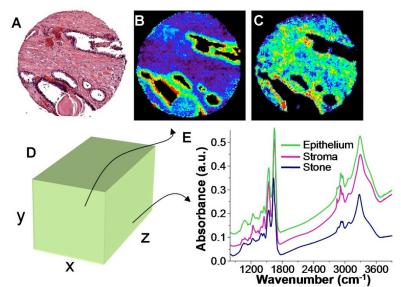
#### Towards Better than Human Capability in Diagnosing Prostate Cancer Using Infrared Spectroscopic Imaging

Xavier Llorà<sup>1</sup>, Rohith Reddy<sup>2,3</sup>, Brian Matesic<sup>2</sup>, Rohit Bhargava<sup>2,3</sup>

<sup>1</sup> National Center for Supercomputing Applications & Illinois Genetic Algorithms Laboratory
<sup>2</sup> Department of Bioengineering
<sup>3</sup> Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign



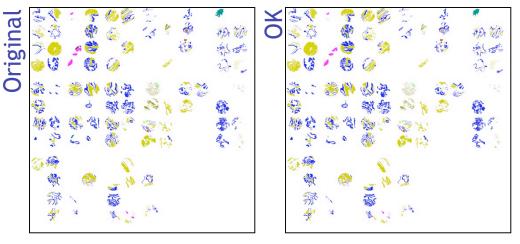

Supported by AFOSR FA9550-06-1-0370, NSF at ISS-02-09199 DoD W81XWH-07-PRCP-NIA and the Faculty Fellows program at NCSA

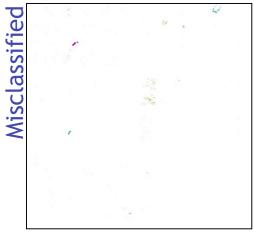


#### Prostate Cancer Diagnosis using FTIR

- Pathologist diagnose cancer from structures in stained tissue.
- Fourier transform infrared spectroscopy imaging.
  - Combines chemistry and structure
- The sweep of the tissue provides a 3D spectral image.

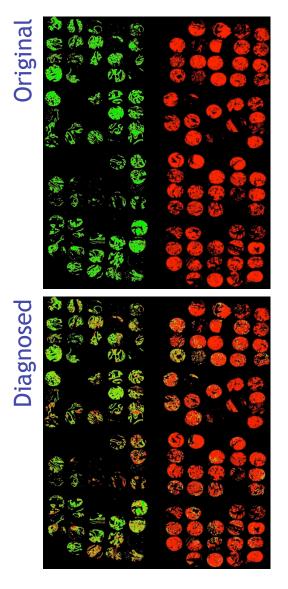



- The spectra contain a chemical signature of the cell/pixel.
- Two step process:
  - Tissue identification (key tissue: epithelial/stroma)
  - Diagnose anomalous tissues (benign/malignant/degree)


# Why Does This Matter?

- One in six men will be diagnosed with prostate cancer (US) during their lifetime.
- Pathologist opinion of structures in stained tissue is <u>the</u> definitive diagnosis for almost all cancers
  - Also critical for therapy, drug development, epidemiology, public policy.
- Biopsy-staining-microscopy-manual recognition approach has been used for over 150 years.
- No automated method has far proven to be human competitive.
- The lack of automation leads to
  - heavy workloads for pathologists, increased costs and errors.
- The method can be generalized to biopsies of any type of cancer (current studies include prostate, colon, and breast)

# **GBML Identifies Tissue Types Accurately**


- Large volume of labeled arrays
- Spectra transformed (features, tissue type)
- Incremental rule learning based on set covering:
  - Reduce the memory footprint required
  - Efficient and scalable implementation (hardware and software parallelization)
- Accuracy >96%
- Mistakes on minority classes (not targeted) and boundaries





#### Filtered Tissue is Accurately Diagnosed

- Epithelial and stroma used for diagnosis
- Spectra transformed (features, diagnosis)
- GBML to reproduce human diagnosis
- Pixel crossvalidation accuracy (87.34%)
- Spot accuracy
  - 68 of 69 malignant spots
  - 70 of 71 benign spots
- Human-competitive computer-aided diagnosis system is possible
- First published results that fall in the range of human error (<5%)



# Human Competitive Claims: Criteria B,D,E

- Criterion B: The result is equal to or better than a result that was accepted as a new scientific result at the time when it was published in a peer-reviewed scientific journal.
- Criterion D: The result is publishable in its own right as a new scientific result 3/4 independent of the fact that the result was mechanically created.
- Criterion E: The result is equal to or better than the most recent human-created solution to a long-standing problem for which there has been a succession of increasingly better humancreated solutions.

# Criterion B: Better Than Result Accepted As A New Scientific Result

- Current best published result, examples from different fields
  - Image Analysis 77% accuracy<sup>1</sup> (cancer/no cancer)
  - Raman Spectroscopy 86%<sup>2</sup> accuracy
  - Genomic analysis 76% (low grade/high grade cancer)
- FTIR
  - 2 out of 140 samples detected wrong (this study)
- GBML results
  - First automated method to replicate human accuracy in diagnosis
  - General approach applicable to different types of tissue/cancer
  - Advances on GBML mine large scale data sets
    - 1. R. Stotzka et al. Anal. Quant. Cytol. Histol., 17, 204-218 (1995).
    - 2. P. Crow *et al. Urol.* 65, 1126-1130 (2005)
    - 3. L. True *et al.* Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10991-10996.

# Criterion D: GBML Results are Publishable

- Paper in GECCO in the Real World Applications track
- Journal article in press:
  - Jounal of Natural Computing. Special issue on Learning Classifier Systems (Ed. Larry Bull)
- Preparing a unifying book chapter describing the complete process:
  - Learning Classifier Systems in Data Mining (Ed. Larry Bull and Ester Bernadó)
- Preparing a journal article for a top medical journal on the results and implication for clinical diagnosis:
  - Nature Medicine

#### Criterion E: The result is equal to or better than the most recent human-created solution

- Previous models were unable to match pathologist accuracy
- Patient diagnostic accuracy did not break the 75-90% barrier
- Our approach:
  - Accurately predict 87.43% of the raw pixels
  - Overall patient diagnosis accuracy >95%, which is in the region of human performance by the <u>world's leading authorities</u> in prostate cancer
  - Likely beats community and average pathologists
    - Lack of studies due to liability issues and follow up problems

# Why This is the "Best" Among Other HUMIES Submissions?

- Social impact: Prostate cancer accounts for one-third of noncutaneous cancers diagnosed in US men and it is a leading cause of cancer-related death.
- Interdisciplinary effort: Combine expertise in molecular chemistry, microscopy image processing for spectroscopy and structural information, optimization, and genetics-based machine learning.
- Methodology transference: Our current initial experiments with other tissues—breast and colon—show very similar human-competitive results.
- **Breakthrough:** First human-competitive results in 150 years.