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It is difficult to predict the dynamics of systems which are nonlinear and whose char-
acteristic is unknown. In order to build a model of the system from input and output13

data without any knowledge about the system, we try automatically to build prediction
model by Genetic Programming (GP).15

GP has been used to discover the function that describes nonlinear system to study
the effect of wavelength and temperature on the refractive index of the fiber core. The17

predicted distribution from the GP based model is compared with the experimental
data. The discovered function of the GP model has proved to be an excellent match to19

the experimental data.
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1. Introduction

Most systems in the real world are essentially nonlinear and time-dependent.1 We23

are sometimes required to deal with systems whose input and output are known but

the mechanism is unknown. Artificial Neural Networks (ANN) and polynomials are25

two methods for global modeling.9 But both cannot give simple and elegant model

representations. Essentially speaking, they are more appropriate to be regression27

and approaching tools than modeling tools. They are less powerful in revealing

the system dynamic laws and are difficult to integrate with the pre-discovered29

knowledge on nonlinear systems.7

This paper presents a genetic programming (GP) model which has been one31

of research interest in modeling high energy physics and in automated re-invention

of six patented optical lens systems.8,11 As well, GP7 have succeeded in the field of33

automatic define function.2 Oakley used GP to evolve equations to fit the chaotic

time series produced by Mackey-Glass equations.3 Iba, Kurita, de Garis and Sato35

used GP for system identification problems.4

As in Ref. 10, researchers try to obtain the refractive index of the core of the37

fiber as a function of wavelengths λ at different temperature T but they cannot
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Table 1. The fitting parameters of the Sellmeier equation for the core

at different room temperatures (E = 100 µm2).

Temp. ◦C A B C D

20 1.331522 0.827246 0.011065 0.999995

25 1.329672 0.829166 0.011049 0.985995

29 1.328192 0.830559 0.011037 0.974795

34 1.326342 0.832615 0.011021 0.960795

40 1.324122 0.834929 0.011003 0.943995

achieve a function which depends on wavelengths and temperatures. Making use1

of the capability of GP, the present work uses GP to model the refractive index

as a function of wavelength and temperature. GP is fed with wavelengths and3

temperature while the output is the refractive index.

The following sections provide a brief introduction to the two-pole Sellmeier5

dispersion formula, GP, describe the selected GP structure and discuss the results.

2. Two-Pole Sellmeier Dispersion Formula7

An accurate dispersion formula (find the refractive index n) that can be applied

over a wide range of wavelengths λ is the two-pole Sellmeier dispersion formula in9

the form9

n2(λ) = A +
B

1 − (C/λ2)
+

D

1 − (E/λ2)
(1)

11

λ is the wavelength measured in micrometers. Here A, B, C, D, and E are called the

dispersion parameters of the fiber core materials (E does not depend on wavelength13

or temperature).

In Ref. 10, they applied the two-pole Sellmeier dispersion formula to the core15

of the fiber at different room temperatures as in Table 1. My proposal is to find

a function which represents the refractive index n(λ, T ) depending on wavelengths17

and temperature. The function should prove to be a better match for experimental

data (i.e., less than the experimental error of 0.001).19

3. Modeling by GP

3.1. Model building21

It is easy to build a prediction model using GP because it has many advantages: to

handle mathematical modelling is easy, special knowledge is not needed to search23

a solution and it can cope with the change of various conditions.

GP handles tree-structured chromosome that represents a mathematical model25

of the system, see Fig. 1. Nodes involved in the tree-structured chromosome belong

to two categories: one involves input data (leaves), the other involves operators27

(+,−, ∗, ln, ln 2, cos, sin) (inner nodes of the tree).
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Fig. 1. Experimental and trained refractive index dispersion formula of the core of the fiber.

3.2. Procedure of GP1

GP5–7 evolves from a population of computer programs, which are possible solu-

tions to a given optimization problem, using the Darwinian principle of survival of3

the fittest. It uses biologically inspired operations like reproduction, crossover and

mutation. Each program or individual of the population is generally represented as a5

tree composed of functions and data/terminals appropriate to the problem domain.

The input set of functions and terminals have to satisfy the closure and sufficiency7

properties. The sufficiency closure property requires that the set of functions and

the set of terminals are able to express solution of problems. The function set9

may include standard arithmetic operators, logical operators, mathematical func-

tions and specific functions. The terminal set usually consists of feature variables11

and constants. Each individual in the population is assigned a fitness value, which

quantifies how well it performs in the problem environment. The fitness value is13

computed by a problem dependent fitness function.

A typical implementation of GP involves the following steps.15

(1) GP begins with a randomly generated population of solutions of size.

(2) A fitness value is assigned to each solution of the populations.17

(3) A genetic operator is selected probabilistically as follows:

Case i If it is the reproduction operator, then an individual is selected (we19

use fitness proportion-based selection) from the current population and it is

copied into the new population. Reproduction replicates the principle of natural21

selection and survival of the fittest.

Case ii If it is the crossover operator, then two individuals are selected. We use23

tournament selection where a number of individuals is taken randomly from

the current population, and out of these, the best two individuals (in terms25
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of fitness value) are chosen for the crossover operation. Then, we randomly1

select a sub tree from each of the selected individuals and interchange these

two subtrees. The two offsprings are included in the new population. Crossover3

plays an essential role in the evolutionary process.

Case iii if the selected operator is mutation, then a solution is (randomly)5

selected. Now, a subtree of the selected individual is randomly selected and

replaced by a new randomly generated subtree. This mutated solution is allowed7

to survive in the new population. Mutation maintains diversity.

(4) Continue step 3, until the new population gets solutions. This completes one9

generation.

(5) If GP has not yet converged, steps 2–4 are repeated till a desired solution11

(maybe 100% correct solution) is achieved. Otherwise, terminate the GP oper-

ation after a predefined number of generations.13

3.3. The proposed genetic programming

The author’s approach is to use the experimental data10 (wavelengths λ and tem-15

perature T ) to produce the refractive index for each case. The wavelengths λ and

temperature T are used as input variables to find the suitable function that can17

describe the experimental data.

The fitness function is calculated as a negative value of the total absolute per-19

formance error of the discovered function on the experimental data set, i.e., a lower

error must correspond to a higher fitness. The total performance error can be de-21

fined for all the experimental data (i = 1, . . . , n) set as:

E =

n∑

j=1

|Xj − Yj |
2 (2)

23

where Xj represents the experimental data for element j and Yj represents the

calculated data for element j. The running process stops when the error E is reduced25

to an acceptable level (0.00001).

4. Results27

Our representation GP was run for 500 generations with a maximum population size

of 900. The operators (and selection probability) were: crossover with probability 0.829

and mutation with probability 0.01. The function set is (+,−, ∗, /, ln, log2, sin, cos),

and the terminal set is (random constancy from 0 to 10, λ, T ). the “full” initial-31

isation method was used with an initial maximum depth of 27, and tournament

selection with a tournament size of 8.33

Inputs training data are the wavelengths λ = 300–700 nm, and temperature

T = 20, 25, 29, 34 in ◦C. Each refractive index n corresponds to certain wave-35

lengths λ at different temperature T . The discovered function (in the Appendix)

has been trained to associate the input patterns to the target output patterns for37
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Fig. 2. Experimental and trained refractive index dispersion formula of the core of the fiber.

FIGURE 3

Fig. 3. Experimental and predicted refractive index dispersion formula of the core of the fiber.

the above wavelengths. Figure 2 illustrates the experimental and trained refractive1

index. After running the GP, the discovered function has been used to predict

the refractive index, corresponding to T = 40◦C with the same λ = 300–700 nm.3

Figure 3 illustrates the experimental data and predicts the refractive index.

5. Conclusions5

Genetic programming has been run to model the dispersion formula depending on

the temperature. GP discovered a function which represents the dispersion formula7

at different temperatures. The discovered function shows an excellent match to
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the experimental data. Moreover, the discovered function is capable of predicting1

experimental data for dispersion formula that are not used in the training session.

Finally, we conclude that GP have become one of the important research areas in3

the field of optics.

Appendix5

∗(+(ln(sin(ln(−(/(log2(+(/(/(ln(ln(λ)), 10), ln(0.72349)), λ)),

log2(/(log2(λ),−(/(log2(+(/(/(ln(ln(−(log2(λ), 10))), 10), ln(0.72349)),7

λ)), log2(/(log2(λ), 10))), 10)))), 10)))),−(cos(cos(sin(/(log2(+

(/(/(ln(ln(λ)), 10), ln(sin(ln(−(/(log2(+(/(/(ln(ln(λ)), 10),9

ln(0.72349)), λ)), log2(/(log2(λ),−(/(log2(+(/(/(ln(ln(−(log2(λ),

10))), 10), ln(0.72349)), λ)), log2(/(log2(λ), 10))), 10)))), 10))))), λ)),11

10)))), ln(∗(log2(0.85892), sin(0.72349))))), /(T, ∗(∗(λ, 0.67269), T ))).
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