of state and activity episodes. Second, PGen represents goal 
plans, plan operators, and plan candidates with a uniform representation called Temporal 
Plan Networks (TPN). Third, PGen uses Genetic Algorithms as a novel approach for 
TPN-based planning.  

Genetic Algorithms have shown successful performance when used to generate 
action plans represented as TPNs. In this thesis, PGen design and the used algorithms are 
presented in details. We showed how genetic operators such as Initialization, Crossover, 
Mutation and Fitness are implemented.  Then we presented PGen’s current 
implementation and some performance analysis done. We have provided full study for 
the effect of some parameters on PGen’s performance. 

We compared our work to the most similar work done in this area; Spock [23]. We 
claimed that PGen's implementation and the performance analysis done in this thesis is 
better than Spock. All the deficiencies found in Spock are overcome in PGen. To 
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conclude, we find our planner presented in this thesis is better than Spock for the 
following reasons: 
 

1. PGen was run on 66 different test problems while Spock was run on just 7 test 
problems. Actually we find that seven test problems are too little to provide full 
study of Spock's performance. 

 
2. Full and complete performance analysis was presented for PGen (see section 5.2) 

while not any was presented for Spock 
 
3. The activity library used in PGen's test problems consists of 43 activities while 

the one used for Spock consists of just 2 activities. This shows how solid the test 
phase prepared for PGen was, and how simple the test phase prepared for Spock 
was. Hence, because PGen was exposed to more complex missions in testing, this 
makes it more reliable than Spock. We cannot judge at the moment how Spock 
will react when it is exposed to these complicated missions that PGen was 
exposed to. 

 
4. As an indication of PGen’s complexity of implementation, PGen consists of 22 

C++ classes, while Spock consists of just 5 C++ classes. 
 

5. Wide range of results was given for PGen. 6 different results were presented (see 
section 5.3) while Spock results were very poor. 

 
The following three points are mentioned in the thesis in which Spock was originally 
formulated [23], as inefficient points that worsen its performance:  

 
6. Spock does not yet include a heuristic cost estimate. 

 
7. Spock is slowed by inefficient helper functions. One example of this is Spock’s 

child expansion function, which copies candidates in their entirety each time it 
branches. This process is very inefficient and consumes unnecessary time and 
memory. 

 
8. Additionally, Spock detects enabled events and episodes using a simple search 

process that is not efficient within an iterative context. These searches consume a 
large amount of time per iteration, and circumventing them should yield a 
significant performance improvement.  
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6.2 Future Work 
PGen core has been implemented and showed successful results; however there are still 
some areas of improvement we think they are worthy to be applied. 

6.2.1 Integration with Kirk 
While PGen implementation is complete, it sill needs to be integrated with the rest of the 
Kirk model-based executive. As stated in Chapter 3, Kirk needs to have some component 
that generates actionable activity plans. PGen plays this role. PGen has been implemented 
and tested as a standalone component (see Chapter 5, section 5.1). It needs to be 
incorporated with Kirk. 
 

 
Figure  6.1: PGen within Kirk 

6.2.2 Accepting less fit candidates 
The current implementation of PGen contains a Genetic Algorithm that halts once it finds 
a perfect solution. A perfect solution is the one that has passed the three checks 
successfully; Temporal Consistency Check (TEC), Symbolic Constraints Consistency 
Check (SYCC) and Completeness Check (COMP) (see Chapter 4, section 4.8). TEC 
requires that a valid temporal assignment to each event exists such that no temporal 
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constraints are violated.  SYCC ensures that there are no two overlapping intervals that 
have conflicting constraints .COMP requires that all open questions represented by ASK 
constraints are satisfied by other TELL constraints within their time ranges. TEC check 
should be passed successfully; a candidate that doesn’t pass it should be discarded 
immediately. Same for SYCC check; we can’t accept a candidate that contains some 
conflicting actions that should take place simultaneously. However, we can accept some 
candidate that has gone through COMP check with high rank, not necessarily the best 
rank, but with high rank.  

Now we propose the following scenario: PGen starts its genetic loop and monitor 
the progress from one generation to another. Once it discovers that no progress happens, 
and it going to be a dead run (no solution will be reached). It should start keeping the best 
fit candidate aside (even if this run was configured to have zero elitism). After it finishes 
its genetic loop with no perfect solution, it should return the best fit candidate so far. 
 

6.2.3 Supporting TPN decision nodes 
 

 

Decision node – only one 
out-arc needs to be selected 

Figure  6.2: TPN Decision Nodes 
 
Figure 6.2 shows TPN decision node. At run time, the model-based executive must select 
only one of its out-arcs for execution. This allows the network to express non-
deterministic choice as part of the plan-space representation. When Kirk’s strategy 
selection algorithm searches a TPN for a consistent sub-graph to return as its solution 
plan, it searches over the space of choices among these decision nodes. While PGen 
utilizes all TPN constructs in order to create a uniform representation for its control 
programs, activity operators, and internal plan candidates, it does not support decision 
nodes, as it does not perform conditional planning in the current implementation. It’s 
planned to have PGen support decision nodes in its next version. 
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6.2.4 Having multiple constraints & activities per episode 
 

ASK (A) 
TELL (B) 
drop-water () 

Only one state query can be 
placed per episode. 
Only one state assertion can 
be placed per episode. 

Only one primitive activity 
can be placed per episode. 

 
Figure  6.3: PGen allows only one state query, one state assertion, and one primitive activity per 

Episode 
 
In the current implementation of PGen, it doesn’t allow for more than one state query 
(ASKs), one state assertion (TELLs), and one primitive activity (PAs) to be placed per 
episode. We believe it’s worthy to upgrade PGen to have multiple ASKs, TELLs, and 
PAs per episode. This is expected to allow more complex plan representations; hence 
more complex missions can be performed using PGen. 
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لية باستخدام الخوارزميات لآتخطيط العمليات العقدة للمرآبات ا
  ةيالجين

  
  

تنفيذ هذه . البرمجة القائمة على النمذجة اخترعت أساسا للارتقاء بالبرمجة الى تحديد الأهداف فقط
آيرك و تيتان يعتبران احدى . الأهداف يتم تفويضه الى ما يسمى المنفذ للبرمجة القائمة على النمذجة

لكى يعمل هذا المنفذ بطريقة .  القائمة على النمذجةللبرامجنظمة القائمة اللتى تقوم بوظيفة المنفذ الأ
مطلوبة الى خطة تنفيذية و هذه لصحيحة فانه يجب وجود مكون بداخله يعمل على ترجمة الأهداف ا

بجين هو مخطط . حةالذى يعتبر المساهمة الرئيسية لهذه الأطرو, الوظيفة هى تحديدا ما يقوم به بجين
يقوم بجين بهذه الوظيفة . تنفيذى للعمليات المعقدة يقوم بترجمة الأهداف المطلوبة الى خطة تنفيذية

لغة رد أولا الخطط الرئيسية و الأنشطة تكون ممثلة باستخدام لغة تسمى . عبر ثلاث مميزات رئيسية
ثانيا يقوم بجين بتمثيل . ة على النمذجة و هى احدى لغات البرمجة القائم الفعل القائمة على النمذجة

وأخيرا يستخدم بجين الخوارزميات الجينية . الخطط الداخلية باستخدام الشبكات ذات الخطة الزمنية
آأساس لتخطيط الأهداف المطلوبة باستخدام الشبكات ذات الخطة الزمنية و تعتبر هذه طريقة جديدة 

 .واختباره و النتائج جاءت جيدة جداو لقد قمنا بنفيذ بجين .لم تستخدم من قبل
 
  

  :تتكون الرسالة من الأبواب التالية
  

  مقدمة و تعريف مجال البحث:   الباب الأول  
و تم . فى هذا الباب تم عرض مقدمة عن الرسالة بصفة عامة مع تحديد ووصف المشكلة وصفا دقيقا

تم أيضا استعراض التقنيات . حةبجين الذى يعتبر المساهمة الرئيسية لهذه الأطروعرض نبذة عن 
و تم تبرير لماذا تم اختيار الخوارزميات الجينية آطريقة للبحث عن . المختلفة للتخطيط بصفة عامة

  .و أخيرا تم استعراض مخطط لمحتويات الرسالة. حل للمشكلة 
  

  أنظمة أخرى ذات علاقة بالبحث: الباب الثانى 
 نقاط   مع بيان. ابقة تعتمد على الخطط الزمنيةفى هذا الباب تم استعراض ثلاث مخططات س

  .الضعف و القوة لكل منهم
  

 ذات الخطةشبكات ال ولغة رد الفعل القائمة على النمذجة وآيركاستعراض لنظام : الباب الثالث 
 الزمنية 

النظام , آيركفى الجزء الأول تم تقديم شرح تفصيلى لنظام  .تم تقسيم هذا الباب الى ثلاثة أجزاء
  الجزء الثانى . وتم شرح جميع المكونات الداخلية له مع بيان و شرح وظيفة آل منها, المحتوى لبجين 
تكون مكتوبة آيرك  مع العلم أن المدخلات لنظام  لغة رد الفعل القائمة على النمذجةيختص بشرح 

 و  الزمنيةالشبكات ذات الخطةالجزء الثالث يختص بشرح . رد الفعل القائمة على النمذجةبلغة 
  .الشبكات ذات الخطة الزمنيةالى  رد الفعل القائمة على النمذجةطريقة الترجمة من لغة 
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 الخوارزم المخطط بجين: الباب الرابع 

فى هذا الباب تم استعراض الخوارزم المقترح فى هذه الرسالة بجين بالتفصيل و آيفية عمله و ما هى 
  .الخوارزميات الأخرى اللتى يستخدمها

  
  

  النتائج العملية: الباب الخامس 
و تم أيضا .  تم استعراض التجارب العملية اللتى تم اجراؤها لاثبات آفائة و فاعلية بجينفى هذا الباب

يعتبرسبوك من . عمل مقارنة بين النتائج التى تم الحصول عليها مع نتائج مخطط اخر يدعى سبوك
  فىو أظهرت النتائج و المقارنات أن بجين يتفوق على سبوك. أقرب المخططات الأخرى لعمل بجين

 .لأداءا
  

    و الاتجاهات المستقبليةاتالاستنتاج: الباب السادس 
فى هذا الباب تم تلخيص النتائج اللتى تم التوصل اليها فى هذا البحث مع اقتراح بعض نقاط البحث 

  .المستقبلية
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تخطيط العمليات العقدة للمرآبات الالية باستخدام الخوارزميات 
  ةيالجين

  
  اعداد
  

  لنيرمين محمد اسماعي
  

  رسالة مقدمة الى آلية الهندسة؛ جامعة القاهرة
  آجزء من متطلبات الحصول على درجة الماجستير

 فى
  

   هندسة الحاسبات
  

  : لجنة الممتحنينيعتمد من 
  

-------------------------------------------------------  
  ي الرئيسنيفين محمود درويش ، المشرف: الأستاذة الدآتورة 

  
-------------------------------------------------------  

  ، مشرفأشرف حسن عبد الوهاب: الأستاذ الدآتور
  بحوث الاليكترونياتمعهد 

  
-------------------------------------------------------  

  ، مشرف ماجدة بهاء الدين فايق:الدآتورة 
  

-------------------------------------------------------  
  عثمان محمد حجازى: الأستاذ الدآتور

  آلية الحاسبات و المعلومات، جامعة القاهرة
  

-------------------------------------------------------  
  أمير فؤاد سوريال: الأستاذ الدآتور

  
  آلية الهندسة ، جامعة القاهرة
  الجيزة، جمهورية مصر العربية

  ٢٠٠٨ابريل 
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