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Abstract: Genetic Programming (GP) is used to estimate the functions that describe the 

torque and the force acting on the external sphere due to steady state motion of 

viscoelastic fluid between two eccentric spheres. The GP has been running based on 

experimental data of the torque at different eccentricities to produce torque for each target 

eccentricity. The angular velocity of the inner sphere and the eccentricity of the two 

spheres have been used as input variables to find the discovered functions. The 

experimental, calculated and predicted torque and forces are compared. The discovered 

function shows a good match to the experimental data. We find that the GP technique is a 

good new mechanism of determination of the force and torque of fluid in eccentric sphere 

model. 
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1.   Introduction 
 

The information about the mechanical properties of solutions and melts is important for the 

processing of these materials in almost all branches of industries. Theoretical and 

experimental studies concerning the flow of viscous or viscoelastic fluids through different 

bodies have been discussed in [1-4]. In general, the solution of the specific boundary value 

problem based on microscopic models [5,6] or phemenological state equations of state [7] 

renders a small number of experimental measurements sufficient to determine a specific 

set of material parameters. The theoretical and experimental studies concerning the flow of 

viscous or viscoelastic fluids in the annular narrow gaps between two rotating bodies are 

convenient boundary value problems in rheology. For two concentric spheres such studies 

have been carried out, e.g., by Wimmer [8] and Yamaguchi et. al. [9,10,11]. In this case the 

only material parameter to be determined (the viscosity) is determined via torque 

measurement only.  A large number of theoretical and experimental works have been 

devoted to the viscous flow between two eccentric spheres; cf. Jeffery [12], Stimson and 

Jeffery [13], Majumdar [14], Munson [15], Menguturk and Munson [16]. Recently, M.Y. 

El-Bakry et al. studied the flow of viscoelastic fluid between two eccentric spheres 

theoretically [17] and experimentally [18]. The determination of the torque and the forces on 

the outer stationary sphere, while the inner sphere is rotated, at different eccentricities are 

theoretically captured in [13], for the experimental data see [18]. For this manuscript, we 

have applied the Genetic programming (GP) technique in order to determine the torque and 

the force on the outer stationary sphere in the eccentric sphere model by using a 0.3 

polyacrylamide in 50/50 glycerin/water mixture. Using Cartesian coordinates (x,y,z), the 

axis of rotation passes through two centers of spheres in z-direction. The two components 

of the force in x and y-direction therefore vanish. The remaining nonvanishing force 

component had been measured in [18]. The torque is obtained due to the rotation of the 

axis of rotation which connects to the inner sphere only by recording the angular velocity, 

denoted by Ω. Making use of the capability of the GP, we have estimated the function that 

describes the torque and the other functions that describe the force acting on the outer 

stationary sphere using genetic programming. The genetic programming technique has 

been also one of researcher’s interests in modeling of different branches of physics 

[19,20,21]. 

 

The torque and force are highly polarizable targets. Therefore, reliable estimates of the 

effect of angular velocity of the inner sphere at certain values of eccentricity is rather 
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essential to predict results for other eccentricities. The GP is fed with angular velocities and 

the eccentricity so that the outputs imitate the experimental data. The next section deals 

with the introduction and the input parameters of GP. Finally, in Section 3, we present our 

results and conclusion.  

 

2. Genetic Programming representation for the torque and forces at the outer sphere in 
eccentric sphere model  
 
2.1. Introduction to Genetic Programming 
 

Genetic programming is one of a number of machine learning techniques in which the 

elements of possible solutions to the problem (in our case angular velocities and 

eccentricities) are provided to a computer program. This technique, through a feedback 

mechanism, attempts to discover the best solution (in our case it will be a function) to the 

problem at hand, based on the researchers (programmers) definition of what is called a 

success. The Genetic programming framework creates a program which consists of a 

series of linked nodes. Each node takes a number of arguments and supplies a single 

return value. There are two general types of nodes: functions (or operators) and terminals 

(variables and constants) [22]. The series of linked nodes can be represented as a tree 

where the leaves of the tree represent terminals and operators reside at the forks of the 

tree. In other words, in GP the programs are written as function which is represented in 

expression trees. The tree elements are called nodes. The functions (F) have one or more 

inputs and produce a single output value. These provide the internal nodes in expression 

trees. The terminals (T) represent external inputs, constants and zero argument functions. 

For example, Fig. 1 shows the representation of the function (A*(A+B)) i.e. *(A,+(A,B)). To 

read trees in this fashion, one resolves the sub-trees in a bottom-up fashion, where F = 

{*,+} and T = {A,B}. 

 

The genetic programming model seeks to imitate the biological processes of evolution, 

treating each of these trees or programs as an “organism”. Through natural selection and 

reproduction over a number of generations, the fitness (i.e., how well the program solves 

the specific problem) of a population of organisms is improved. 

 

A typical implementation of GP (i.e., the process of determining the best (or nearly best) 

solution to a problem in GP) involves the following steps:  

1) GP begins with a randomly generated initial population of solutions. 

2) A fitness value is assigned to each solution of the populations  
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3) A genetic operator is selected probabilistically. 

Case i) If it is the reproduction operator, then an individual is selected (we use fitness 

proportion-based selection) from the current population and it is copied into the new 

population. Reproduction replicates the principle of natural selection and survival of the 

fittest. 

Case ii) If it is the crossover operator, then two individuals are selected. We use 

tournament selection where number of individuals is taken randomly from the current 

population, and out of these, the best two individuals (in terms of fitness value) are chosen 

for the crossover operation. Then, we randomly select a sub tree from each of the selected 

individuals and interchange these two sub-trees. These two offspring are included in the 

new population. Crossover plays a vital role in the evolutionary process. 

Case iii) if the selected operator is mutation, then a solution is (randomly) selected. Now; a 

sub-tree of the selected individual is randomly selected and replaced by a new randomly 

generated sub-tree. This mutated solution is allowed to survive in the new population. 

Mutation maintains diversity. 

4) Continue step 3 for any case of the above three cases, until the new population gets 

solutions. This completes one generation. 

5) GP will not converge. Then, step 2)-4) are repeated till a desired solution is achieved. 

Other–wise, terminate the GP operation after a predefined number of generations. 

 

2.2. Genetic Programming Approach 
We use the experimental data of the torque at certain values of the angular velocity of the 

inner sphere and the eccentricity of the two spheres to produce the torque (calculated) for 

each case (target atom). Also, the force at certain values of the angular velocity of the inner 

sphere and the eccentricity of the two spheres to produce the at certain values of the 

angular velocity of the inner sphere and the eccentricity of the two spheres to produce the 

force(calculated) for each case (eccentricity). The angular velocity and eccentricity are used 

as input variables to find the suitable function that describes the experimental data. 

Our representation, the fitness function is calculated as a negative value of the total 

absolute performance error of the discovered function on the experimental data set, i.e. a 

lower error must correspond to a higher fitness. The total performance error can be defined 

for all the experimental data (j = 1 …, n) set as: 

∑
=

−=
n

1j

2

YXE jj              (1) 

Where Xj represents the experimental data for element j and Yj represents the calculated 

data for element j. The running process stops when the error E is reduced to an acceptable 

level (0.00001). The training data set which is used based on experimental data for the 

torque and force with the angular velocity at different eccentricities [18]. GP was run for 800 
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generations with a maximum population size of 1000. The operators (and selection 

probability) were: crossover with probability 0.9 and mutation with probability 0.01.  

 

 The function set is {+,-, *, \}, and the terminal set is {random constant from 0 to 10, the 

angular velocity, the eccentricity}. The ``full'' initialization method was used with an initial 

maximum depth of 27, and tournament selection with a tournament size of 8. The GP was 

run until the fitness function is reduced to an acceptable level (0.00001); once for each 

eccentricity. The discovered function has been tested to associate the input patterns to the 

target output patterns using the error function. The final discovered function for describing 

the torque, Τ, at the outer stationary sphere of the eccentric sphere model   is given by 

 

3118.77485 0.76705 ( 10)315.63275 10
0.36735

E ET
E E E

Ω Ω −⎛ ⎞= +Ω + − + −⎜ ⎟
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   (2) 

 

where Ω is  the angular velocity of the inner sphere and E is  the eccentricity of the two 

spheres. 

 

The final discovered function for describing the force, Fz, at the outer stationary sphere of 

the eccentric sphere model   is given  by 
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where 

2 1.55825 104.9787 6.1191
2.3374

E EA
E

Ω+ Ω
= + Ω− −

Ω− −Ω
 

 

3. Results and conclusion 

 
Our discovered torque function (2) and force function (3) were tested using the 

experimental data of the torque and force using 0.3 polyacrylamide in 50/50 glycerin/water. 

The training data is based on experimental observations at angular velocities ranging from 

10 (1/s) to 100 (1/s) [18]. The values of the eccentricities of two spheres are taken as 0, 0.2, 

0.6 and 0.8 for the torque and for the force the eccentricities are, 0.2, 0.6, 0.7 and 0.8.  
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Figure.2 displays a good match between the experimental data of the torque at the external 

stationary sphere using 0.3 polyacrylamide in 50/50 glycerin/water and the calculated ones 

by employing our discovered function (2). After convergence, the discovered function has 

been used to predict torque with eccentricity 0.4, at angular velocities ranging from 10 (1/s) 

to 100 (1/s) which corresponds to the available experimental data [18] and Fig.3 illustrates 

the predicted torque compared with experimental data. 

Figure.4 displays also a good match between the experimental data of the force at the 

external stationary sphere using 0.3 polyacrylamide in 50/50 glycerin/water and the 

calculated ones by employing our discovered function (3). After convergence, the 

discovered function has been used to predict force with eccentricity 0.4, at angular 

velocities ranging from 10 (1/s) to 100 (1/s) which corresponds to the available 

experimental data [18] and Fig. 5 illustrates the predicted force compared with experimental 

data. 

 

Finally, we conclude that GP has become a relevant research area in the field of fluid 

mechanics. The present work presents a new technique for modelling the torque and force 

of the eccentric sphere model based on GP technique. The discovered function shows a 

good match to the experimental data for both the torque and the force. We find also that the 

GP technique is able to improve upon more traditional methods in different branches of 

physics, see e.g. Refs. [23,24,25]. 
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Fig (1): Tree representation of the equation square root *(A,+(A,B)) i.e. (A*(A+B)). 
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Fig. 2. Comparison between the torques (S.I. units) calculated by employing our discovered 

function given in (2) and the corresponding experimental points of eccentricities of 0, 0.2, 

0.6, and 0.8. 

 

 

 

 

 

 

 



 9

 

 

 

 

 

 

 

Fig. 3. Comparison between the experimental and predicted torques (S.I. units) versus 

angular velocity  (Ω) at eccentricity 0.4. 
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Fig. 4. Comparison between the forces (S.I. units) calculated by employing our discovered 

function given in (3) and the corresponding experimental points of eccentricities of 0.2, 0.6, 

0.7, and 0.8. 
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Fig. 5. Comparison between the experimental and predicted forces (S.I. units) versus 

angular velocity (Ω ) at eccentricity 0.4. 
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