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Abstract

The paper addresses the important issue related to

communication performance of Networks on Chip

(NoCs), namely the complexity of collective

communications measured by a required number of

algorithmic steps. Three NoC topologies are

investigated, a ring network, Octagon and 2D-mesh,

due to their easy manufacturability on a chip. The

lower complexity bounds are compared to real values

obtained by evolution-based optimizing tools. Results

give hints on what communication overhead is to be

expected in ring- and mesh-based NoCs with the

wormhole switching, full duplex links and k-port non-

combining nodes.

1. Introduction

With an increasing number of processor cores,

memory modules and other hardware units in SoCs, the

importance of communication among them and of

related interconnection networks is steadily growing.

Recently the research opened up in Network on Chip

(NoC) area, encompassing the interconnection

/communication problem at all levels, from physical to

the architectural to the OS and application level [1],

[2].

Some embedded parallel applications, like network

or media processors, are characterized by independent

data streams or by a small amount of inter-process

communications [1]. However, many general-purpose

parallel applications display a bulk-synchronous

behavior: the processing nodes access the network

according to a global, structured communication

pattern. They can, for example, execute a personalized

all-to-all information exchange, global synchronization,

gather/scatter to/from one node, etc. The performance

of these collective communications (CC for short) has a

dramatic impact on the overall efficiency of parallel

processing. Provided that computation times are

known, as is usually true in case of application-specific

systems, the only thing that matters in obtaining the

highest performance are durations of various collective

communications.

Bus-based, synchronous communication structures

in SoC, operating at several hundreds MHz, are not

attractive any more due to tight timing constraints and

skew control [2]. Transition to point-to-point high

speed networks, that happened on system boards (e.g.

from PCI to PCI/Express), is taking place on SoCs, too.

Much research and practical interest has recently

focused on other regular networks implemented on

chip. A class of interconnection networks of interest in

this paper covers direct networks, which for

performance-driven environments converge on the use

of pipelined (wormhole, WH) message transmission

and source-based routing algorithms.

Logarithmic diameter networks, e.g. hypercube,

butterfly and fat tree, provide enough bandwidth for

all-to-all communications, but do not map well into two

dimensions provided by a silicon chip: the length of

some interconnection wires increases proportionally to

the number of processors. This will decrease the clock

frequency dramatically and degrade the performance.

We therefore investigate here three NoC topologies

with only local interconnection among processors,

namely the ring, Octagon [3] and 2D-mesh. 

The paper is structured as follows. In the following

Section 2 we give the lower bounds on the number of

communication steps for general networks and for our

three topologies of choice. Then Section 3 deals with

optimum CC algorithms that match the lower bounds or

are close to them on 1-port and 2-port rings and on

Octagon topology. Finally the all-port 2D-mesh is

analyzed in Section 4. Results and their scalability are

commented in Conclusions. We will use P for number

of processors in the network with V nodes (vertices). If

P=V, we have “slim” nodes - one processor per node;

otherwise we can place P/V processors on one node

and get   “fat” nodes. 



2. Time complexity of collective communi-

cations in WH networks

Performance of CCs is closely related to their time

complexity. The simplest time model of point-to-point

communication in direct WH networks takes the

communication time composed of a fixed start-up time

t

s

at the beginning (SW and HW overhead) and of a

component that is a function of distance h (the number

of channels on the route or hops a message has to do)

and message length m in certain units (words or bytes):

t

WH

= t

s

+ h t

r 

+ m t

1

, (1)

where t

r

includes a routing decision delay, switching

and inter-router latency and t

1

is  per unit-message

transfer time. The dependence on h is rather small,

(since t

r

<< m t

1

), so that WH switching is considered

distance-insensitive. For simplicity, in eq. (1) we have

assumed no contention for channels and no associated

delays.  

 Beside pair-wise communications, in many parallel

algorithms we often find certain communication

patterns, which are regular in time, in space, or in both

time and space; by space we understand spatial

distribution of processes on processors. Communi-

cations taking place among a subset or among all

processors are called collective (CC) or group

communications. Generally we have two sets of nodes:

T − the set of transmitting nodes and R − the set of

receiving nodes. We may distinguish three classes of

CCs:

1. T ∩ R = ∅, non-overlapping sets of nodes.

A. One-to-all, T = 1, R = P-1. Broadcast com-

munication (OAB, a single message) belongs to this

class as well as one-to-all scatter communication

(OAS, a private message to each partner). 

B. All-to-one, T = P-1, R = 1, e.g. gather

(AOG) or reduce (AOR) communication.

C. Many-to-many, T = M, R = N. Non-overlap-

ping sets of nodes.

2. T ∩ R ≥ 2.  Many-to-many communication with

overlapping sets of nodes.

3. T ∩ R = P. All-to-all communications such as

permutation, all-to-all scatter, (AAS), all-to-all reduce

(AAR), and others.

Since complexities of some communications are

similar (AOG ~ OAS, AOR ~ OAB, AAR ~ AAB), we

will focus only on 4 basic types (OAB, OAS, AAB,

AAS). Also, from now on, when we refer to „collective

communications”, then we will assume only CCs

involving all processors. 

In the rest of the paper we assume that the CC in

WH networks proceeds in synchronized steps. In one

step of CC, a set of simultaneous packet transfers takes

place along complete disjoint paths between source-

destination node pairs. If the source and destination

nodes are not adjacent, the messages go via some

intermediate nodes, but processors in these nodes are

not aware of it; the messages are routed automatically

by the routers attached to processors. Complexity of

collective communication will be determined in terms

of the number of communication steps or equivalently

by the number of “start-ups” τ

CC

(G) (lower bound).

This figure of merit does not take into account the

message length or its variations from one step to

another.

The number of CPU ports on every node that can be

engaged in one step of CC will be denoted k, meaning

that 2k (DMA) unidirectional channels (k inputs, k

outputs to/from the CPU) between the processor and an

associate router can transfer data simultaneously.

Always k ≤ d, where d is a node degree; 1-port model

(k=1) and the all-port router model (k=d) are most

frequently used. Parameter k has also an impact on

number of communication steps, as well as the fact if

nodes can combine/extract partial messages with

negligible overhead (combining model) or can only re-

transmit/consume original messages (non-combining

model). Finally, the number of steps τ

CC

(G) depends on

a channel type; we have to distinguish between

unidirectional (simplex) channels and bi-directional

(half-duplex HD, full-duplex FD) channels. Typically

τ

CC

(G) will be 2-times larger for HD channels than for

the FD ones. Further on we will consider only FD

channels.

One of the key design factors of an interconnection

network is its topology. The lower bounds τ

CC

(G) for

the network graph G depend on node degree d, number

of nodes P, and bisection width B

C

, Tab.1.

As far as the broadcast communication (OAB) is

concerned, the lower bound on the number of steps

τ

OAB

(G) = s = log

k+1

P is given by the number of

nodes informed in each step, that is initially 1, 1+1×k

after the first step, (k+1)+(k+1)×k = (k+1)

2

after the

second step, etc.,…, and (k+1)

s

≥ P nodes after step s.

In case of AAB communication, since each node

has to accept P−1 distinct messages, the lower bound is

(P−1)/k steps. A similar bound applies to OAS

communication, because each node can inject into the

network not more than k messages in one step; for irre-



Table 1. Lower bounds on complexity of

collective communications

CC WH, k-port, FD model

OAB

log

k+1

P  = (logP)/log ( k+1)

AAB

(P – 1)/k

OAS

(P – 1)/k

AAS

d/k P

2

/(2 B

C

)

gular networks with non-constant node degree d we

should use the lowest value of k for AAB and the value

of k of the source node for OAS. In WH OAS we use a

broadcast tree for P−1 pair-wise communications, k of

them per step. Apparently, to pack k-tuples of

messages into the lowest number of steps, an optimum

broadcast tree should have k sub-trees of approximately

the same size. All k paths traversed in each step must

be link-disjoint to avoid conflicts.

The lower bound for AAS can be obtained

considering that one half of messages from each

processor cross the bisection, whereas the other half do

not. There will be altogether 2(P/2)(P/2)/ B

C

 of such

messages in both ways, where B

C

is the network

bisection width [4]. This gives d/k P

2

/(2B

C

) steps

if k communications can run in parallel.

For the network topologies potentially useful in

NoC the lower bounds of selected CCs are given in

Tab.2. For regular networks (with constant node degree

d) k-port model is specified. 2D meshes have 3 values

of k, k=2, 3 and 4 and one-to-all communications

depend on the k-value of the source node. Wormhole

switching and full duplex links are assumed.

Table 2. Lower bounds τ

CC

(G) from Tab.1 for

selected networks

WH, FD, k-port

OAB AAB OAS AAS

Ring 8, k=1 3 7 7 16

Ring16, k=2 4 15 15 64

Ring 8, k=2 2 4 4 8

Ring 16, k=2 3 8 8 32

Octagon 8, k=3 2 3 3 3

16-gon, k=3 2 5 5 11

2D mesh 4 x 2 2 4 2, 4 8

2D mesh 4 x 4 2,2,3 8 4,5,8 16

2D mesh 6 x 6 3,3,4 18 9,12,18 54

2D mesh 8 x 8 3,3,4 32 16,21,32 128

3. Complexity of real CC algorithms on

ring topologies

The bidirectional ring topology, though very simple,

is not free from routing deadlock, because the channel

dependency graph is not acyclic [4].  This can be seen    

on a 1-port as well all-port (2-port) ring on a common

permutation called cyclic shift. The problem can be

solved by introduction of virtual channels [4] and by

implementing rules on channel usage. We assume that

these rules are adhered to in all our CC schedules and

thus the deadlock is avoided.

As far as 2D meshes is concerned, the dimension-

ordered deterministic routing (first in x, then in y

direction) on meshes and tori is known to be deadlock-

free. A certain degree of adaptivness can be obtained

by more relaxed routing, such as North-last or West-

first strategy [4].

3.1. CCs on an 1-port and all-port ring

The optimal OAB algorithm reaching the lower

bound τ

OAB

(G) = log

k+1

P recursively doubles (k=1)

or triples (k=2)  the number of informed nodes in each

step. The ring is split into 2 halves (k=1) or 3 thirds

(k=2) and then the source sends a message to its image

in the other half or images in other thirds.

OAS algorithm spreading customized messages to

every partner is trivial, because the source has to inject

1 (k=1) or 2 (k=2) messages at a time into the ring and

the lower bound clearly applies.

AAB communication among 1-port nodes also has a

straightforward solution: all processors just send their

messages in one direction around the ring and the

communication proceeds by pipelining in P-1 steps. 

All the channels are used in all steps. In 2-port model,

every node sends its messages into two branches of a

primitive broadcast tree and they do one hop in each

step. It is easily seen that these broadcast trees of all

the nodes are time-arc disjoint, i.e. no channel is used

more than once in a single step. Thus the lower bound

τ

OAB

(G)= (P – 1)/2 can again be reached.

The last AAS communication could be implemented

as (P–1) permutations, deadlock-free with virtual

channels, but not without link congestions (conflicts). 

Communication time thus cannot be estimated. We

have therefore tried to find AAS communication

schedule organized into congestion-free steps with the

use of evolutionary optimization. We have used the

Mixed Bayesian Optimization Algorithm (MBOA) [5],

which is based on BOA (Bayesian Optimization

Algorithm).  The probabilistic model of BOA, the



Bayesian net, is replaced by a set of binary decision

trees/graphs.

A chosen AAS chromosome encoding has a form of

a matrix with P OAS chromosomes (vectors). The OAS

chromosome uses P genes, each gene consists of two

items: an index of one of the shortest source-

destination path and a communication step number.

The fitness function is based on counting conflicts in

schedules (i.e. situations when two processors want to

use the same channel in the same step). The optimal

schedule does not contain any conflict and the MBOA

(with the given number of communication steps as

input) was able to find them for common networks with

up to 64 nodes [5].

Table 3.  AAS communication schedule on

the 8-node bidirectional all-port ring

clockwise  from >tostep

counter-clockwise

1 >5, 5 >10

1 >6, 6 >5, 5 >3, 3 >1

0 >1, 1 >4, 4 >5, 5 >01

0 >6, 6 >4, 4 >2, 2 >0

0 >3, 3 >7, 7 >02

0 >5, 5 >4, 4 >1, 1 >0

1 >3, 3 >6, 6 >13

0 >4, 4 >3, 3 >0

0 >2, 2 >4, 4 >6, 6 >04

0 >7, 7 >4, 4 >0

1>2, 2>3,3 >5, 5>7, 7>15

2 >6, 6 >3, 3 >2

2 >5, 5 >6, 6 >7, 7 >26

1 >7, 7 >6, 6 >2, 2 >1

3 >4, 4 >7, 7 >37

2 >7, 7 >5, 5 >2

A sample solution of optimal AAS schedule for the

bidirectional ring of 8 processors is shown in Tab.3.

The number of steps reaches the lower bound

τ

AAS

(Ring) = 8 and 56 messages get distributed. In each

step one or two processors use all (two) their ports, i.e.

two pairs of channels connecting them to the router.

E.g. in step 1, processors 0 and 4 communicate

simultaneously on 2 ports (2 input and 2 output

channels each). Let us note that several optimal

solutions exist. For HD links or 1-port nodes the

number of steps would be double, routing clockwise

and counter-clockwise direction in separate steps.

3.2. Scheduling CCs on all-port Octagon

network

Octagon is the novel on-chip communication

network architecture suitable for the aggressive on-chip

communication demands of SoCs in several application

domains and also for networking SoCs [3], Fig.1. As a

ring, it is also not free from deadlock and virtual

channels have to be used. The suggested scaling

strategy [3] based on bridge nodes connecting adjacent

Octagons has a drawback of a very low bisection width

B

C

and therefore a poor performance in all-to-all

traffic.  Another scaling strategy extends the Octagon

to the multidimensional space by linking corresponding

nodes of several Octagons. This, however, increases

the node degree, and is not always acceptable. We will

therefore use a generic NoC model with P = 8, 12, 16,

…, 4n retaining the original topology [7].

Fig.1. Octagon network, all-port model (k = 3)

Collective communications on the generic 8-

processor, symmetric Octagon network are easy. One-

to-all communications are done the same way for every

source node.  OAB clearly can be done in 2 steps and

OAS needs 7/3 = 3 steps. To implement AAB, we

have to use such a broadcasting tree that is time-arc-

disjoint (TADT) and can be used by all nodes

simultaneously without creating conflict. The same tree

as for store and forward switching can be used,

restricting communication in each step to only between

neighbors. E.g. node 0 could use this TADT:

Step 1: 0 >7, 0 >4, 0 >1

Step 2: 7 >6, 1 >2

Step 3: 4 >5, 4 > 3.

We cannot join steps 2 and 3 though, because it would

create conflict - one node cannot use more than 3

0

1

2

3

4

5

6

7



channels in a single step, because there is not more than

24 channels altogether.

The most complex AAS communication is not

performed the same way by all nodes - there is no

analogy to the TADT. In the design of AAS schedule,

the same approach has been used as with the

bidirectional ring, namely evolutionary optimization.

Four steps were needed for AAS on Octagon with all-

port (3-port) nodes, one step worse than the lower

bound in Tab.1. The optimum AAS schedule is given

in Tab. 4. The sequences of digits denote the path of

length one (src, dst) or two (src, via, dst). For a

scalable version of Octagon with the number of nodes

increased by 4, we can find upper bounds similarly as

for Octagon using evolutionary algorithm. The results

for 16-gon (“hexadecagon”) are given in Table 5. The

cases where the upper bound differs from the lower

bound are denoted by bold digits.

Table 4.  AAS communication schedule on

the Octagon8 topology

step AAS on Octagon

0 073, 104, 156, 21, 23, 267, 340,

432, 45, 512, 654, 701, 762

1 012, 07, 10, 265, 321, 34, 451, 437,

54, 567, 623, 73, 704, 76

2 01, 12, 15, 107, 234, 26, 32, 40,

456, 543, 670, 621, 765

3 04, 015, 076, 123, 210, 345, 326,

37, 43, 540, 51, 56, 62, 65, 67, 70

4. Real CC algorithms on 2D meshes

2D-meshes may be easy to manufacture on a chip

due to local interconnections only, but they have other

disadvantages. The main one is a lack of node

symmetry. Meshes are also irregular networks as the

node degree is not constant. While the corner nodes

have degree 2, the nodes on the boundary have 3 links

and internal nodes 4 links. Therefore one-to-many

algorithms for all-port meshes (k =d) will need more or

less steps accordingly. This is a big difference in

comparison to node symmetric tori networks.

OAB in 1-port 2D-meshes is relatively easy task:

recursive doubling (as on the ring) is done first in x

dimension and as soon as all nodes in row x are

informed, we do OAB in all columns simultaneously,

again by recursive doubling.

On the contrary, to develop optimal OAB algorithm

in all-port 2D-meshes is difficult, because the lower

bound is pretty tight. To achieve it, we need an

algorithm, in which every node, once informed, must

find in every subsequent step 4 uninformed nodes and

deliver them the message, so that globally all used

paths are link-disjoint. Since meshes, unlike tori, are

not node-symmetric, there are no elegant algorithms for

them. Several approaches have been developed for tori;

e.g. torus is split into 5 horizontal strips, the message is

sent from the source strip to all other strips in step 1

using x then y routing, and then recursively the same in

each horizontal strip. This would not work for small

tori and even worse so for small meshes. Here again we

have to resort to evolutionary or other kind of

optimization. The results are shown in Tab.5.

The similar situation is in design of TADT trees

useful for OAS and AAB communications. They are

known for square tori, but in the other cases their

construction is difficult, due to the lack of symmetry.

Finally, the congestion- (conflict) free AAS schedules

are not known even for square tori.

The design of CC schedules using evolutionary

algorithms has been carried out in two directions:

- OAB, OAS and AAS schedules were obtained as

already presented above with the aid of MBOA.

- AAB schedules were tackled with Hybrid parallel

Genetic Simulated Annealing (HGSA) [6].

In HGSA, there are sequential SA processes running

in parallel. After 100 or so iterations of Metropolis

algorithm, each process sends its solution to a master.

The master uses the genetic crossover to produce new

solutions: two children solutions are generated from

two parents by means of a genetic crossover. Then the

mutation is performed (always in case of the parent

solution, otherwise only with a predefined probability).

Based on the roulette wheel, master selects randomly

one solution from the new generation for itself and

other solutions that it sends to slaves (one per slave). 

The results of MBOA and HGSA optimization are

summarized in Tab.5. Bold digits represent cases when

lower bounds were not reached. With exception of

AAS on 16-gon, the difference is in remaining cases

just one step. Of course, the fact that the lower bound

cannot be always reached is to be expected and no

other algorithm can ever change it. In some cases it was

verified that the difference of 1 step is due to the

minimum routing strategy used in evolutionary

algorithms. Inclusion of the non-minimum routing

would lead to an enormous increase of possible paths

from sources to destinations and therefore was not

explored. However, in some small networks the

analysis of the last remaining conflict in fitness

function revealed, that it can be eliminated if non-

minimum routing is used. This way the upper and

lower bounds were made equal (optimum schedules).



5. Conclusions

The lower and upper bounds on number of CC

steps, denoted τ

CC

(G) and τ

CC

(G), were presented for

interconnection networks (G) of interest for NoCs.

Since a distance-insensitive wormhole switching was

assumed, the real communication times can be obtained

approximately as number of start-ups plus the

serialization delay m t

1

,

t

CC

= t

s

× τ

CC

(G) + m t

1

,     (2)

if neglecting the hardware overhead in routers along

the traversed path. Possible synchronization overhead

involved in communication steps, be it hardware or

software-based, should be included in the start-up time

t

s

. According to frequency of CCs and an amount of

interleaved computation in a certain application,

efficiency of parallel processing can be estimated.

Table 5. Real complexities of CC on selected    

k-port networks – upper bounds τ

CC

(G)

*) 3 steps with non-minimum routing

+) not completed as yet

It is seen from the results, that even though the

upper bounds are mostly close or equal to lower

bounds, scalability of CC algorithms, especially of all-

to-all communication, on networks being considered as

candidates for NoCs, is not too good. The reason is that

these networks, simple enough to be manufactured

easily, do not have enough bisection bandwidth or

sufficient port model. If we look for example at 1-port

rings and AAS pattern, we could implement it with not

more than P-1 permutations.  From Tab. 5 we can see

that each such permutation would have to generate in

average link congestion 2 and 4 (the same link used 2-

and 4-times in a single permutation). In this respect the

AAB communication is easier, because only one

message per processor may have to cross the bisection.

One way of performance improvement is to scale

small generic networks to fat networks (with multiple

processors per node and/or multiple edges) and provide

more ports for simultaneous communication. However,

this approach is not cheap in hardware, although

manufacturability remains easy.

Future research will be oriented towards

optimization of CCs in fat networks, whose potential

for NoCs was not yet fully appreciated. Another

direction worth of effort is a class of many-to-many CC

with non-overlapping as well as overlapping subsets of

processors. The application-specific CCs of this kind

are of increasing importance on multiprocessor SoCs.
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WH, FD OAB AAB OAS AAS

Ring 8, k=1 3 7 7 16

Ring16, k=1 4 15 15 64

Ring 8, k=2 2 4 4 8

Ring 16, k=2 3 8 8 32

Octagon, k=3 2 3 3

4

16-gon, k=3 2

9

5

17

2D mesh 4 x 2

4*)

4 4 8

2D mesh 4 x 4 2,2,3 8

4, 6, 8 17

2D mesh 6 x 6 3,3,4 18 9,12,18 +) 

2D mesh 8 x 8

3,4,4 33 16,22,32

+)


