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Abstract: New technique is presented for modeling the total cross sections of electron scattering by Na, K, Rb and Cs 
atoms in the  low and intermediate energy regions.  The calculations have been performed in the framework of genetic 
programming ( GP ) technique. The GP has been running based on the experimental data of the total collisional cross 
sections to produce the total cross sections for each target atom. The incident energy and atomic number as well as the static 
dipole polarizability have been used as input variables to find the  functions that describe the total collisional cross sections of 
the scattering of electrons by alkali atoms. The experimental, calculated and predicted total collisional cross sections are 
compared. The discovered functions show  a good match to the experimental data. 
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1.  Introduction 
Over the last three decades, there has been 
considerable interest in the electron-atom collision 
problem. Most of this work has concentrated on elastic 
scattering, excitation of the lowest energy states, 
excitation of higher lying states and ionization ( see 
e.g. Refs.[1-5] ). The investigations of the previous 
scattering problems have been carried out by 
employing numerous traditional approximate methods 
( see e.g. Refs.[6-10] ). Alkali-metal atoms have been 
a subject of interest in several theoretical and 
experimental investigations in electron-atom collisions 
because of their various interesting properties: 
relatively simple structure, low ionization potentials 
(3.9-5.4eV), large polarizabilities [11,12] and 
existence of resonance lines in the visible or quartz 
ultraviolet part of the electromagnetic spectrum (which 
make the alkali metals interesting as components of 
stellar atmosphere and other plasmas). The total 
collisional cross sections have been measured or 
estimated by different experimental research groups 
[13-18] for electron impact on these atoms. Neural 
networks have become famous in the field of electron 
collisions with atoms [19]. Recently, Genetic 
programming (GP) has been one of researchers’ interests 
in modeling of high energy physics as well as in different 
fields ( see for example Refs. [20-25] ) . Genetic  
programming  is  one  of  a  number  of  machine  learning  
techniques  in which  a computer program is given  the 
elements  of possible solutions to the problem (in our 
case energy, atomic number and polarizability). This 
technique, through a feedback mechanism, attempts to 

discover the best solution ( in our case it will be a 
function ) to the problem at hand, based on the 
programmers definition of success. The Genetic programming 
framework creates a program which consists of a series of 
linked nodes. Each node takes a number of arguments and 
supplies a single return value. There are two general 
types of nodes: functions (or operators) and terminals 
(variables and constants) [23]. The series of linked 
nodes can be represented as a tree where the 
leaves of the tree represent terminals and 
operators reside at the forks of the tree. In another 
words, in GP the programs are written as function 
which represented in expression trees. The tree 
elements are called nodes. The functions (F) have one 
or more inputs and produce a single output value. 
These provide the internal nodes in expression trees.  
The terminals (T) represent external inputs, constants 
and zero argument functions 
 In this paper, we have discovered the functions 
that describe the scattering of electrons by sodium, 
potassium, rubidium and cesium atoms using genetic 
programming technique. GP is fed once with the 
electron incident energy and the target atomic number ( this 
case is referred to as “model 1” ) and once with the incident energy 
and the static dipole polarizability [12] of  the  alkali target atom ( 
this case is referred to as “model 2” ) so that the outputs imitate 
the experimental data of the total collisional cross sections. 
To our knowledge, this is the first application of the 
genetic programming technique to the low and 
intermediate energy data of electron scattering by alkali 
atoms. Sections 2 and 3 of this paper deals with the 
introduction  and the inputs of GP as well as the proposed 
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GP. Finally, in Sections 4 and 5, we present our results 
and conclusion. 
2. Electron - alkali atom  collision modeling using 
genetic programming 
 
GP,  evolves a population of computer programs, 
which are possible solution to a given optimization 
problem , using the Darwinian principle of survival of 
the fittest. It uses biologically inspired operations like 
reproduction, crossover and mutation. Each program 
or individual on the population is generally 
represented as a tree composed of functions (*,+) and 
data / terminals (X,Y) appropriate to the problem 
domain. For example, Fig. 1 shows the representation of 
the function +(*(x,y),*(x,*(x,y)))i.e.((x*(x*y))+(x*y)). 
To read trees in this fashion, one resolves the sub-trees in 
a bottom-up fashion, where F={*,+} and T={x, y}. The 
set of functions and set of terminals/inputs must satisfy 
the closure and sufficiency properties. The closure 
property demands that the function set is well defined 
and closed for any combination of arguments that it 
may encounter. On the other hand, the sufficiency 
property requires that the set of functions  and the set 
of terminals be able to express a solution of problem. 
The function set may contain standard arithmetic 
operators, mathematical functions, logical operators, 
and domain-specific functions. The terminal set 
usually consists of feature variables and constants. 
Each individual in the population is assigned a fitness 
value, which quantifies how well it performs in the 
problem environment. The fitness value is computed 
by a problem dependent fitness function.  

 
Fig.1. Tree representation of the equation 
+(*(x,y),*(x,*(x,y))) i.e. ((x*(x*y))+(x*y)). 
 
 
A typical implementation of GP ( i.e. the process of 
determining the best (or nearly best) solution to a 
problem in GP) involves the following steps:  
1) GP begins with a randomly generated initial 
population of solutions. 
2) A fitness value is assigned to each solution of the 

populations  
3) A genetic operator is selected probabilistically. 
Case i) If it is the reproduction operator, then an 
individual is selected (we use fitness proportion-based 
selection) from the current population and it is copied 
into the new population.  Reproduction replicates the 
principle of natural selection and survival of the fittest. 
 
Case ii) If it is the crossover operator, then two 
individuals are selected. We use tournament selection 
where number of individuals is taken randomly from 
the current population, and out of these, the best two 
individuals (in terms of fitness value) are chosen for 
the crossover operation. Then, we randomly select a 
sub tree from each of the selected individuals and 
interchange these two sub-trees. These two offspring 
are included in the new population. Crossover plays a 
vital role in the evolutionary process. 
 
Case iii) if the selected operator is mutation, then a 
solution is (randomly) selected. Now; a sub-tree of the 
selected individual is randomly selected and replaced 
by a new randomly generated sub-tree. This mutated 
solution is allowed to survive in the new population. 
Mutation maintains diversity. 
4) Continue step 3), until the new population gets 
solutions. This completes one generation. 
5)Unlike genetic algorithm [26], GP will not converge. 
So, steps 2)-4) are repeated till a desired solution (may 
be 100% correct solution) is achieved. Other–wise, 
terminate the GP operation after a predefined number 
of generations. 
 
3.The proposed genetic programming 
Our approach is to use the experimental data of the total 
collisional cross sections at certain values of the  incident energy of 
the electron,  atomic number and the static dipole polarizability of 
the alkali target atom to produce the total cross sections (calculated) 
for each case (target atom). The alkali-metal atoms are highly 
polarizable targets. Therefore, reliable estimates of the 
effect of distortion of the alkali-metal target is rather 
essential to predict scattering parameters. Modeling of the 
experimental data has two fold way. The incident energy (ε ) and 
atomic number ( z ) are used as input variables to find the suitable 
function , ( )zt ,1 εσ , that describes the experimental data ( this 
case is referred to as “ model 1” ). Also, the incident energy (ε ) 
and static dipole polarizability (α ) are used as input variables to find 
another suitable function, ( )αεσ ,2t , that describes the 
available experimental data ( this case is referred to as “model 2” ).  
Our representation, the fitness function is calculated as 
a negative value of the total absolute performance 
error of the discovered function on the experimental 
data set, i.e. a lower error must correspond to a higher 
fitness. The total performance error can be defined for 
all the experimental data ( i = 1 …, n ) set as: 
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where Xj represent the experimental data for element j 
and Yj represent the calculated data for element j. The 
running process stops when the error E is reduced to 
an acceptable level (0.00001). 
The training data set which is used based on 
experimental data for the total scattering cross sections of 
the collisions of electrons with Na, K, Rb and Cs atoms 
[16-18].  
To find ( )zt ,1 εσ , according to “model 1”,  GP was run 
for 800 generations with a maximum population size 
of 1000. The operators (and selection probability) 
were: crossover with probability 0.9 and mutation with 
probability 0.01.  The function set is {+,-, *, \, log, 

2Log , sin, cos, sqr}, and the terminal set is {random 
constant from 0 to 10, the incident energy, the atomic 
number}.  the``full'' initialisation method was used with 
an initial maximum depth of 27, and  tournament 
selection with a tournament size of 8.  The GP was run 
until the fitness function is reduced to an acceptable 
level (0.00001); once for each alkali-metal atom. The 
discovered function has been tested to associate the 
input patterns to the target output patterns using the error 
function.  
To find  ( )αεσ ,2t , according to “model 2”, GP has been 
run with the same previous conditions except the function set 
becomes {+,-, *, \, log, sqr, exp}, and the terminal set is 
{random constant from 0 to 10, the incident energy, the 
static dipole polarizability}. 
The final discovered function ( )zt ,1 εσ   for describing 
the electron collisions with alkali atoms at low and 
intermediate energies is ( see also the appendix) given  by 
 

( )zt ,1 εσ = 

2Log ( z *(10-log(sin( z )/ 2Log ( z )))+( ε 2

)*5.1343/(sin( z )* 2Log ( ε )))+(18.3816+
z *1.1727/ε -(0.5147/(cos(sin(sin( 2Log (
z /0.93534)))/0.27459)))+ 2Log ( z )/0.05
36)*cos(0.3010*log(ε ),  
                                                                ( 2 ) 
where ε  is the electron incident energy and z  is the 
atomic number of the alkali target atom.  

Also, the discovered function ( )αεσ ,2t is given by 

( )αεσ ,2t =  
(7.2814-log(0.1316*(ε )^1.5))*sqrt(log((
exp(α)-2.0336)/(10+sqrt(α)+a))), 
                                                                ( 3 ) 
such that  

 
a=sqrt(0.9406+exp(ε *(7.2814-log(0.01
8401 *sqrt(ε )*exp(log(0.2231 
*sqrt(ε )))*log(α *sqrt(exp(ε ))-ε ))))), 
                                                                 
                                                                (4) 
where ε  is the incident energy and α is the static dipole 
polarizability of the alkali target atom. 

4. Results 
The discovered functions were tested using the 
experimental data of  the total cross sections ( measured 
in 2

0aπ units).The training data is based on experimental 
observations at incident energies ranging from 4.1 eV to 
76.1 eV for e--Na scattering [16], from 4.4 eV to 101.9 eV  
for e--K scattering[16], from 2 eV to 77.5 eV for e- - Rb 
scattering [17]. After convergence, the discovered 
functions ( )zt ,1 εσ and ( )αεσ ,2t  have been used to 
predict the total collisional cross sections from 6.5 eV to 
77.5 eV for e-- Cs scattering [18]. The values of the static 
dipole polarizabilities of Na, K, Rb and Cs are taken [12] 
as 163 3

0a , 293 3
0a , 319 3

0a  and 358 3
0a , respectively. 

Figure 2 displays a good match between the 
experimental data and the calculated ( for Na, K and Rb ) 
and predicted ( for Cs only) total collisional cross sections  
of electrons with alkali atoms employing our discovered 
function ( )zt ,1 εσ  ( i.e. according to “model 1”). Figure 
3 shows a best fitting between the experimental, calculated 
and predicted total collisional cross sections using our 
discovered function ( )αεσ ,2t  ( i.e. according to “model 
2 ” ). 

 
Fig.2. Comparison between the experimental, 

calculated and predicted total collisional cross sections 
(in 2

0aπ ) of e- - Na, e- - K, e- - Rb and e- - Cs scattering 
using our discovered function ( )zt ,1 εσ .   
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Fig.3. Comparison between the experimental, 

calculated  and predicted total collisional cross sections 
(in 2

0aπ ) of e- - Na, e- - K, e- - Rb and e- - Cs scattering 
using our discovered function ( )αεσ ,2t . 
 
5. Conclusion 
 Genetic programming (GP) method is one of a 
number of machine learning techniques in which a 
computer program is given the elements of possible 
solution to the problem ( in our case electron incident 
energy, atomic number, static dipole polarizability) and 
attempts, through a feedback mechanism, to discover 
the best function ( in our case the total collisional cross 
section) to the problem at hand, based on the 
programmers definition of success. The program 
consists of a series of linked nodes which can be 
represented as a tree. Each node takes a number of 
arguments and supplies a single return value. There are 
two general types of nodes (or tree elements): 
functions(or operators) such as {*,+,-,\ , exp, log, Log2, 
sin, cos, sqr}and terminals (constants and variables) 
such as { random constant from 0 to 10, the incident 
energy, the atomic number, polarizability}.The GP 
model seeks to imitate the biological processes of 
evolution, treating a tree or program as an “organism”. 
Through natural selection and reproduction over a 
number of generations, the fitness of a population of 
organisms is improved. In our problem,GP method 
uses the experimental data of the total collisional cross 
sections at certain values of the electron incident 
energy, the atomic number and the static dipole 
polarizability of the alkali target atom to produce the 
total cross sections (calculated) for each alkali target 
atom.  

Genetic programming has been run to model 
the electron-alkali-metal atom collisions at low and 
intermediate energies. Therefore, the present work 
presents a new technique for modeling the total 
collisional cross sections of  electrons with sodium , 
potassium, rubidium and cesium alkali atoms based on 
GP technique. GP discovered the functions that 

describe the total collisional cross sections of electrons 
with alkali atoms in terms of the electron incident 
energy, atomic number and static dipole polarizability. 
The discovered functions show a good match to the 
experimental data. Moreover, the discovered functions are 
capable of predicting experimental data for the total 
collisional cross sections that are not used in the training 
session. Finally, we conclude that GP has become one of 
important research areas in the field of atomic collision 
physics. 
 
Appendix 
In this appendix we present the form of the discovered 
functions ( )zt ,1 εσ  and ( )αεσ ,2t  for describing 
electron collisions with alkali-metal atoms at low and 
intermediate energies in terms of the electron  incident 
energy (ε )  and atomic number ( z ) as well as in terms 
of the static dipole polarizability α. The discovered 
functions are given as: 

( )zt ,1 εσ = 

-( 2Log (+(*(/(*( 2Log (10),10),/(sin( z ),/(*( z , z ),
2Log ( ε )))),sin(0.15518)),*(-(10,log(/(sin( z ),
2Log ( z )))), z ))),*(/(+(+(/(0.63797,/( ε , z )),+(/(0.

63797,/(cos(/(sin(sin( 2Log (/( z ,0.93534)))),0.274
59)),cos(+(0.35818,*( 2Log (10),0.64761))))),/(

2Log ( z ),/(0.98577,10)))),10),sin(10)),cos(/(log(
ε ), 2Log (10))))). 
                                                                (A1) 
Or in simpler form we can rewrite the  
previous form of ( )zt ,1 εσ  as follows 

( )zt ,1 εσ = 

2Log ( z *(10-log(sin( z )/ 2Log ( z )))+( ε 2

)*5.1343/(sin( z )* 2Log ( ε )))+(18.3816+
z *1.1727/ε -(0.5147/(cos(sin(sin( 2Log (
z /0.93534)))/0.27459)))+ 2Log ( z )/0.05
36)*cos(0.3010*log(ε ).                          
                                                                (A2) 
 Also, the discovered function ( )αεσ ,2t is given by 

( )αεσ ,2t = 

*(-(exp(log(*(log(10),sqrt(10)))),log(*(sqrt(*(ε ,/(
0.18401,10))),*(sqrt(sqrt(0.88473)), 
ε )))),sqrt(log(/(-(exp(α),exp(0.7098)),plus(plus(1
0,sqrt(plus(sqrt(0.88473),exp(*(-(exp(log(*(log(1
0),sqrt(10)))),log(*(sqrt(*(ε ,/(0.18401,10))),*(ex
p(log(/(*(sqrt(ε ),0.057973),0.25984))),log(-(*(sq
rt(exp(ε )), α),ε )))))),ε ))))),sqrt(α)))))). 
                                                                (A3) 
Or in simpler form we can also rewrite the 
formula (A3) as follows 
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( )αεσ ,2t =  
(7.2814-log(0.1316*(ε )^1.5))*sqrt(log((
exp(α)-2.0336)/(10+sqrt(α)+a))), 
                                                               (A4) 
where  
a=sqrt(0.9406+exp(ε *(7.2814-log(0.01
8401 *sqrt(ε )*exp(log(0.2231 
*sqrt(ε )))*log(α *sqrt(exp(ε ))-ε ))))). 
                                                                (A5) 
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