
Combining Bond-Graphs with Genetic Programming
for Unified/Automated Design of Mechatronic or

Multi Domain Dynamic Systems

S. A. Kayani1, M. A. Malik2

Department of Mechanical Engineering,
College of Electrical and Mechanical Engineering,
National University of Sciences and Technology,

Peshawar Road, Rawalpindi-46000, Pakistan
{saheebk1, mafzmlk2}@ceme.edu.pk

ABSTRACT
The multi domain nature of a mechatronic system makes it
difficult to model using a single modeling technique over the
whole system as varying sets of system variables are required.
Bond-Graphs offer an advanced object oriented and polymorphic
modeling and simulation technique. Bond-Graph model of the
mechatronic system can be directly simulated on a digital
computer using simulation softwares like 20-Sim© graphically or
manipulated mathematically to yield state equations using a
simplified set of power and energy variables. The simulation
scheme can be augmented to synthesize designs for mechatronic
systems employing genetic programming as a tool for open ended
search. This research paper presents results of an experiment
developed to combine Bond-Graphs with genetic programming
for unified and automated design of mechatronic or multi domain
dynamic systems.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming; J.2
[Physical Sciences and Engineering]: Engineering.

General Terms
Design, Experimentation, Verification.

Key Words
Bond-Graphs, Genetic Programming, Unified/Automated Design,
Multi Domain Dynamic or Mechatronic Systems.

1. INTRODUCTION
Traditionally a mechatronic system has been defined as a multi
domain dynamic system combining mechanical, electrical,
hydraulic, pneumatic and thermal components. To perform
correctly mechatronic systems depend on the interaction of

sensors, computers or microcontrollers and actuators. Taking
complicated dynamic multi domain systems all the way from
concept to prototype requires mathematical models. Such models
can include those whose equations the modeler derives directly or
develops with software that holds mathematics in the background.
To model a mechatronic system all multi domain sub-systems
must be connected and all non-linearities typical of a specific
energy domain must be accounted for. To do this a language is
needed to describe the different energy domains in communal
terms. Using such a language sub-models can be connected in an
overall system model which can then be simulated on a computer.
Interacting physical systems store, transport and dissipate energy
among sub-systems. Only Bond-Graphs can provide a concise
pictorial representation of these interacting dynamic systems
down to the topological level. [1] When using Bond-Graphs for
mechatronic system representation we can assume that the
mechatronic system under consideration is an n-port mechatronics
network with el and fl being system input effort and flow signals
and en and fn being system output effort and flow signals
respectively. [2]

2. REVIEW OF UNIFIED/AUTOMATED
DESIGN OF MECHATRONIC OR
MULTI DOMAIN DYNAMIC SYSTEMS

The basic idea of unified and automated design is to replace the
role of domain knowledge with the abundant computational
resources available to the engineers these days. Genetic
programming based simulated evolution techniques are capable of
synthesizing designs of arbitrary complexity as the representation
of designs is entirely open ended. [3]-[5] Figure 1 suggests a
design approach for generating mechatronic systems identified by
Jiachuan Wang et al. [2] in 2005. According to this methodology
for any mechatronic system a start up design is specified at the
initial stage. Then Bond-Graph representation is developed and it
is transferred to the genetic programming tool which generates
initial population, evaluates it according to the fitness function,
reconfigures the population and repeats the process until the
design criteria are met. The successful conceptual design
candidates are transformed into final design again represented as
Bond-Graph models. During this whole process information is
extensively exchanged with knowledge caches and incorporated
in initial and final stages of the design process. The methodology

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

 2515

mailto:saheebk, mafzmlk}@ceme.edu.pk

Knowledge
Library

Knowledge
Library

Design
Specification

Bond-Graph
Representation

Generation

Reconfiguration

Guidance Evaluation
Genetic

Programming
Synthesis

Successful
Conceptual

Design
Candidates

Final Design
Realization

Knowledge Incorporation

Knowledge Extraction

Knowledge Incorporation

Human

Computer

Interaction

Verification

Accumulation

involves increased human-computer interaction. Also with in the
knowledge library stored information is updated and enhanced as
the design proceeds. The knowledge library serves as a dynamic
data base of domain knowledge which is constantly updated and
the contents are verified continuously to remove any errors or
omissions through an automated system. The input source to the
knowledge library is the set of successful conceptual design
candidates which means that only the best of all sorted
information is stored for further reference and improvement.

Figure 1. Automated design methodology for
mechatronic or multi domain dynamic systems.

3. IMPLEMENTATION OF THE
METHODOLOGY

This experiment is based on the methodology for
unified/automated design of mechatronic systems identified by
Kisung Seo et al. in [6] and Jianjun Hu in [7]. A brief summary of
the methodology followed for implementing the automated design
scheme is included. a. A Bond-Graph model is specified. b. First
population of genetic programming trees is created. c. Each
individual is evaluated for fitness using fitness function. d.
Genetic programming operations i.e. selection, reproduction,
crossover and mutation are performed for each population. e.
Physical design is realized if termination condition of genetic
programming run is satisfied. f. Otherwise the process is repeated
starting from fitness evaluation of each individual. In [6] a two
step process is employed for evaluation of Bond-Graph models.
First each model is analyzed for causality and then state equations
are derived identifying whether the system is linear or not. In the
next step the fitness of the model is analyzed using fitness
criterion. The experiment was designed to be as simple as

possible because the C language code used for implementing the
methodology became very complicated and difficult to handle. In
all previous implementations of the methodology a UNIX based
genetic programming software lil-gp 1.01 [8] has been used. For
the first time Genetic Programming Studio 1.0 [9] is employed in
this application which is based on lil-gp 1.01 kernel but offers a
visual platform for executing genetic programming code. The
code has been written using MS Visual C++ 6.0. Six different
types of code files have to be developed. 1. protoapp.h contains
prototypes of functions that app.c includes. 2. appdef.h contains
#defines of the application. 3. app.h contains global data and any
other function defined by user. 4. app.c contains software specific
functions that help in input/output procedures. 5. function.h
contains prototypes of functions and terminals of the problem. 6.
function.c contains functions and terminals that are used for
building the individual. Also files like epgdll.h, epgdll.c,
defines.h, types.h, syscon.h and syscon.c are included for creating
DLL or dynamic linked library files. These files are software
kernel files and are not to be modified. The genetic programming
parameters are saved in the problem set file with the extension
.EPG. This software also offers a simulation tool which can be
used for representing the individuals in LISP format. In case of
Bond-Graph based individuals the final design requires
simplification and reduction. The code is compiled and the DLL
file is generated through MS Visual C++ 6.0. The problem
implemented is an eigen value design problem from [6]. The two
target eigen values selected are -1±2j represented by cross marks
× on complex plane and a Bond-Graph model with these eigen
values is to be generated.

Figure 2. Representation of -1±2j on complex plane.

Figure 3. The embryo Bond-Graph model with modifiable
site at the zero junction highlighted by dashed oval marking.

An embryo Bond-Graph model is specified with only one
modifiable site highlighted by a dashed oval marking called the
write head. The resistors are given same impedance values
(R1:250, R2:500) as in [6] to achieve comparable results. The
embryo is allowed only one modifiable site to keep the design

R

Se 0 R1

R
R1:250

Se 0 R
R2:500

1

 2516

process and programming simple and less complicated to
implement and interpret. The fitness function includes two
parameters namely raw fitness and normalized fitness. Raw
fitness FitnessRaw is the sum of distances between target eigen
values and the nearest solution eigen values after they have been
paired. Normalized fitness FitnessNorm is calculated according to
the relation:

NormFitness = 0.5 +
RawFitness+1

1
 (1)

A list of genetic programming functions and terminals along with
their descriptions appears in Table 1. The function f_add_R
requires an additional parameter value called ephemeral random
constant or ERC. An ERC is a special terminal whose value is
fixed. When an ERC terminal is generated either during the filling
of the initial population or by mutation later in the run, a value is
attached to that terminal and is unchanged by subsequent
operations. [8]

Table 1. Function and terminal descriptions
Function Description

f_tree Generate a tree model

f_add_C Add a C element to a junction

f_add_R Add a R element to a junction

f_add_I Add an I element to a junction

f_insert_J0 Insert a zero junction in a bond

f_insert_J1 Insert a one junction in a bond

replace_C Replace with C element

replace_R Replace with R element

replace_I Replace with I element

f_add_ERC Add two ERCs

f_del_ERC Delete two ERCs

end_A End terminal for add element

end_I End terminal for insert element

end_R End terminal for replace element

ERC Ephemeral Random Constant

The genetic programming parameters used in the experiment have
been included in Table 2. The software was installed and run on a
DELL/Pentium-III/1.0GHz and 256MB RAM personal computer
with Windows XP/2002/SP-1.
Three different random seeds were used and the experiment was
repeated three times with population sizes of 100, 1000 and 2500
with different number of generations. When different Bond-Graph
functions can be applied to the same write head this technique is
termed as strongly typed genetic programming.
Add functions can only be applied to a junction while insert
functions are only applied to a bond. Replace functions change
the type of the Bond-Graph element and are node specific.
Arithmetic functions of addition and subtraction are carried out by

Table 2. Genetic programming parameters
Number of Generations 100-500

Population Size 100-2500

Initial Population Half and Half

Sub Populations 10

Maximum Nodes 300

Initial Depth 3-6

Maximum Depth 17

Selection Tournament

Size 7

Crossover 0.9

Mutation 0.1

f_add_ERC and f_del_ERC respectively. The developmental or
construction procedure for a Bond-Graph model or phenotype is
identified by the genetic programming tree or the genotype. Using
LISP format of representing genetic programming trees the
simulation tool of Genetic Programming Studio 1.0 is used to
print long hand versions of such genetic programming trees which
need to be simplified for extracting meaningful information. One
genetic programming tree represents one individual.

Figure 4. The final simplified Bond-Graph model.

The average distance error e between target and solution eigen
values is calculated using distance formula for two pairs of
numbers (x1, y1) and (x2, y2) given as:

e = [(x2 - x1)2 + (y2 - y1)2]½ (2)

The best solution eigen values compared to target eigen values are
included in Table 3 along with average distance error. This table
also contains number of R, C, I and junction elements added to
the write head. Numerical values of one port elements are also
shown. It is to be noted that the eigen values are determined using
the A matrix of the Bond-Graph model (when state-space
equations are written in matrix form assuming the system is
linear) containing state variables contributed by the energy storing
C and I elements.

I
I1:0.35

Se 1

R
R1:250

1 R

R
R2:500

0

 R3:0.922

C
 C1:0.42

 2517

dt
dy

= y[A] + u[B] (3)

In above equation y is the vector of states, A is an n×n square
matrix, u is the array of sources and B is a matrix of dimensions
n×m where n is the number of states and m is the number of
sources.

Table 3. Summary of results
Target Eigen Values

-1±2j

Solution Eigen Values

-0.78±1.063j

Average Distance Error

0.961

Evolved Structure on Write Head

R Elements 1

C Elements 1

I Elements 1

Junctions 1

Bonds 4

Bond-Graph Element Values

R Element 0.922

C Element 0.42

I Element 0.35

The values achieved in this experiment are slightly different from
the values in [6]. Limitations in writing the code used for
generating the Bond-Graph models and tuning of the fitness
evaluation process may be the reason which can be removed with
more rigorous effort devoted towards problem implementation.

4. FINAL COMMENTS AND
CONCLUSION

The methodology followed has been proposed for unified and
automated design of mechatronic or multi domain dynamic
systems using Bond-Graphs for system representation and genetic
programming for exploring the design space in an open ended
manner.
This research paper has been a product of an indigenous attempt
to implement the design methodology for a postgraduate level
research project. The objective was to repeat and/or develop a
simple experiment based on the said methodology and
implementation scheme to achieve comparable results. As the C
language code was developed without referring to any source so
certain limitations were unavoidable resulting in final eigen
values falling short of the target. However the implementation
and results prove that the methodology is valid and thus verified.
The robustness of the approach lies in compactness of the genetic
programming code and fitness evaluation of the evolved designs.
The interpretation of the results will be simplified in further
research efforts. The complexity of the implementation especially

code development and final elucidation is one of the reasons that
this research area remains relatively less explored. So far results
of only one research group have been published. [2][6][7] The
problem implemented in this research paper though simple gives
perhaps the first independent verification of the design
methodology identified by this particular research group. It is
intended that this methodology will be followed for extending the
automated design concept to more sophisticated mechatronic
systems like kinematic sections of humanoid robots, end effectors
and even synthesis of a simple two legged walking robot.

5. ACKNOWLEDGMENTS
Mr. Ali Hassan/DCE and Mr. Wasim Baig/OIC Library deserve
our regards for their contributions over a period of time towards
exploring available literature on Bond-Graph modeling and
simulation and genetic programming. This research was carried
out as part of a postgraduate dissertation in College of E&ME,
National University of Sciences and Technology, Rawalpindi,
Pakistan. The help of the institution is appreciated.

6. REFERENCES
[1] Karnopp, D. C. and Margolis, D. L. The Language of

Interaction. ME Magazine, American Society of Mechanical
Engineers, January 2001, 1-4.

[2] Wang, J., Fan, Z., Terpenny, J. P., and Goodman, E. D.
Knowledge Interaction with Genetic Programming in
Mechatronic Systems Design using Bond-Graphs. IEEE
Transactions on Systems, Man and Cybernetics, Part C:
Applications and Reviews, Vol. 35, No. 2, (May 2005), 172-
182.

[3] Koza, J. R., Keane, M. A., and Streeter, M. J. What’s AI
Done for Me Lately? - Genetic Programming’s Human
Competitive Results. IEEE Intelligent Systems, 18(3),
(2003), 25-31.

[4] Hirsh, H., Banzhaf, W., Koza, J. R., Ryan, C., Spector, L.,
and Jacob, C. Genetic Programming. IEEE Intelligent
Systems, 15(3), (2000), 74-84.

[5] Koza, J. R., Bennett, F. H., Lohn, J., Dunlap, F., Keane, M.
A., and Andre, D. Automated Synthesis of Computational
Circuits using Genetic Programming. In Proceedings of
IEEE International Conference on Evolutionary
Computation, Indianapolis, 1997, 447-452.

[6] Seo, K., Hu, J., Fan, Z., Goodman, E. D., and Rosenberg, R.
C. Automated Design Approaches for Multi Domain
Dynamic Systems using Bond-Graphs and Genetic
Programming. The International Journal of Computers,
Systems and Signals, Vol. 3, No. 1, (2002), 55-70.

[7] Hu, J. Sustainable Evolutionary Algorithms and Scalable
Evolutionary Synthesis of Dynamic Systems. PhD
Dissertation, Department of Computer Science and
Engineering, Michigan State University, East Lansing, MI,
USA, 2004, 69-80.

[8] Zongker, D. and Punch, W. lil-gp 1.01 User Manual.
Michigan State University, East Lansing, MI, USA, 1996.

[9] Novales, A. C. Genetic Programming Studio 1.0 User
Manual. University of Cordoba, Spain, 1998.

 2518

http://www.genetic-programming.com/johnkoza.html
http://www-2.cs.cmu.edu/~matts/

	INTRODUCTION
	REVIEW OF UNIFIED/AUTOMATED DESIGN OF MECHATRONIC OR MULTI D
	IMPLEMENTATION OF THE METHODOLOGY
	FINAL COMMENTS AND CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

