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Primal: every possible operation can be expressed by a 
term using only (and not even) ∧, ∨, and ¬.
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ABSTRACT
We describe the application of genetic programming (GP)
to a problem in pure mathematics, in the study of finite al-
gebras. We document the production of human-competitive
results in the discovery of particular algebraic terms, namely
discriminator, Pixley, majority and Mal’cev terms, showing
that GP can exceed the performance of every prior method
of finding these terms in either time or size by several or-
ders of magnitude. Our terms were produced using the ECJ
and PushGP genetic programming systems in configurations
that included alternative code generators, asynchronous is-
lands, trivial geography, parsimony-based selection, alpha-
inverted selection pressure, and fitness case challenges. We
conclude with a discussion of the prospects for further ap-
plications of the presented methods.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; I.1.2 [Symbolic and Algebraic Ma-
nipulation]: Algorithms—algebraic algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
ECJ, genetic programming, finite algebras, PushGP

1. INTRODUCTION
Genetic programming (GP) has the potential for applica-

tion to many areas of mathematics. In particular, any area
in which open questions can be resolved by discovering rela-
tively small equations, terms, or finite structures is a promis-
ing area for the application of GP. For some such questions
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the very existence of a constraint-satisfying equation, term
or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [16], we
are not aware of significant prior results. We document here
the discovery of particular algebraic terms that have both
theoretical significance and quantifiable difficulty, and we ar-
gue that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section 3 we describe the GP techniques that we used to pro-
duce our results, which are themselves presented in Section
4. In Section 5 we discuss the significance of these results, in-
cluding our claims of human-competitive performance, and
in Section 6 we summarize our findings and discuss prospects
for further applications of the presented methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := 〈A, F 〉 consists of an underlying set A and an asso-
ciated collection F of operations f : Ar → A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [29], [9], [2]), important sub-
disciplines such as group theory [18], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := 〈{0, 1},∧,∨,¬〉, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (∧), OR (∨) and NOT (¬).
These operations can be defined by tables:

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is sufficient
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the very existence of a constraint-satisfying equation, term
or structure may settle the issue under study, while for oth-
ers the specific properties of discovered solutions may have
additional implications or provide additional insights.

In this paper we present initial but promising results from
the application of GP to an area of pure mathematics, the
study of finite algebras. While the idea for application in
this general area has been raised in the literature [16], we
are not aware of significant prior results. We document here
the discovery of particular algebraic terms that have both
theoretical significance and quantifiable difficulty, and we ar-
gue that the results we have achieved are human-competitive
according to widely promulgated criteria.

In the following section we briefly describe the relevant
mathematical context and the specific problems solved. In
Section 3 we describe the GP techniques that we used to pro-
duce our results, which are themselves presented in Section
4. In Section 5 we discuss the significance of these results, in-
cluding our claims of human-competitive performance, and
in Section 6 we summarize our findings and discuss prospects
for further applications of the presented methods.

2. FINITE ALGEBRAS
For the sake of this paper, and within the over-arching

area of mathematics known as universal algebra, an algebra
A := 〈A, F 〉 consists of an underlying set A and an asso-
ciated collection F of operations f : Ar → A on A. The
natural number r is called the arity of the operation f . Uni-
versal algebra is a significant branch of mathematics with a
long history (for example see [29], [9], [2]), important sub-
disciplines such as group theory [18], and applications to sev-
eral areas of science and engineering.

We use the term finite algebra to refer to an algebra in
which the underlying set is finite. The finite algebra most
familiar to most computer scientists is the ordinary two-
element Boolean algebra, B := 〈{0, 1},∧,∨,¬〉, in which
the underlying set is {0, 1} and the associated operations
are the Boolean operators AND (∧), OR (∨) and NOT (¬).
These operations can be defined by tables:

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

¬
0 1
1 0

A well-known and convenient feature of Boolean alge-
bra is the fact that this small set of operations is sufficient

Everybody’s Favorite 
Finite Algebra



Bigger Finite Algebras

• Have applications in many areas of science, 
engineering, mathematics

• Can be much harder to analyze/understand

• Number of terms grows astronomically with 
size of underlying set

• Under active investigation for decades, with 
major advances (cited fully in the paper) in 
1939, 1954, 1970, 1975, 1979, 1991, 2008



Goal
• Find terms that have certain special properties

• Discriminator terms, determine primality

• Mal’cev, majority, and Pixley terms

• For decades there was no way to produce these 
terms in general, short of exhaustive search

• Current best methods produce enormous terms

for representing all possible operations on {0, 1}. For ex-
ample, consider the (randomly chosen) ternary operation
q : {0, 1}3 → {0, 1} given by q(x, y, z) is 1 if (x, y, z) is
(0,0,1), (1,0,1) or (1,1,1); otherwise q(x, y, z) = 0. Then q is
represented as a term by

q(x, y, z) = (¬x ∧ ¬y ∧ z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ z).

More generally, we say that a finite algebra is primal if every
operation on its underlying set can be represented using a
term that is composed only of the operations in the algebra.
For example, B is a primal algebra.

Over the past fifty years universal algebraists have found
that the existence of a number of special kinds of terms on an
algebra tell us a great deal about the properties of the class
of algebras (called a variety) that it generates. For example,
a natural generalization of the classical Jordan Holder The-
orem and the Krull Schmidt Theorem for groups will hold in
the variety generated by an algebra having a Mal’cev term,
that is, a ternary term m(x, y, z) satisfying

m(x, x, y) ≈ m(y, x, x) ≈ y.

A natural analog of the Stone Duality Theorem for Boolean
algebras holds in the variety generated by any finite algebra
having a !majority term, that is, a ternary term j(x, y, z)
satisfying

j(x, x, y) ≈ j(y, x, x) ≈ j(x, y, x) ≈ x.

The Chinese Remainder Theorem for the ring of integers has
a natural extension in the variety generated by an algebra
that has a Pixley term, that is, a ternary term p(x, y, z)
satisfying

p(x, x, y) ≈ p(y, x, x) ≈ y and p(x, y, x) ≈ x.

The ternary operation on an algebra A given by

tA(x, y, z) =

(
x if x %= y

z if x = y

is called the (ternary) discriminator operation. A discrim-
inator term for A is a ternary term that represents tA. If
A has a discriminator term, then every non-trivial finite al-
gebra in the variety generated by A is isomorphic to a direct
product of subalgebras of A, and the variety generated by
A has a decidable first order theory.

In the very recent work [3] the primality theorem gives
a recursive method to construct a term representing any
desired operation on an algebra already known to be pri-
mal. While this is the most time efficient method currently
available for constructing such terms, those resulting terms
are usually extraordinarily long; often involving millions of
operations even in three and four-element algebras. As an
alternative, the very popular software tool [7] is available to
find terms by an exhaustive search. But this program usu-
ally requires an unacceptably long time for the terms we are
seeking.

In order to test the power of GP in this domain we ap-
plied our GP method to the three and four-element algebras
in Table 1. All of these algebras are known to be primal
as an immediate application of a well known theorem of
Rousseau [19]. But the proof of Rousseau’s theorem is non-
constructive, providing no practical assistance in construct-
ing specific terms. Moreover, previously known methods to
construct terms are not adequate to produce the terms we

Table 1: Algebras explored in this paper.

A1 ∗ 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

A2 ∗ 0 1 2
0 2 0 2
1 1 0 2
2 1 2 1

A3 ∗ 0 1 2
0 1 0 1
1 1 2 0
2 0 0 0

A4 ∗ 0 1 2
0 1 0 1
1 0 2 0
2 0 1 0

A5 ∗ 0 1 2
0 1 0 2
1 1 2 0
2 0 1 0

B1 ∗ 0 1 2 3
0 1 3 1 0
1 3 2 0 1
2 0 1 3 1
3 1 0 2 0

have described in a feasible amount of space and time. We
show here that GP can be used to evolve Mal’cev, majority,
Pixley and discriminator terms that are orders of magnitude
shorter than those that could be produced by prior algebraic
methods, and we obtain them in orders of magnitude less
time than the expected time for exhaustive search.

3. GP TECHNIQUES
In the following subsections we describe the specific GP

techniques that we used to produce the results reported in
this paper. We do this only to document the methods that
we used1; we do not argue here for the superiority of these
techniques over any others, and we are not asserting that
the use of these techniques was necessary to produce the
presented results. Some of the listed techniques have been
described in the literature previously (and we provide cita-
tions when we are aware of them), while others are new and
experimental. We suspect that most of the results reported
here could have been produced with more“generic”GP tech-
niques, possibly at the cost of greater computational effort.
In any event our claims here are not for the peculiar efficacy
of specific GP techniques that we employed, but rather for
the significance and human-competitiveness of the results
and of their automated production.

GP fitness cases for all problems were all of the input com-
binations for which the sought-after term’s definition spec-
ifies a particular output. The fitness value for a candidate
term, which we sought to minimize, was the sum of the er-
rors across all fitness cases (although in some cases these
errors were individually scaled; see section 3.8).

3.1 Traditional GP in ECJ
Most of the results presented in this paper were produced

using traditional, “tree-based” GP techniques [11] as imple-
mented in the ECJ evolutionary computation system [30].2

In this method programs are represented and manipulated as
Lisp-like symbolic expressions, in parenthesized prefix syn-
tax. The mapping between traditional GP representations

1We present the primary methods and major param-
eters; more detail is available in the source code at
http://REMOVED.FOR.ANONYMOUS.REVIEW.
2http://www.cs.gmu.edu/˜eclab/projects/ecj/
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Techniques

• Traditional genetic programming with ECJ
• Stack-based genetic programming with PushGP
• Alternative random code generators
• Asynchronous islands
• Trivial geography
• Parsimony-based selection
• Alpha-inverted selection pressure
• HAH = Historically Assessed Hardness



Results

• Discriminators for A1, A2, A3, A4, A5

• Mal’cev and majority terms for B1

• Example Mal’cev term for B1:

((((((((x*(y*x))*x)*z)*(z*x))*((x*(z*(x
*(z*y))))*z))*z)*z)*(z*((((x*(((z*z)*x)*
(z*x)))*x)*y)*(((y*(z*(z*y)))*(((y*y)*x
)*z))*(x*(((z*z)*x)*(z*(x*(z*y)))))))))



Assessing Significance

Relative to prior methods:

• Uninformed search:

- Exhaustive: analytical (expected value) 
and empirical search time comparisons

- Random: analytical (expected value) and 
empirical search time comparisons

• Primality method: empirical term size 
comparisons



Significance, Time



Significance, Time



Significance, Size

(for A1)



Significance, Size

(for A1)



Criteria Satisfied
B: The result is equal to or better than a result that was accepted as 

a new scientific result at the time when it was published in a 
peer-reviewed scientific journal.

D: The result is publishable in its own right as a new scientific result 
independent of the fact that the result was mechanically created.

E: The result is equal to or better than the most recent human-
created solution to a long-standing problem for which there has 
been a succession of increasingly better human-created solutions.

F: The result is equal to or better than a result that was considered 
an achievement in its field at the time it was first discovered.

G: The result solves a problem of indisputable difficulty in its field.



Human Competitive?
• Rather: human-WHOMPING!

• Outperforms humans and all other known methods on 
significant problems, providing benefits of several 
orders of magnitude with respect to search speed 
and result size

• Because there were no prior methods for 
generating practical terms in practical amounts of 
time, GP has provided the first solution to a 
previously open problem in the field



Potential Impact

These results are in an foundational area of 
pure mathematics with:

• A long history 

• Many outstanding problems of theoretical 
significance and quantifiable difficulty

• Applications across the sciences



The Best Entry

Among the ways in which this is the best entry to 
the 2008 Human Competitive Results competition:

• Numerical size of the benefit provided by 
evolutionary computation (up to 1014)

• Breadth of potential impacts and applications


