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Abstract 

 
The paper addresses general many-to-many 

collective communications, whose scheduling may be 
needed when writing application-specific communi-
cation routines or communication libraries. Optimum 
schedules with the number of steps equal or close to 
theoretical lower bounds are designed with the use of 
evolutionary algorithms. Optimization is carried out 
for a given topology of a direct interconnection 
network; network nodes can be single or multiple 
processors connected to a router. Wormhole switching, 
full duplex links and single-port non-combining nodes 
are assumed. The developed scheduling could be 
advantageous mainly for networks on chip (NoC) and 
application-specific communication architectures.   

 
 
 
1. Introduction 
 

With an increasing number of processor cores, 
memory modules and other hardware units in SoCs, 
the importance of communication among them and of 
related interconnection networks is steadily growing. 
Recently the research opened up in Network on Chip 
(NoC) area, encompassing the interconnection 
/communication problem at all levels, from physical to 
the architectural to the OS and application level [1], 
[2].  

Some embedded parallel applications, like network 
or media processors, are characterized by independent 
data streams or by a small amount of inter-process 
communications [1]. However, many general-purpose 
parallel applications display a bulk-synchronous 
behavior: the processing nodes access the network 
according to a global, structured communication 
pattern. They can, for example, execute a personalized 
all-to-all information exchange, global 
synchronization, gather/scatter to/from one node, etc. 

The performance of these collective communications 
(CC for short) has a dramatic impact on the overall 
efficiency of parallel processing. Provided that 
computation times are known, as is usually true in case 
of application-specific systems, the only thing that 
matters in obtaining the highest performance is 
duration of various collective communications. 

Bus-based synchronous communication structures 
in SoC, operating at several hundreds MHz, are not 
attractive any more, due to tight timing constraints and 
skew control [2]. Transition to point-to-point high 
speed networks, that happened on system boards (e.g. 
from PCI to PCI/Express), is taking place on SoCs, 
too. Much research and practical interest has recently 
focused on other regular networks implemented on 
chip. A class of interconnection networks of interest in 
this paper covers direct networks, which for 
performance-driven environments converge on the use 
of pipelined (wormhole, WH) message transmission 
and source-based routing algorithms; that is why only 
wormhole switching is considered in this paper. 

Logarithmic diameter networks, e.g. hypercube, 
butterfly and fat tree, provide enough bandwidth for 
all-to-all communications, but do not map well into 
two dimensions provided by a silicon chip: the length 
of some interconnection wires increases proportionally 
to the number of processors. This will decrease the 
clock frequency dramatically and degrade the 
performance. In this paper we use Octagon topology 
[3] and 2D-mesh for illustration, which could be used 
as NoCs. 

The paper is structured as follows. In the following 
Section 2 we review the lower bounds on the number 
of communication steps in WH networks and for 
All/One-to-All/One communication patterns, whereas 
in Section 3 we give new bounds for M-to-N 
communication patterns. In Section 4 the CC 
scheduling problem is formulated mathematically and 
methods of its solution are discussed. Our approach is 
explained in Section 5. Finally Section 6 is a small 



case study comparing upper and lower bounds for 
selected communications on 1-port fat Octagon 
topology. Results and their scalability are commented 
in Conclusions. We will use P for number of 
processors in the network with V nodes (vertices). If 
P=V, we have “slim” nodes - one processor per node; 
otherwise we can place P/V processors on one node 
and get   “fat” nodes.   
 
2. Time complexity of All/One-to-All/One 
collective communications in WH networks 
 

Performance of CCs is closely related to their time 
complexity. The simplest time model of point-to-point 
communication in direct WH networks takes the 
communication time composed of a fixed start-up time 
ts at the beginning (SW and HW overhead) and of a 
component that is a function of distance h (the number 
of channels on the route or hops a message has to do) 
and message length m in certain units (words or bytes): 

tWH = ts +  h tr  +  m t1 ,                                    (1) 
where tr includes a routing decision delay, switching 
and inter-router latency and t1 is per unit-message 
transfer time. The dependence on h is rather small,  
(since tr << m t1), so that WH switching is considered 
distance-insensitive. For simplicity, in eq. (1) we have 
assumed no contention (and therefore congestion, too) 
for channels and no associated delays.  

 Beside pair-wise communications, in many parallel 
algorithms we often find certain communication 
patterns, which are regular in time, in space, or in both 
time and space; by space we understand spatial 
distribution of processes on processors. Communi-
cations taking place among subsets or among all 
processors are called collective (CC) or group 
communications. We will assume that all messages in 
CC have identical size. Generally we have two sets of 
nodes: T − the set of transmitting nodes and R − the set 
of receiving nodes. We may distinguish three classes of 
CCs: 
1. T ∩ R = ∅, non-overlapping sets of nodes.  

A. One-to-all, T = 1, R = P-1. Broadcast com-
munication (OAB, a single message) belongs to 
this class as well as one-to-all scatter 
communication (OAS, a private message to each 
partner).   
B. All-to-one, T = P-1, R = 1, e.g. gather 
(AOG) or reduce (AOR) communication.  
C. Many-to-many, T = M, R = N. Non-overlap-
ping sets of nodes. 

2. T ∩ R ≥ 1.  Many-to-many communication with 
overlapping sets of nodes. 
3.  T ∩ R = P. All-to-all communications such as 
permutation, all-to-all scatter, (AAS), all-to-all reduce 
(AAR), and others. 

 In the rest of the paper we assume that the CC in 
WH networks proceeds in synchronized steps. In one 
step of CC, a set of simultaneous packet transfers takes 
place along complete disjoint paths between source-
destination node pairs. If the source and destination 
nodes are not adjacent, the messages go via some 
intermediate nodes, but processors in these nodes are 
not aware of it; the messages are routed automatically 
by the routers attached to processors. Complexity of 
collective communication will be determined in terms 
of the number of communication steps (frames) or 
equivalently by the number of “start-ups”; there are 
two figures - theoretical lower bound τCC(G) or really 
obtainable upper bound τCC(G). These figures of merit 
do not take into account the message length or its 
variations from one step to another. Further on we 
assume that the CPU is connected to an associate 
router via two unidirectional DMA channels (one-port 
model), which can transfer data simultaneously (full 
duplex). A more general k-port model would allow 2k 
such DMA channels.   

One of the key design factors of an interconnection 
network is its topology. The lower bounds τCC(G) for 
the network graph G depend on node degree d, number 
of nodes P, and channel bisection width BC, [8], Tab.1. 
Complexities of collective communications of type 1A, 
1B and 3 in Table 1 are well known. As far as the 
broadcast communication (OAB) is concerned, the 
lower bound on the number of steps  

τOAB(G) = s = log2 P 
is given by the number of nodes informed in each step, 
that is initially 1, 1+1 after the first step, 2 + 2 = 22 
after the second step, etc.,…, and 2s ≥ P nodes after 
step s. In case of AAB communication, since each 
node has to accept P−1 distinct messages, the lower 
bound is P−1 steps. A similar bound applies to OAS 
communication, because each node can inject into the 
network not more than one message at a time.   

The lower bound for AAS can be obtained 
considering that one half of messages from each 
processor cross the bisection, whereas the other half do 
not. There will be altogether 2(P/2)(P/2) of such 
messages in both ways. If BC is the network bisection 
width [8], not more than BC messages can flow in one 
direction through the cut at a time. This gives  
P2 /(2BC ) communication steps. 

 



Table 1. Lower bounds on complexity of 
selected collective communications 

 
CC WH, 1-port, FD model 

OAB log 2 P  
AAB P – 1 

OAS P – 1 

AAS max ( P2/(2 BC), P – 1) 

 
 
3. Time complexity of M-to-N collective 
communications in WH networks 
 

The cases of M-to-N broadcast and scatter 
communication are represented in Fig.1. The sets of 
transmitting nodes T and receiving nodes R are 
generally overlapping, T ∩ R = Q ≥ 1, some nodes 
are only transmitting, | T \ T ∩ R | = M − Q and some 
nodes only receiving  | R \ (T ∩ R) | = N − Q. In special 
case Q = R or Q = T, Fig.1b, c. The lower bounds 
τCC(G) for M to N communications are not known, but 
have been derived here as follows. 
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Fig.1. Many-to-many communication 

      a) T⊄R and R⊄ T,   b) R ⊂T,    c) T⊂ R 
 

Case a. First, M-to-N broadcast is limited by OAB or 
AAB bound from Tab.1, whichever is greater: 

           TMNB = max (log 2 N, M)                             (2) 
because some nodes may absorb M and not M−1 
messages as in AAB.  

Second, M-to-N scatter communication can be divided 
into four groups of communication that have related 
bisection widths available, see Fig.1: 

T \ (T ∩ R) → (T ∩ R)          b1 
(T ∩ R) → R \ (T ∩ R)          b2, 
T \ (T ∩ R) → R \ (T ∩ R)    min (b1, b2), 
(T ∩ R) → (T ∩ R)      b0.                   (3)      

Now the first two groups may proceed simultaneously 
(overlapped),  
T \ (T ∩ R) → (T ∩ R) || (T ∩ R) → R \ (T ∩ R)        (4) 
and so could the other two:                                

T \ (T ∩ R) → R \ (T ∩ R) || (T ∩ R) →  (T ∩ R).      (5) 
      
Time for communication specified in (4) is thus 
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and for communication described in (5) is 
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The total lower bound is thus 
                       ΤMNS(G) = T1 + T2.                             (6) 

 
Case b. Similarly as in case a) for broadcast we have  
            TPNB = max (log 2 P, P−1)                           (7) 
and for scatter 

          























 −=
0

2

1
PNS 2

,)(max
b

N
b

NNPT  ,              (8) 

where b1 is the number of channels from T to R and b0 
is a bisection width of sub-network R. 
Case c. A similar reasoning as in case b gives  

           ΤMPB(G) = max (log 2 P, M)              (9) 
and  
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where b1 is the number of channels from T to R and b0 
is a bisection width of sub-network T. In any case, the 
number of messages injected to or absorbed from the 
network in one step is limited also by the number of 
ports.  

To illustrate the above results, M-to-N broadcast on 
the mesh in Fig.2 will be analyzed first. We have M = 
9 sending nodes, N = 11 receiving nodes, and Q = 4 
nodes in intersection T ∩ R. According to eq. (2),  

TMNB = max (log 2 11, 9) = max (4, 9) = 9 steps.  

The complexity of scatter communication will be 
estimated by means of bisections  b1 = 5,  b2 = 6, and b0 
= 1. Substituting these parameters into eq. (6) we get 

ΤMNS(G) = T1 + T2 = max (4, 5) + max (7, 6) = 12 steps. 



 

T 

R 

 

Fig.2. Nine-to-eleven scatter communication 
 

This bound does not take into account a node degree 
and is therefore valid generally for k-port model, when 
CPU can communicate with the router via k ports 
simultaneously. 

In the case when sets T a R are not overlapping, T ∩ 
R = ∅, and | T ∪ R | ≤ P, we cannot use the bisection 
width any longer. If λCC(l) is the load of link l in CC 
(i.e. the number of messages using link l ) then the 
lower bound is given as 

TM2N = max λCC(l)                          (11) 
over all links l.  

 

4. Mathematical formulation of the 
scheduling problem and its solutions 
 

 Any collective communication is composed of a set 
CC of pair-wise communications (transfers, messages, 
paths) 

                    xi = {csrc, ca, cb, …, cdst},  
where cx are channels along the minimum path from 
the source to destination node. (We will restrict 
ourselves to minimum routing for practical reasons 
given later). Cardinality of set CC may be quite high, 
e.g. all-to-all communication among P processors 
gives CC= P(P−1) messages; for P ∈ <8, 128> we 
have P(P-1) ∈ < 56, 16256 >. 

   The goal of scheduling is to pack messages in CC 
into the minimum number of groups such, that there is 
no conflict within a group. In wormhole routing a 
conflict means that two messages scheduled in the 
same step share one or more channels. If they don’t, 
they are compatible. Compatibility relation γ on set CC 
can thus be defined: 
           xi γ xk  ≡ ∃!ce {ce∈xi  and ce∈xk}.  
This relation defines a cover of CC by maximum-size 
compatibility classes. A group of messages in one 
compatibility class can start transmission 
simultaneously and we therefore schedule each such 
group in one communication step. Obviously we want 
to find a minimum number of compatibility classes still 
covering set CC. The final step is to transform this 

minimum cover of CC to a partition, compatibility 
classes to blocks, by eliminating messages in more 
than one class and possibly simultaneously balancing 
the size of classes. 
       Exact solution of the above problem can be 
obtained by MILP method (Mixed Integer Linear 
Programming), but very long solutions are required for 
network sizes of practical interest. The communication 
scheduling can also be formulated as a graph coloring 
problem. Elements of CC can be represented by nodes 
in a graph, and conflicts among elements by graph 
edges. Minimum number of colors needed to color the 
graph gives the number of communication steps and 
nodes with the same color belong to one compatibility 
class. Exact or heuristic graph coloring, even though it 
may be quite lengthy, yields only a suboptimal 
solution. The reason is the existence of multiple 
minimum paths for some source-destination pairs. 
Which one should be selected? Another approach, 
recursive division of a CC set described in [4], is 
supposed to be exact, but has the following 
restrictions: 
- only multicast is solved, 
- routing from src to dst is unique and prescribed, 
- one-port model is assumed. 
In our approach (Section 5), we will relax all above 
restrictions. 

  Let us note that during the search for the optimum 
schedule, it may be necessary to include not only 
multiple minimum paths, but sometimes even non-
minimum ones! Fig. 3 shows one example – one-to-all 
scatter communication in the mesh topology. To reach 
the minimum number of communication steps (the 
lower bound is 5 steps), 3 messages must be injected to 
a network in every step by the source node. The last 
step requires non-minimum routing. 
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Fig. 3. One-to-all scatter in 5 steps 
 



5. Evolutionary Search for Suboptimal   
Schedules    
 

The design of conflict-free schedules using 
evolutionary optimization has been carried out in two 
directions: 
- MNB and MNS schedules were obtained with the aid 
of MBOA algorithm. 
- MNB schedules were tackled with Hybrid parallel 
Genetic Simulated Annealing (HGSA) [6]. 

Mixed Bayesian Optimization Algorithm (MBOA) 
[5] is based on Bayesian Optimization Algorithm.  The 
probabilistic model of BOA, the Bayesian net, is 
replaced by a set of binary decision trees/graphs. 

A chosen AAS chromosome encoding has a form of 
a matrix with P OAS chromosomes (vectors). The 
OAS chromosome uses P genes, each gene consists of 
two items: an index of one of the shortest source-
destination path and a communication step number. 
The fitness function is based on counting conflicts in a 
schedule (i.e. situations when two processors want to 
use the same channel in the same step). The optimal 
schedule does not contain any conflict and the MBOA 
(with the given number of communication steps as 
input) was able to find it for common networks with up 
to 64 nodes [5].  

In HGSA, there are sequential SA (Simulated 
Annealing) processes running in parallel. After 100 or 
so iterations of Metropolis algorithm, each process 
sends its solution to a master. The master uses the 
genetic crossover to produce new solutions: two 
children solutions are generated from two parents by 
means of a genetic crossover. Then the mutation is 
performed (always in case of the parent solution, 
otherwise only with a predefined probability). Based 
on the roulette wheel, master selects randomly one 
solution from the new generation for itself and other 
solutions that it sends to slaves (one per slave).  

The MBOA and HGSA optimization were applied 
successfully to several network topologies. Of course, 
the fact that the lower bound cannot be always reached 
is to be expected and no other algorithm can ever 
change it. In one case it was verified that the non-
minimum routing does make a difference (7 vs. 10 
steps). However, generally only the minimum routing 
strategy was adopted in evolutionary algorithms 
because inclusion of the non-minimum routing would 
lead to an enormous increase of possible paths from 
sources to destinations and to the prohibitive memory 
and time consumption. 

The situation was different with regard to multiple 
minimum paths from source to destination nodes.  
They were accounted for an easy way through 
mutation. As soon as the fitness was not improving in a 

certain period of optimization, replacement of one 
minimum path by another was a good remedy. 

 
6. The Case Study: Real and Theoretical 
Complexity of M-to-N Communications on 
a Fat Octagon 

 
Octagon is the novel on-chip communication 

network architecture suitable for the aggressive on-
chip communication demands of SoCs in several 
application domains and also for networking SoCs [3]. 
As a ring, it is also not free from deadlock and virtual 
channels have to be used. The suggested scaling 
strategy [3] based on bridge nodes connecting adjacent 
Octagons has a drawback of a very low bisection width 
BC and therefore a poor performance in all-to-all and 
M-to-N traffic.  Another scaling strategy extends the 
Octagon to the multidimensional space by linking 
corresponding nodes of several Octagons. This, 
however, increases the node degree, and is not always 
acceptable. Octagon can also be extended to a larger 
ring with P = 8, 12, 16,…, 4n nodes retaining the 
original topology [7], but congestion of wires in the 
middle may cause difficulties at manufacturing (in 2 
dimensions, e.g. in NoC). We have therefore used a fat 
Octagon with two CPU cores per node, Fig. 4.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Fat Octagon topology 

 

Four representative collective communications were 
designed under the assumption of one-port model, full 
duplex links and wormhole routing. The results 
indicated as upper bounds appear in Table 2, together 
with the lower bounds obtained from equations (6) – 
(10). 
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Table 2. M-to-N Broadcast and Scatter, lower 
and upper bounds, on Fat Octagon topology  

(P = 16)  

Lower bounds MNB MNS 
8 to the same 8 7 7 
8 to other 8  8 10 
8 to all 16  8 15 
all 16 to all 16 15 15  

 

Upper bounds MNB MNS 
8 to the same 8 7 10 /7*) 
8 to other 8  8 10 
8 to all 16  8 15 
all 16 to all 16 15 17+) 

                       *) with non-minimum routing 
           +) non-minimum routing not found 

7. Conclusions 
 

The lower bounds τCC(G) on number of CC steps 
were derived for general case of M-to-N collective 
communications. The application-oriented CCs of this 
kind are of increasing importance on multiprocessor 
SoCs. One example is when one group of processors 
finishes a task and a different size group continues and 
needs the intermediate results from the first group. 

 The evolutionary algorithms such as MBOA and 
HGSA have been used for scheduling CC in the 
minimum number of steps without creating a conflict 
(a common link in two transfers in the same step). The 
(sub)optimal solutions can be obtained for the case of 
minimum routing, slim or fat nodes and any type of 
CC. The really obtained upper bounds τCC(G) were 
presented for fat Octagon topology for illustration 
only. Since a distance-insensitive wormhole switching 
was assumed, the real communication times can be 
obtained approximately from the number of start-ups 
τCC(G) plus the serialization delay m t1, 

     tCC =  τCC(G) ×  ts +  m t1,           (12) 
if neglecting the hardware overhead in routers along 
the traversed path. Possible synchronization overhead 
involved in communication steps, be it hardware or 
software-based, should be included in the start-up time 
ts. According to frequency of CCs and an amount of 
interleaved computation in a certain application, 
efficiency of parallel processing can thus be estimated 
with a good degree of accuracy. 

Optimization is not dependent on the size of 
networks: the algorithms are always the same, only the 
data structures (specification of networks) differ. The 
size of solvable problems is limited by excessively 
increasing computing time even on a 10-blade cluster. 
This excludes frequent changes in topology of large 

networks. The future research should investigate 
scalability limits of the both presented algorithms (now 
around 64 – 128 nodes) and possible improvements of 
these algorithms by means of cleverer heuristics for 
even higher scalability. 

It is seen from the results, that the upper bounds are 
equal or close to lower bounds. Providing multiple 
CPU ports for simultaneous communication is also of 
interest in maintaining performance close to theoretical 
limits.   
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